math.py 77.4 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
from __future__ import print_function
Y
Yang Zhang 已提交
18
import numpy as np
19

20
from paddle.common_ops_import import *
21 22
from paddle.tensor import cast
import paddle
23
from ..fluid import layers
24
from ..fluid.framework import core, _varbase_creator, in_dygraph_mode, Variable, convert_np_dtype_to_dtype_
L
Li Fuchen 已提交
25 26
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
27
from ..fluid.layers.layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn
28 29 30

# TODO: define math functions
# yapf: disable
31 32 33 34 35
from ..fluid.layers import abs    #DEFINE_ALIAS
from ..fluid.layers import acos    #DEFINE_ALIAS
from ..fluid.layers import asin    #DEFINE_ALIAS
from ..fluid.layers import ceil    #DEFINE_ALIAS
from ..fluid.layers import cos    #DEFINE_ALIAS
36 37
from ..fluid.layers import sinh    #DEFINE_ALIAS
from ..fluid.layers import cosh    #DEFINE_ALIAS
38 39 40 41 42 43 44
# from ..fluid.layers import elementwise_add    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_div    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_floordiv    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_mod    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_mul    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_pow    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_sub    #DEFINE_ALIAS
45 46 47 48
from ..fluid.layers import exp    #DEFINE_ALIAS
from ..fluid.layers import floor    #DEFINE_ALIAS
from ..fluid.layers import log    #DEFINE_ALIAS
from ..fluid.layers import reciprocal    #DEFINE_ALIAS
49 50
from ..fluid.layers import reduce_all    #DEFINE_ALIAS
from ..fluid.layers import reduce_any    #DEFINE_ALIAS
51 52 53 54
# from ..fluid.layers import reduce_max    #DEFINE_ALIAS
# from ..fluid.layers import reduce_min    #DEFINE_ALIAS
# from ..fluid.layers import reduce_prod    #DEFINE_ALIAS
# from ..fluid.layers import reduce_sum    #DEFINE_ALIAS
55 56 57 58 59 60 61
from ..fluid.layers import round    #DEFINE_ALIAS
from ..fluid.layers import rsqrt    #DEFINE_ALIAS
from ..fluid.layers import scale    #DEFINE_ALIAS
from ..fluid.layers import square    #DEFINE_ALIAS
from ..fluid.layers import stanh    #DEFINE_ALIAS
from ..fluid.layers import atan    #DEFINE_ALIAS
from ..fluid.layers import erf    #DEFINE_ALIAS
62 63
from ..fluid.layers import sqrt    #DEFINE_ALIAS
from ..fluid.layers import sin    #DEFINE_ALIAS
64

65
from ..fluid.layers import multiplex    #DEFINE_ALIAS
G
guofei 已提交
66
from ..fluid import layers
67

68

69
__all__ = [
70 71 72 73 74 75
        'abs',
        'acos',
        'asin',
        'atan',
        'ceil',
        'cos',
76
        'cosh',
77 78 79
        'cumsum',
        'exp',
        'floor',
80
        'increment',
81
        'log',
J
joejiong 已提交
82
        'log2',
J
joejiong 已提交
83
        'log10',
84
        'logsumexp',
85
        'mul',
86
        'multiplex',
87
        'pow',
88
        'prod',
89 90 91 92 93 94
        'reciprocal',
        'round',
        'rsqrt',
        'scale',
        'sign',
        'sin',
95
        'sinh',
96 97 98 99 100
        'sqrt',
        'square',
        'stanh',
        'sum',
        'tanh',
S
Steffy-zxf 已提交
101
        'add_n',
102
        'max',
103
        'maximum',
104
        'min',
105
        'minimum',
106
        'mm',
107 108 109 110 111
        'divide',
        'floor_divide',
        'remainder',
        'mod',
        'floor_mod',
112
        'multiply',
113 114 115
        'add',
        'atan',
        'logsumexp',
116
        'inverse',
117 118 119 120
        'log1p',
        'erf',
        'addcmul',
        'addmm',
Y
Yang Zhang 已提交
121
        'clip',
L
Li Fuchen 已提交
122
        'trace',
J
Jack Zhou 已提交
123 124 125
        'kron',
        'isfinite',
        'isinf',
L
Leo Chen 已提交
126 127
        'isnan',
        'broadcast_shape'
128 129 130
]
# yapf: enable.

131 132 133 134 135 136 137 138 139 140 141 142 143
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

144
def pow(x, y, name=None):
145
    """
146
    Compute the power of tensor elements. The equation is:
S
swtkiwi 已提交
147

148 149
    .. math::
        out = x^{y} 
150

151 152
    **Note**:
    ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
153 154


155 156 157 158 159
    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        y (Tensor): An N-D Tensor with type float32, float64, int32 or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
160
    Returns:
161
        N-D Tensor. A location into which the result is stored. Its dimension equals with $x$.
162 163 164

    Examples:

165
        ..  code-block:: python
166 167 168

            import paddle

169
            # example 1: y is a float
170
            x = paddle.to_tensor([1, 2, 3])
171 172
            y = 2
            res = paddle.pow(x, y)
J
joejiong 已提交
173
            print(res) # [1 4 9]
174 175
            
            # example 2: y is a Tensor
176
            y = paddle.full(shape=[1], fill_value=2, dtype='float32')
177
            res = paddle.pow(x, y)
J
joejiong 已提交
178
            print(res) # [1 4 9]
179 180

    """
181
    # in dynamic graph mode
W
WuHaobo 已提交
182
    if in_dygraph_mode():
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
        if isinstance(y, (int, float)):
            return core.ops.pow(x, 'factor', y)
        elif isinstance(y, (paddle.Tensor, Variable)):
            if x.dtype != y.dtype:
                y = cast(y, dtype='float64')
                x = cast(x, dtype='float64')
            return _elementwise_op_in_dygraph(
                x, y, axis=-1, act=None, op_name='elementwise_pow')
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype))
    # in static graph mode
    else:
        if isinstance(y, (int, float)):
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
            if x.dtype != y.dtype:
                y = cast(y, dtype='float64')
                x = cast(x, dtype='float64')
J
joejiong 已提交
209
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
210 211 212
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (type(y)))
213 214 215



