math.py 76.1 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
from __future__ import print_function
18

19
from paddle.common_ops_import import *
20
from ..fluid import layers
L
Li Fuchen 已提交
21 22 23
from ..fluid.framework import core, _varbase_creator, in_dygraph_mode, Variable
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
24
from ..fluid.layers.layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn
25
import sys
26 27 28

# TODO: define math functions
# yapf: disable
29 30 31 32 33
from ..fluid.layers import abs    #DEFINE_ALIAS
from ..fluid.layers import acos    #DEFINE_ALIAS
from ..fluid.layers import asin    #DEFINE_ALIAS
from ..fluid.layers import ceil    #DEFINE_ALIAS
from ..fluid.layers import cos    #DEFINE_ALIAS
34 35
from ..fluid.layers import sinh    #DEFINE_ALIAS
from ..fluid.layers import cosh    #DEFINE_ALIAS
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
from ..fluid.layers import elementwise_add    #DEFINE_ALIAS
from ..fluid.layers import elementwise_div    #DEFINE_ALIAS
from ..fluid.layers import elementwise_floordiv    #DEFINE_ALIAS
from ..fluid.layers import elementwise_mod    #DEFINE_ALIAS
from ..fluid.layers import elementwise_mul    #DEFINE_ALIAS
from ..fluid.layers import elementwise_pow    #DEFINE_ALIAS
from ..fluid.layers import elementwise_sub    #DEFINE_ALIAS
from ..fluid.layers import exp    #DEFINE_ALIAS
from ..fluid.layers import floor    #DEFINE_ALIAS
from ..fluid.layers import log    #DEFINE_ALIAS
from ..fluid.layers import reciprocal    #DEFINE_ALIAS
from ..fluid.layers import reduce_max    #DEFINE_ALIAS
from ..fluid.layers import reduce_min    #DEFINE_ALIAS
from ..fluid.layers import reduce_prod    #DEFINE_ALIAS
from ..fluid.layers import reduce_sum    #DEFINE_ALIAS
from ..fluid.layers import round    #DEFINE_ALIAS
from ..fluid.layers import rsqrt    #DEFINE_ALIAS
from ..fluid.layers import scale    #DEFINE_ALIAS
from ..fluid.layers import square    #DEFINE_ALIAS
from ..fluid.layers import stanh    #DEFINE_ALIAS
from ..fluid.layers import atan    #DEFINE_ALIAS
from ..fluid.layers import erf    #DEFINE_ALIAS
58 59
from ..fluid.layers import sqrt    #DEFINE_ALIAS
from ..fluid.layers import sin    #DEFINE_ALIAS
60

61 62 63
from ..fluid.layers import increment    #DEFINE_ALIAS
from ..fluid.layers import multiplex    #DEFINE_ALIAS
from ..fluid.layers import sums    #DEFINE_ALIAS
G
guofei 已提交
64
from ..fluid import layers
65
import paddle
66

67
__all__ = [
68 69 70 71 72 73
        'abs',
        'acos',
        'asin',
        'atan',
        'ceil',
        'cos',
74
        'cosh',
75 76 77 78 79 80 81 82 83
        'cumsum',
        'elementwise_add',
        'elementwise_div',
        'elementwise_floordiv',
        'elementwise_mod',
        'elementwise_pow',
        'elementwise_sub',
        'exp',
        'floor',
84
        'increment',
85
        'log',
86
        'logsumexp',
87
        'mul',
88
        'multiplex',
G
guofei 已提交
89
        'prod',
90 91 92 93 94 95 96 97 98 99 100
        'pow',
        'reciprocal',
        'reduce_max',
        'reduce_min',
        'reduce_prod',
        'reduce_sum',
        'round',
        'rsqrt',
        'scale',
        'sign',
        'sin',
101
        'sinh',
102 103 104 105
        'sqrt',
        'square',
        'stanh',
        'sum',
106
        'sums',
107 108 109
        'tanh',
        'elementwise_sum',
        'max',
110
        'maximum',
111
        'min',
112
        'minimum',
113
        'mm',
114 115 116 117 118
        'divide',
        'floor_divide',
        'remainder',
        'mod',
        'floor_mod',
119
        'multiply',
120 121 122
        'add',
        'atan',
        'logsumexp',
123
        'inverse',
124 125 126 127
        'log1p',
        'erf',
        'addcmul',
        'addmm',
Y
Yang Zhang 已提交
128
        'clip',
L
Li Fuchen 已提交
129
        'trace',
J
Jack Zhou 已提交
130 131 132 133
        'kron',
        'isfinite',
        'isinf',
        'isnan'
134 135 136
]
# yapf: enable.

137 138 139 140 141 142 143 144 145 146 147 148 149
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

150
@templatedoc()
W
WuHaobo 已提交
151
def pow(input, exponent, name=None):
152
    """
153 154
	:alias_main: paddle.pow
	:alias: paddle.pow,paddle.tensor.pow,paddle.tensor.math.pow
S
swtkiwi 已提交
155

156 157 158 159 160 161 162
    This is Pow Activation Operator.

    :math:`out = input^{exponent}`

    Args:
        input(Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float32`` or ``float64``.
        exponent(float32|Variable): A scalar with type ``float32`` or a ``Tensor`` with shape [1] and type ``float32``.
163
        name(str, optional): The default value is None. Normally there is no need for user to set this property.
164 165 166 167 168 169 170 171 172 173
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``input``.