216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
    op = getattr(core.ops, op_name)
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)

    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)


def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

236 237
    out = helper.kwargs.get('out', None)

238 239 240 241 242 243 244 245 246 247 248 249
    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
250 251 252 253 254 255

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(name=name, dtype=x.dtype, persistable=False)
256 257 258 259 260 261 262 263 264 265 266

    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


Y
Yang Zhang 已提交
267
def add(x, y, name=None):
268
    """
269
    Examples:
270 271 272 273

    ..  code-block:: python

        import paddle
274 275
        x = paddle.to_tensor([2, 3, 4], 'float64')
        y = paddle.to_tensor([1, 5, 2], 'float64')
W
WuHaobo 已提交
276
        z = paddle.add(x, y)
277
        print(z)  # [3., 8., 6. ]
278 279 280 281 282 283

    """
    op_type = 'elementwise_add'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
Y
Yang Zhang 已提交
284
            x, y, axis=axis, op_name=op_type)
285 286 287 288

    return _elementwise_op(LayerHelper(op_type, **locals()))


289
def divide(x, y, name=None):
290
    """
291
    Divide two tensors element-wise. The equation is:
292

293 294
    .. math::
        out = x / y
295

296 297
    **Note**:
    ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
298

299 300 301 302
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
303

304 305
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
306

307
    Examples:
308

309
        ..  code-block:: python
310

311
            import paddle
312

313 314
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
315
            z = paddle.divide(x, y)
316
            print(z)  # [2., 0.6, 2.]
317

318 319 320 321 322 323 324
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
325

326
    return _elementwise_op(LayerHelper(op_type, **locals()))
327 328


329 330 331
def floor_divide(x, y, name=None):
    """
    Floor divide two tensors element-wise. The equation is:
332

333 334
    .. math::
        out = x // y
335

336 337
    **Note**:
    ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
338

339 340 341 342
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
343

344 345
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
346

347
    Examples:
348

349
        ..  code-block:: python
350

351
            import paddle
352

353 354
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
355
            z = paddle.floor_divide(x, y)
356
            print(z)  # [2, 0, 2, 2]
357

358 359 360 361 362 363
    """
    op_type = 'elementwise_floordiv'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
364

365
    return _elementwise_op(LayerHelper(op_type, **locals()))
366 367


368
def remainder(x, y, name=None):
369
    r"""
370 371 372
    Mod two tensors element-wise. The equation is:

    .. math::
373

374 375 376
        out = x \% y

    **Note**:
377
    ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
378 379

    Args:
W
WangXi 已提交
380 381
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
382 383 384 385 386 387 388 389 390 391 392
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.

    Examples:

        ..  code-block:: python

            import paddle

393 394
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
395
            z = paddle.remainder(x, y)
W
WangXi 已提交
396
            print(z)  # [0, 3, 2, 1]
397 398 399

    """
    op_type = 'elementwise_mod'
400 401 402
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
403
            x, y, axis=axis, op_name=op_type)
404 405 406 407

    return _elementwise_op(LayerHelper(op_type, **locals()))


408 409 410 411
mod = remainder  #DEFINE_ALIAS
floor_mod = remainder  #DEFINE_ALIAS


412
def multiply(x, y, name=None):
413
    """
414
    multiply two tensors element-wise. The equation is:
415

416 417
    .. math::
        out = x * y
418

419 420
    **Note**:
    ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
421

422 423 424 425
    Args:
        x (Tensor): the input tensor, its data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, its data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
426

427 428
    Returns:
        N-D Tensor. A location into which the result is stored. Its dimension equals with $x$.
429

430 431 432 433 434 435
    Examples:

        ..  code-block:: python

            import paddle

436 437
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
438
            res = paddle.multiply(x, y)
439
            print(res) # [[5, 12], [21, 32]]
440

441
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
442 443 444
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
445 446 447 448

    """
    op_type = 'elementwise_mul'
    act = None
449
    axis = -1
450

451 452 453 454 455
    if x.dtype != y.dtype:
        raise TypeError(
            'Input tensors must be same type, but received type of x: %s, type of y: %s '
            % (x.dtype, y.dtype))

456
    if in_dygraph_mode():
457
        if not isinstance(x, (paddle.Tensor)):
458 459 460 461
            raise TypeError(
                    'Input x must tensor type, but received type of x: %s'
                    % (x.dtype))

462 463 464 465
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

466 467 468 469 470 471 472 473 474
def maximum(x, y, axis=-1, name=None):
    """
Examples:

    .. code-block:: python

        import paddle
        import numpy as np

475 476
        x = paddle.to_tensor([[1, 2], [3, 4]])
        y = paddle.to_tensor([[5, 6], [7, 8]])
477
        res = paddle.maximum(x, y)
N
Noel 已提交
478
        print(res)
479 480 481
        #[[5. 6.]
        # [7. 8.]]

482 483
        x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
        y = paddle.to_tensor([1, 2])
484
        res = paddle.maximum(x, y, axis=1)
N
Noel 已提交
485
        print(res)
486 487 488
        #[[[1. 2. 3.]
        #  [2. 2. 3.]]]

489 490
        x = paddle.to_tensor([2, 3, 5], dtype='float32')
        y = paddle.to_tensor([1, 4, np.nan], dtype='float32')
491
        res = paddle.maximum(x, y)
N
Noel 已提交
492
        print(res)
493 494
        #[ 2.  4. nan]

495 496
        x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
        y = paddle.to_tensor([1, 4, 5], dtype='float32')
497
        res = paddle.maximum(x, y)
N
Noel 已提交
498
        print(res)
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
        #[ 5.  4. inf]
    """
    op_type = 'elementwise_max'
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

def minimum(x, y, axis=-1, name=None):
    """
Examples:

    .. code-block:: python

        import paddle
        import numpy as np
  
517 518
        x = paddle.to_tensor([[1, 2], [3, 4]], dtype='float32')
        y = paddle.to_tensor([[5, 6], [7, 8]], dtype='float32')
519
        res = paddle.minimum(x, y)
N
Noel 已提交
520
        print(res)
521 522 523
        #[[1. 2.]
        # [3. 4.]]

524 525
        x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]], dtype='float32')
        y = paddle.to_tensor([1, 2], dtype='float32')
526
        res = paddle.minimum(x, y, axis=1)
N
Noel 已提交
527
        print(res)
528 529 530
        #[[[1. 1. 1.]
        #  [2. 2. 2.]]]

531 532
        x = paddle.to_tensor([2, 3, 5], dtype='float32')
        y = paddle.to_tensor([1, 4, np.nan], dtype='float32')
533
        res = paddle.minimum(x, y)
N
Noel 已提交
534
        print(res)
535 536
        #[ 1.  3. nan]

537 538
        x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
        y = paddle.to_tensor([1, 4, 5], dtype='float32')
539
        res = paddle.minimum(x, y)
N
Noel 已提交
540
        print(res)
541 542 543 544 545 546 547 548
        #[1. 3. 5.]
    """
    op_type = 'elementwise_min'
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))
549

550 551
for func in [
        add,
552 553 554
        maximum,
        minimum,
        multiply
555
]:
556
    proto_dict = {'add': 'elementwise_add', 'div': 'elementwise_div', 'maximum': 'elementwise_max', 'minimum': 'elementwise_min', 'multiply': 'elementwise_mul'}
557 558
    op_proto = OpProtoHolder.instance().get_op_proto(proto_dict[func.__name__])

Y
Yang Zhang 已提交
559 560 561 562 563 564 565
    additional_args_lines = [
        "name (string, optional): Name of the output. \
        Default is None. It's used to print debug info for developers. Details: \
        :ref:`api_guide_Name` "
    ]

    func.__doc__ = _generate_doc_string_(
566 567
        op_proto,
        additional_args_lines=additional_args_lines,
568
        skip_attrs_set={"x_data_format", "y_data_format", "axis",
569
            "use_quantizer", "mkldnn_data_type", "Scale_x", "Scale_y", "Scale_out"
570
        }) + """\n""" + str(func.__doc__)
571

Y
Yang Zhang 已提交
572

573
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
574 575 576 577
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
578 579 580
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
581
            Tensor with a single element, otherwise must be in the
582 583 584 585 586 587 588
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
589
            value is False.
590
        name (str, optional): The default value is None. Normally there is no need for
591 592 593
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
594 595
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
        it's data type is the same as `x`.
596 597

    Raises:
598 599
        ValueError: If the data type of `x` is float64, :attr:`dtype` can not be float32 or int32.
        ValueError: If the data type of `x` is int64, :attr:`dtype` can not be int32.
600
        TypeError: The type of :attr:`axis` must be int, list or tuple.
601

602 603 604 605
    Examples:
        .. code-block:: python

            import paddle
606

607
            # x is a Tensor with following elements:
608 609 610
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
611 612
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
613
            out1 = paddle.sum(x)  # [3.5]
614 615 616
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
617

618
            # y is a Tensor with shape [2, 2, 2] and elements as below:
619 620 621
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
622 623
            y = paddle.to_tensor([[[1, 2], [3, 4]], 
                                  [[5, 6], [7, 8]]])
624 625
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
626
    """
627 628 629 630 631 632 633 634 635 636 637
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

638
    attrs = {
639 640 641
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
642 643 644 645
    }
    dtype_flag = False
    if dtype is not None:
        if dtype in ['float64', 'int64']:
646 647
            if (convert_dtype(x.dtype) == "float32" and dtype == "float64") or \
               (convert_dtype(x.dtype) == "int32" and dtype == "int64"):
648
                attrs.update({
649
                    'in_dtype': x.dtype,
650 651 652 653 654
                    'out_dtype': convert_np_dtype_to_dtype_(dtype)
                })
                dtype_flag = True

    if in_dygraph_mode():
655
        axis = axis if axis != None and axis != [] else [0]
656
        if dtype_flag:
657 658 659
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag, 'in_dtype',
                                       x.dtype, 'out_dtype',
660 661
                                       convert_np_dtype_to_dtype_(dtype))
        else:
662 663
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
664
    check_variable_and_dtype(
665
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'sum')
666 667 668 669 670 671 672 673 674 675 676

    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'sum')
        x_dtype = convert_dtype(x.dtype)

        if (x_dtype == "float64" and dtype in ["float32", "int32"]) or \
                (x_dtype == "int64" and dtype == "int32"):
            raise ValueError("The input(x)'s dtype is {} but the attr(dtype) of sum is {}, "
                             "which may cause data type overflows. Please reset attr(dtype) of sum."
                             .format(x_dtype, dtype))

677 678
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'sum')

679 680 681 682 683
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_(dtype))
    else:
684
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
685 686
    helper.append_op(
        type='reduce_sum',
687
        inputs={'X': x},
688 689 690
        outputs={'Out': out},
        attrs=attrs)
    return out
691

692

693
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
694
def add_n(inputs, name=None):
695
    """
S
Steffy-zxf 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
    This OP is used to sum one or more Tensor of the input.
    
    For example:

    .. code-block:: text
    
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
       
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
731 732

    Args:
S
Steffy-zxf 已提交
733 734
        inputs (Tensor|list(Tensor)):  A Tensor list. The shape and data type of the list elements should be consistent.
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
735 736 737 738
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
S
Steffy-zxf 已提交
739
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
740 741 742 743 744 745

    Examples:
        .. code-block:: python

            import paddle

S
Steffy-zxf 已提交
746 747 748 749 750
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
            # [[8., 10., 12.], 
            #  [14., 16., 18.]]
751
    """
S
Steffy-zxf 已提交
752 753 754 755
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
        return core.ops.sum(inputs, 'use_mkldnn', False)
756

S
Steffy-zxf 已提交
757 758
    helper = LayerHelper('add_n', **locals())
    check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
759 760 761 762
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
S
Steffy-zxf 已提交
763
                   ['float32', 'float64', 'int32', 'int64'], 'add_n')
764 765
    else:
        check_variable_and_dtype(inputs, "inputs", \
S
Steffy-zxf 已提交
766
                ['float32', 'float64', 'int32', 'int64'], 'add_n')
767 768


769 770 771 772 773 774 775 776 777 778 779
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})

    return out


W
WuHaobo 已提交
780
def mm(input, mat2, name=None):
781
    """
S
swtkiwi 已提交
782

783 784 785 786 787 788 789 790 791 792 793
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
N
Noel 已提交
794 795
        x (Tensor): The input tensor which is a Tensor.
        mat2 (Tensor): The input tensor which is a Tensor.
796 797 798 799
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
N
Noel 已提交
800
        Tensor: The product Tensor.
801 802 803 804 805 806

    Examples:
        .. code-block:: python

            # Examples to clarify shapes of the inputs and output
            # x: [B, ..., M, K], mat2: [B, ..., K, N]
N
Noel 已提交
807
            # paddle.matmul(x, mat2)  # out: [B, ..., M, N]
808 809

            # x: [B, M, K], mat2: [B, K, N]
N
Noel 已提交
810
            # paddle.matmul(x, mat2)  # out: [B, M, N]
811 812

            # x: [B, M, K], mat2: [K, N]
N
Noel 已提交
813
            # paddle.matmul(x, mat2)  # out: [B, M, N]
814 815

            # x: [M, K], mat2: [K, N]
N
Noel 已提交
816
            # paddle.matmul(x, mat2)  # out: [M, N]
817 818

            # x: [B, M, K], mat2: [K]
N
Noel 已提交
819
            # paddle.matmul(x, mat2)  # out: [B, M]
820 821

            # x: [K], mat2: [K]
N
Noel 已提交
822
            # paddle.matmul(x, mat2)  # out: [1]
823 824

            import paddle
N
Noel 已提交
825 826 827 828 829

            x = paddle.rand(shape=[2, 3], dtype='float32')
            y = paddle.rand(shape=[3, 2], dtype='float32')
            out = paddle.mm(x, y)
            print(out.shape) # [2, 2]
830 831
    """
    if in_dygraph_mode():
W
WuHaobo 已提交
832
        out = _varbase_creator(dtype=input.dtype)
833 834
        core.ops.matmul(input, mat2, out)
        return out
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
872
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
873 874 875 876
    helper.append_op(
        type='matmul', inputs={'X': input,
                               'Y': mat2}, outputs={'Out': out})
    return out
877

878

Y
yaoxuefeng 已提交
879
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
880
    """
881 882
	:alias_main: paddle.addmm
	:alias: paddle.addmm,paddle.tensor.addmm,paddle.tensor.math.addmm
S
swtkiwi 已提交
883

884 885 886 887 888 889 890 891 892 893 894 895
    **addmm**

    This operator is used to perform matrix multiplication for input $x$ and $y$.
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
896 897 898
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
899
        beta (float): Coefficient of $input$.
Y
yaoxuefeng 已提交
900
        alpha (float): Coefficient of $x*y$.
901 902 903
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.

    Returns:
Y
yaoxuefeng 已提交
904
        Tensor: The output Tensor of addmm op.
905 906 907

    Examples:
        ..  code-block:: python
Y
yaoxuefeng 已提交
908
            
909 910
            import paddle

Y
yaoxuefeng 已提交
911 912 913
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
914

Y
yaoxuefeng 已提交
915
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
916

N
Noel 已提交
917
            print(out)
918 919 920
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
    if not len(input_shape) == len(x_shape) == len(y_shape) == 2:
        raise ValueError("The dimention of input, x, y should be 2 but receive input's shape: {}, x's shape: {}, y's shape: {}".format(input_shape, x_shape, y_shape))
    if input_shape[0] != x_shape[0]:
        if input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
        if input_shape[1] != y_shape[1] and input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
    if input_shape[1] != y_shape[1]:
        if input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
        if input_shape[0] != x_shape[0] and input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
    if x_shape[1] != y_shape[0]:
        raise ValueError("The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(x_shape, y_shape))



941 942 943 944
    if in_dygraph_mode():
        out = core.ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
        return out

945 946 947 948
    inputs = {'Input': input, "X": x, "Y": y}
    attrs = {'Alpha': alpha, 'Beta': beta}

    helper = LayerHelper("addmm", **locals())
Y
yaoxuefeng 已提交
949
    check_variable_and_dtype(input, 'Input', ['float32', 'float64'], 'addmm')
950 951 952 953 954 955 956
    check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
    check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out})
    return out
957 958


959
def logsumexp(x, axis=None, keepdim=False, name=None):
960
    r"""
961
    This OP calculates the log of the sum of exponentials of ``x`` along ``axis`` .
962

963
    .. math::
964
       logsumexp(x) = \\log\\sum exp(x)
965

966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
984

985
    Returns:
986 987
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
988

989
    Examples:
990

991
    .. code-block:: python
992

993 994
        import paddle

995
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
996 997
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
998 999

    """
1000 1001 1002 1003 1004 1005 1006
    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]
1007

1008
    if in_dygraph_mode():
1009
        return core.ops.logsumexp(x, 'axis', axis, 'keepdim', keepdim, 'reduce_all', reduce_all)
1010

1011 1012 1013
    check_variable_and_dtype(x, 'x',
                             ['float32', 'float64'],
                             'logsumexp')
1014

1015
    helper = LayerHelper('logsumexp', **locals())
1016
    attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all':reduce_all}
1017 1018 1019 1020
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs)
    return out
1021

S
swtkiwi 已提交
1022

1023 1024
def inverse(x, name=None):
    """
1025 1026 1027 1028 1029
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
1030
        x (Tensor): The input tensor. The last two
1031 1032 1033 1034 1035 1036 1037 1038
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information,
            please refer to :ref:`api_guide_Name`

    Returns:
1039
        Tensor: A Tensor holds the inverse of x. The shape and data type
1040
                        is the same as x.
1041 1042 1043 1044 1045

    Examples:
        .. code-block:: python

            import paddle
1046 1047

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
1048 1049
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
1050 1051 1052

    """
    if in_dygraph_mode():
1053
        return core.ops.inverse(x)
1054

1055 1056
    def _check_input(x):
        check_variable_and_dtype(x, 'x',
1057
                                 ['float32', 'float64'], 'inverse')
1058
        if len(x.shape) < 2:
1059 1060 1061
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
1062 1063
                "x's shape: %s." % (len(x.shape), x.shape))
    _check_input(x)
1064
    helper = LayerHelper('inverse', **locals())
1065
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1066
    helper.append_op(
1067
        type='inverse', inputs={'Input': [x] }, outputs={'Output': [out]})
1068 1069 1070
    return out


1071
def max(x, axis=None, keepdim=False, name=None):
1072
    """
S
swtkiwi 已提交
1073

1074
    Computes the maximum of tensor elements over the given axis.
1075 1076

    Args:
1077
        x(Tensor): A tensor, the data type is float32,
1078
            float64, int32, int64.
1079
        axis(list|int, optional): The axis along which the maximum is computed.
1080
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
1081
            `x` and return a Tensor with a single element,
1082 1083 1084
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1085
            output Tensor. The result tensor will have one fewer dimension
1086
            than the `x` unless :attr:`keepdim` is true, default
1087
            value is False.
1088
        name(str, optional): The default value is None.  Normally there is no need for
1089 1090 1091
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
1092
        Tensor, results of maximum on the specified axis of input tensor,
1093
        it's data type is the same as `x`.
1094 1095 1096

    Examples:
        .. code-block:: python
1097

1098
            import paddle
1099

N
Noel 已提交
1100
            # data_x is a Tensor with shape [2, 4]
1101
            # the axis is a int element
1102 1103 1104

            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1105
            result1 = paddle.max(x)
N
Noel 已提交
1106
            print(result1)
1107 1108
            #[0.9]
            result2 = paddle.max(x, axis=0)
N
Noel 已提交
1109
            print(result2) 
1110 1111
            #[0.2 0.3 0.6 0.9]
            result3 = paddle.max(x, axis=-1)
N
Noel 已提交
1112
            print(result3)
1113 1114
            #[0.9 0.7]
            result4 = paddle.max(x, axis=1, keepdim=True)
N
Noel 已提交
1115
            print(result4)
1116 1117 1118
            #[[0.9]
            # [0.7]]

N
Noel 已提交
1119
            # data_y is a Tensor with shape [2, 2, 2]
1120
            # the axis is list 
1121 1122 1123

            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1124
            result5 = paddle.max(y, axis=[1, 2])
N
Noel 已提交
1125
            print(result5)
1126 1127
            #[4. 8.]
            result6 = paddle.max(y, axis=[0, 1])
N
Noel 已提交
1128
            print(result6)
1129
            #[7. 8.]
1130 1131
    """

1132
    if axis is not None and not isinstance(axis, list):
1133 1134 1135 1136 1137 1138 1139 1140
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))

1141 1142 1143 1144 1145
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    if in_dygraph_mode():
        return core.ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
                                   'reduce_all', reduce_all)
1146

1147
    helper = LayerHelper('max', **locals())
1148
    check_variable_and_dtype(
1149
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max')
1150

1151
    out = helper.create_variable_for_type_inference(
1152
            dtype=x.dtype)
1153 1154
    helper.append_op(
        type='reduce_max',
1155
        inputs={'X': x},
1156 1157
        outputs={'Out': out},
        attrs={
1158 1159
            'dim': axis,
            'keep_dim': keepdim,
1160 1161 1162 1163
            'reduce_all': reduce_all
        })
    return out

1164
def min(x, axis=None, keepdim=False, name=None):
1165
    """
S
swtkiwi 已提交
1166

1167
    Computes the minimum of tensor elements over the given axis
1168

1169
    Args:
1170 1171
        x(Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis(list|int, optional): The axis along which the minimum is computed.
1172
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
1173
            `x` and return a Tensor with a single element,
1174 1175 1176
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1177
            output Tensor. The result tensor will have one fewer dimension
1178
            than the `x` unless :attr:`keepdim` is true, default
1179
            value is False.
W
WuHaobo 已提交
1180
        name(str, optional): The default value is None.  Normally there is no need for 
1181
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1182

1183
    Returns:
1184
        Tensor, results of minimum on the specified axis of input tensor,
1185
        it's data type is the same as input's Tensor.
1186

1187 1188 1189
    Examples:
        .. code-block:: python

1190
            import paddle
1191

1192
            # x is a tensor with shape [2, 4]
1193
            # the axis is a int element
1194 1195
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1196
            result1 = paddle.min(x)
N
Noel 已提交
1197
            print(result1)
1198 1199
            #[0.1]
            result2 = paddle.min(x, axis=0)
N
Noel 已提交
1200
            print(result2)
1201 1202
            #[0.1 0.2 0.5 0.7]
            result3 = paddle.min(x, axis=-1)
N
Noel 已提交
1203
            print(result3) 
1204 1205
            #[0.2 0.1]
            result4 = paddle.min(x, axis=1, keepdim=True)
N
Noel 已提交
1206
            print(result4)
1207 1208 1209
            #[[0.2]
            # [0.1]]

N
Noel 已提交
1210
            # y is a Tensor with shape [2, 2, 2]
1211
            # the axis is list 
1212 1213
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1214
            result5 = paddle.min(y, axis=[1, 2])
N
Noel 已提交
1215
            print(result5) 
1216 1217
            #[1. 5.]
            result6 = paddle.min(y, axis=[0, 1])
N
Noel 已提交
1218
            print(result6)
1219 1220
            #[1. 2.]
    """
1221

1222
    if axis is not None and not isinstance(axis, list):
1223 1224 1225 1226 1227 1228 1229
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))
1230 1231
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
1232
    if in_dygraph_mode():
1233
        return core.ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
1234
                                   'reduce_all', reduce_all)
1235 1236 1237 1238 1239 1240

    helper = LayerHelper('min', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min')

    out = helper.create_variable_for_type_inference(
1241
            dtype=x.dtype)
1242 1243
    helper.append_op(
        type='reduce_min',
1244
        inputs={'X': x},
1245 1246
        outputs={'Out': out},
        attrs={
1247 1248
            'dim': axis,
            'keep_dim': keepdim,
1249 1250 1251 1252 1253
            'reduce_all': reduce_all
        })
    return out


W
WuHaobo 已提交
1254
def log1p(x, name=None):
1255
    r"""
1256
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
1257

1258 1259
    .. math::
        Out = \\ln(x+1)
S
Steffy-zxf 已提交
1260

1261
    Args:
S
Steffy-zxf 已提交
1262
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
1263 1264 1265
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
S
Steffy-zxf 已提交
1266
        Tensor, the natural log of the input Tensor computed element-wise.
1267

1268 1269
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
1270

1271
            import paddle
S
Steffy-zxf 已提交
1272 1273 1274 1275

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
1276 1277 1278 1279 1280 1281 1282 1283 1284
    """

    if in_dygraph_mode():
        return core.ops.log1p(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
1285
    out = helper.create_variable_for_type_inference(dtype)
1286 1287
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
1288

J
joejiong 已提交
1289
def log2(x, name=None):
1290
    r"""
J
joejiong 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

        Out = \\log_2x

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
    if in_dygraph_mode():
        return core.ops.log2(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log2")
    inputs = {'X': [x]}
    helper = LayerHelper('log2', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
    return out
W
WuHaobo 已提交
1337

J
joejiong 已提交
1338 1339

def log10(x, name=None):
1340
    r"""
J
joejiong 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

        Out = \\log_10_x

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
    if in_dygraph_mode():
        return core.ops.log10(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log10")
    inputs = {'X': [x]}
    helper = LayerHelper('log10', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
    return out


W
WuHaobo 已提交
1389
def addcmul(input, tensor1, tensor2, value=1.0, name=None):
B
Bai Yifan 已提交
1390
    """
S
swtkiwi 已提交
1391

B
Bai Yifan 已提交
1392 1393 1394 1395 1396
    Calculate the element-wise multiplication of tensor1 and tensor2,
    then multiply the result by value, and add it to input. The shape of input,
    tensor1, tensor2 should be broadcastable.
    The equation is:
    ..  math::
1397

B
Bai Yifan 已提交
1398 1399
        out = input + value * tensor1 * tensor2
    Args:
1400 1401 1402
        input(Tensor): The input to be added. A Tensor with type float32, float64, int32, int64.
        tensor1(Tensor): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
        tensor2(Tensor): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
B
Bai Yifan 已提交
1403 1404 1405 1406
        value(int|float): The multiplier for tensor1*tensor2. For float32 and float64 type input, value must be float, otherwise an integer.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
    Returns:
1407
        out(Tensor): The output result. A Tensor with the same data type as input's.
B
Bai Yifan 已提交
1408 1409
    Examples:
        .. code-block:: python
1410
          
B
Bai Yifan 已提交
1411
          import paddle
1412 1413 1414
          input = paddle.ones([2,2])
          tensor1 = paddle.ones([2,2])
          tensor2 = paddle.ones([2,2])
1415
          out = paddle.tensor.math.addcmul(input, tensor1, tensor2, value=0.5)
N
Noel 已提交
1416
          print(out)
1417 1418
          # [[1.5 1.5]
          # [1.5 1.5]]
B
Bai Yifan 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
    """

    check_variable_and_dtype(input, 'input', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    check_variable_and_dtype(tensor1, 'tensor1', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    check_variable_and_dtype(tensor2, 'tensor2', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    if convert_dtype(input.dtype) in ['float32', 'float64']:
        check_type(value, 'value', float, 'addcmul')
    if convert_dtype(input.dtype) in ['int32', 'int64']:
        check_type(value, 'value', int, 'addcmul')

W
WuHaobo 已提交
1429
    out = layers.elementwise_add(input, layers.elementwise_mul(tensor1, tensor2) * value)
B
Bai Yifan 已提交
1430
    return out
1431 1432


Y
Yang Zhang 已提交
1433
def clip(x, min=None, max=None, name=None):
1434
    """
Y
Yang Zhang 已提交
1435
    This operator clip all elements in input into the range [ min, max ] and return
1436 1437 1438 1439
    a resulting tensor as the following equation:

    .. math::

1440
        Out = MIN(MAX(x, min), max)
1441 1442

    Args:
Y
Yang Zhang 已提交
1443 1444
        x (Tensor): An N-D Tensor with data type float32 or float64.
        min (float32|Tensor): The lower bound with type ``float32`` or a ``Tensor``
1445
            with shape [1] and type ``int32``, ``float32``, ``float64``.
Y
Yang Zhang 已提交
1446
        max (float32|Tensor): The upper bound with type ``float32`` or a ``Tensor``
1447 1448 1449 1450 1451 1452
            with shape [1] and type ``int32``, ``float32``, ``float64``.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
Y
Yang Zhang 已提交
1453
        Tensor: A Tensor with the same data type and data shape as input.
1454 1455 1456 1457 1458

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
1459

1460
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
1461 1462
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
1463
            print(out1)
Y
Yang Zhang 已提交
1464 1465
            # [[3.5, 3.5]
            # [4.5, 5.0]]
1466
            print(out2)
Y
Yang Zhang 已提交
1467 1468
            # [[2.5, 3.5]
            # [[4.5, 6.4]
1469 1470
    """

Y
Yang Zhang 已提交
1471 1472
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
1473

W
WuHaobo 已提交
1474
    if in_dygraph_mode():
1475 1476 1477 1478
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
Y
Yang Zhang 已提交
1479 1480
        min = fmin if min is None else min
        max = fmax if max is None else max
Y
Yang Zhang 已提交
1481
        return core.ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
1482

1483
    if min is not None:
Y
Yang Zhang 已提交
1484
        check_type(min, 'min', (float, int, Variable), 'clip')
1485 1486
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1487
                        'clip', '(When the type of min in clip is Variable.)')
1488
    if max is not None:
Y
Yang Zhang 已提交
1489
        check_type(max, 'max', (float, int, Variable), 'clip')
1490 1491
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1492
                        'clip', '(When the type of max in clip is Variable.)')
1493

Y
Yang Zhang 已提交
1494
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'clip')
Y
Yang Zhang 已提交
1495 1496

    inputs = {'X': x}
Y
Yang Zhang 已提交
1497
    attrs = {'min': fmin, 'max': fmax}
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
1511
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
1512
    output = helper.create_variable_for_type_inference(
Y
Yang Zhang 已提交
1513
        dtype=helper.input_dtype('x'))
1514 1515 1516 1517
    helper.append_op(
        type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs)

    return output
F
Feiyu Chan 已提交
1518

W
WuHaobo 已提交
1519

1520
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
1521
    """
1522
    **trace**
S
swtkiwi 已提交
1523

1524
    This OP computes the sum along diagonals of the input tensor x.
1525 1526

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
1527

1528
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
1529
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
1530
    of the input tensor x.
L
Li Fuchen 已提交
1531

1532
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
1533 1534 1535 1536

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
1537
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
1538

L
Li Fuchen 已提交
1539
    Args:
1540
        x(Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
1541 1542 1543
        offset(int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1(int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2(int, optional): The second axis with respect to take diagonal. Default: 1.
L
Li Fuchen 已提交
1544 1545 1546
        name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
1547
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
1548 1549 1550 1551 1552

    Examples:
        .. code-block:: python

            import paddle
1553

1554 1555 1556
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
1557 1558 1559
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
1560
    """
1561 1562
    inputs = {'Input': [x]}
    attrs = {'offset': offset, 'axis1': axis1, 'axis2': axis2}
L
Li Fuchen 已提交
1563 1564

    def __check_input(input, offset, dim1, dim2):
1565
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
1566 1567 1568
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

1569
        input_shape = list(x.shape)
L
Li Fuchen 已提交
1570
        assert len(input_shape) >= 2,                     \
1571 1572
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
1573 1574
                len(input_shape)

1575 1576
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
1577

1578 1579 1580
        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
1581

1582 1583 1584
        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
1585 1586


1587 1588 1589
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
1590

1591 1592 1593
    if in_dygraph_mode():
        return core.ops.trace(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)

L
Li Fuchen 已提交
1594
    if not in_dygraph_mode():
1595
        __check_input(input, offset, axis1, axis2)
L
Li Fuchen 已提交
1596 1597
    helper = LayerHelper('trace', **locals())

1598
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
1599 1600 1601

    helper.append_op(
        type='trace',
1602
        inputs={'Input': [x]},
L
Li Fuchen 已提交
1603
        attrs={'offset': offset,
1604 1605
               'axis1': axis1,
               'axis2': axis2},
L
Li Fuchen 已提交
1606 1607 1608
        outputs={'Out': [out]})
    return out

F
Feiyu Chan 已提交
1609
@templatedoc(op_type="kron")
W
WuHaobo 已提交
1610
def kron(x, y, name=None):
S
swtkiwi 已提交
1611
    """
1612 1613
	:alias_main: paddle.kron
	:alias: paddle.kron,paddle.tensor.kron,paddle.tensor.math.kron
S
swtkiwi 已提交
1614 1615

${comment}
F
Feiyu Chan 已提交
1616 1617

    Args:
N
Noel 已提交
1618
        x (Tensor): the fist operand of kron op, data type: float16, float32,
F
Feiyu Chan 已提交
1619
            float64, int32 or int64.
N
Noel 已提交
1620
        y (Tensor): the second operand of kron op, data type: float16,
1621
            float32, float64, int32 or int64. Its data type should be the same
F
Feiyu Chan 已提交
1622
            with x.
1623 1624
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
F
Feiyu Chan 已提交
1625 1626 1627
            refer to :ref:`api_guide_Name`.

    Returns:
N
Noel 已提交
1628
        Tensor: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
1629 1630 1631

    Examples:
        .. code-block:: python
1632

F
Feiyu Chan 已提交
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
          import paddle
          from paddle import fluid
          import paddle.fluid.dygraph as dg
          import numpy as np

          a = np.arange(1, 5).reshape(2, 2).astype(np.float32)
          b = np.arange(1, 10).reshape(3, 3).astype(np.float32)

          place = fluid.CPUPlace()
          with dg.guard(place):
              a_var = dg.to_variable(a)
              b_var = dg.to_variable(b)
              c_var = paddle.kron(a_var, b_var)
              c_np = c_var.numpy()
          print(c_np)

          #[[ 1.  2.  3.  2.  4.  6.]
          # [ 4.  5.  6.  8. 10. 12.]
          # [ 7.  8.  9. 14. 16. 18.]
          # [ 3.  6.  9.  4.  8. 12.]
          # [12. 15. 18. 16. 20. 24.]
          # [21. 24. 27. 28. 32. 36.]]
    """
    if in_dygraph_mode():
        return core.ops.kron(x, y)

    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

W
WuHaobo 已提交
1663
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
1664 1665
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
1666 1667 1668 1669


def cumsum(x, axis=None, dtype=None, name=None):
    """
1670 1671 1672 1673
    The cumulative sum of the elements along a given axis. 
    
    **Note**:
    The first element of the result is the same of the first element of the input. 
1674 1675

    Args:
1676
        x (Tensor): The input tensor needed to be cumsumed.
1677 1678 1679 1680 1681
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1682
        Tensor, the result of cumsum operator. 
1683 1684 1685 1686 1687

    Examples:
        .. code-block:: python
            
            import paddle
1688 1689 1690
            
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
            
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
            # VarType.FP64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = layers.cast(x, dtype)

    if in_dygraph_mode():
        if axis is None:
            return core.ops.cumsum(x, 'flatten', flatten)
        else:
            return core.ops.cumsum(x, 'axis', axis, 'flatten', flatten)

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
1730

J
Jack Zhou 已提交
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
1747

1748
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1749
            out = paddle.tensor.isfinite(x)
N
Noel 已提交
1750
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
    """
    if in_dygraph_mode():
        return core.ops.isfinite_v2(x)
    helper = LayerHelper("isfinite_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite')
    out = helper.create_variable_for_type_inference('bool')
    helper.append_op(type="isfinite_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
1776
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1777
            out = paddle.tensor.isinf(x)
N
Noel 已提交
1778
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
    """
    if in_dygraph_mode():
        return core.ops.isinf_v2(x)
    helper = LayerHelper("isinf_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
1804
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1805
            out = paddle.tensor.isnan(x)
N
Noel 已提交
1806
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
    """
    if in_dygraph_mode():
        return core.ops.isnan_v2(x)
    helper = LayerHelper("isnan_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
    return out


G
guofei 已提交
1817 1818 1819 1820 1821
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
1822
        x(Tensor): The input tensor, its data type should be float32, float64, int32, int64.
G
guofei 已提交
1823 1824 1825 1826 1827 1828 1829 1830 1831
        axis(int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`, 
            multiply all elements of `x` and return a Tensor with a single element, 
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`, 
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
        dtype(str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64, 
            int32, int64. If specified, the input tensor is casted to dtype before operator performed. 
            This is very useful for avoiding data type overflows. The default value is None, the dtype 
            of output is the same as input Tensor `x`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result 
1832
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
G
guofei 已提交
1833 1834 1835 1836 1837 1838 1839 1840 1841
        name(string, optional): The default value is None. Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor, result of product on the specified dim of input tensor.

    Raises:
        ValueError: The :attr:`dtype` must be float32, float64, int32 or int64.
        TypeError: The type of :attr:`axis` must be int, list or tuple.
J
Jack Zhou 已提交
1842
    
G
guofei 已提交
1843 1844 1845 1846 1847 1848
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
1849 1850
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
            out1 = paddle.prod(x)
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
1867 1868
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod')
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
            x = layers.cast(x, dtype)

    return layers.reduce_prod(input=x, dim=axis, keep_dim=keepdim, name=name)
W
WangXi 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900


def sign(x, name=None):
    """
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): The default value is None. Normally there is no need for user to
            set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

1901
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
    if in_dygraph_mode():
        return core.ops.sign(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sign')
    helper = LayerHelper("sign", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out


def tanh(x, name=None):
1918
    r"""
W
WangXi 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
    Tanh Activation Operator.

    .. math::
        out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

1937
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
1938
            out = paddle.tanh(x)
N
Noel 已提交
1939
            print(out)
W
WangXi 已提交
1940 1941 1942 1943 1944 1945
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
    if in_dygraph_mode():
        return core.ops.tanh(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanh')
S
ShenLiang 已提交
1946
    check_type(x, 'x', (Variable), 'tanh')
W
WangXi 已提交
1947 1948 1949 1950
    helper = LayerHelper('tanh', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
    return out
S
Steffy-zxf 已提交
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

def increment(x, value=1.0, name=None):
    """
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
        value(float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
    if in_dygraph_mode():
        return core.ops.increment(x, 'step', value)

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
    helper = LayerHelper("increment", **locals())
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
        outputs={'Out': [x]},
        attrs={'step': float(value)})
    return x
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996


def all(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical and`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
1997
            Tensor with a single element, otherwise must be in the
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            import numpy as np
            
N
Noel 已提交
2022
            # x is a bool Tensor with following elements:
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
            #    [[True, False]
            #     [True, True]]
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            print(x)
            x = layers.cast(x, 'bool')
            
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
            
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
            
            # keep_dim=False, out3 should be [False, True], out.shape should be (2,)
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
            
            # keep_dim=True, out4 should be [[False], [True]], out.shape should be (2,1)
            out4 = paddle.all(x, axis=1, keep_dim=True)
            out4 = layers.cast(out4, 'int32')  # [[False], [True]]
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    dtype_flag = False


    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
        return core.ops.reduce_all(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
    check_variable_and_dtype(x, 'x', ['bool'], 'all')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')

    helper = LayerHelper('all', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_all',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out


def any(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical or`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
2093
            Tensor with a single element, otherwise must be in the
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            import numpy as np
            
N
Noel 已提交
2118
            # x is a bool Tensor with following elements:
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
            #    [[True, False]
            #     [False, False]]
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            print(x)
            x = layers.cast(x, 'bool')
            
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
            
            # out2 should be [True, False]
            out2 = paddle.any(x, axis=0)  # [True, False]
            print(out2)
            
            # keep_dim=False, out3 should be [True, False], out.shape should be (2,)
            out3 = paddle.any(x, axis=-1)  # [True, False]
            print(out3)
            
            # keep_dim=True, result should be [[True], [False]], out.shape should be (2,1)
            out4 = paddle.any(x, axis=1, keep_dim=True)
            out4 = layers.cast(out4, 'int32')  # [[True], [False]]
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    dtype_flag = False


    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
        return core.ops.reduce_any(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
    check_variable_and_dtype(x, 'x', ['bool'], 'any')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')

    helper = LayerHelper('any', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_any',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out
L
Leo Chen 已提交
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205

def broadcast_shape(x_shape, y_shape):
    """
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape, please refer to :ref:`user_guide_broadcasting` for more details.

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
        

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
            
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)