    Examples:

        .. code-block:: python

            import paddle
174
            import paddle.fluid as fluid
175

176
            x = fluid.data(name="x", shape=[32,32], dtype="float32")
177 178

            # example 1: argument exponent is float
W
WuHaobo 已提交
179
            y_1 = paddle.pow(x, 2.0)
180 181 182
            # y_1 is x^{2.0}

            # example 2: argument exponent is Variable
183
            exponent_tensor = fluid.layers.fill_constant([1], "float32", 3.0)
W
WuHaobo 已提交
184
            y_2 = paddle.pow(x, exponent_tensor)
185 186
            # y_2 is x^{3.0}
    """
W
WuHaobo 已提交
187 188 189
    if in_dygraph_mode():
        return core.ops.pow(input, "exponent", exponent)

190 191 192 193 194 195 196 197 198
    helper = LayerHelper('pow', **locals())
    inputs = {'X': input}
    attrs = {}
    if isinstance(exponent, Variable):
        exponent.stop_gradient = True
        inputs['FactorTensor'] = exponent
    else:
        attrs['factor'] = exponent

W
WuHaobo 已提交
199 200 201 202 203
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    check_dtype(
        out.dtype, out.name,
        convert_dtype(input.dtype), 'pow',
        '(The out data type in pow must be the same with input data type.)')
204 205 206 207 208 209

    helper.append_op(
        type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out


210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
    op = getattr(core.ops, op_name)
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)

    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)


def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
W
WuHaobo 已提交
242 243 244 245 246
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
247 248 249 250 251 252 253 254 255 256 257

    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


Y
Yang Zhang 已提交
258
def add(x, y, name=None):
259 260 261 262 263 264 265 266
    """
Examples:

    ..  code-block:: python

        import paddle
        import numpy as np

Y
Yang Zhang 已提交
267 268 269 270 271
        paddle.disable_static()
        np_x = np.array([2, 3, 4]).astype('float64')
        np_y = np.array([1, 5, 2]).astype('float64')
        x = paddle.to_variable(np_x)
        y = paddle.to_variable(np_y)
W
WuHaobo 已提交
272
        z = paddle.add(x, y)
Y
Yang Zhang 已提交
273 274
        np_z = z.numpy()
        print(np_z)  # [3., 8., 6. ]
275 276 277 278 279 280

    """
    op_type = 'elementwise_add'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
Y
Yang Zhang 已提交
281
            x, y, axis=axis, op_name=op_type)
282 283 284 285

    return _elementwise_op(LayerHelper(op_type, **locals()))


286
def divide(x, y, name=None):
287
    """
288
    Divide two tensors element-wise. The equation is:
289

290 291
    .. math::
        out = x / y
292

293 294
    **Note**:
    ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
295

296 297 298 299
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
300

301 302
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
303

304
    Examples:
305

306
        ..  code-block:: python
307

308 309
            import paddle
            import numpy as np
310

311
            paddle.disable_static()
312

313 314 315 316 317 318
            np_x = np.array([2, 3, 4]).astype('float64')
            np_y = np.array([1, 5, 2]).astype('float64')
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
            z = paddle.divide(x, y)
            print(z.numpy())  # [2., 0.6, 2.]
319

320 321 322 323 324
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
    if in_dygraph_mode():
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
        # rule 1 : avoid numpy.ndarray
        if isinstance(x, numpy.ndarray) or isinstance(y, numpy.ndarray):
            raise TypeError("divide(): arguments must be Tensor or scalar, not numpy.ndarray.")

        # rule 2: both the inputs are not Tensor
        elif not isinstance(x, paddle.Tensor) and not isinstance(y, paddle.Tensor):
            x = paddle.full(shape=[1], dtype=paddle.get_default_dtype(), fill_value=x)
            y = paddle.full(shape=[1], dtype=paddle.get_default_dtype(), fill_value=y)

        # rule 3: both the inputs are Tensor
        elif isinstance(x, paddle.Tensor) and isinstance(y, paddle.Tensor):
            if y.dtype != x.dtype:
                raise TypeError("divide(): argument position 1 and argument position 2 must have the same dtype."
                                "But x is {}, y is {}".format(x.dtype, y.dtype))
            elif x.dtype in _supported_int_dtype_:
                x = x.astype(paddle.get_default_dtype())
                y = y.astype(paddle.get_default_dtype())

        # rule 4: x is Tensor, y is scalar
        elif isinstance(x, paddle.Tensor) and not isinstance(y, paddle.Tensor):
            if x.dtype in _supported_int_dtype_:
                x = x.astype(paddle.get_default_dtype())
            y = paddle.full(shape=[1], dtype=x.dtype, fill_value=y)

        # rule 5: x is scalar, y is Tensor
        elif not isinstance(x, paddle.Tensor) and isinstance(y, paddle.Tensor):
            if y.dtype in _supported_int_dtype_:
                y = y.astype(paddle.get_default_dtype())
            x = paddle.full(shape=[1], dtype=y.dtype, fill_value=x)

355 356
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
357

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    # rule 1 : avoid numpy.ndarray
    if isinstance(x, numpy.ndarray) or isinstance(y, numpy.ndarray):
        raise TypeError("divide(): arguments must be Tensor or scalar, not numpy.ndarray.")

    # rule 2: both the inputs are not Tensor
    elif not isinstance(x, Variable) and not isinstance(y, Variable):
        x = paddle.fill_constant(shape=[1], dtype=paddle.get_default_dtype(), value=x)
        y = paddle.fill_constant(shape=[1], dtype=paddle.get_default_dtype(), value=y)

    # rule 3: both the inputs are Tensor
    elif isinstance(x, Variable) and isinstance(y, Variable):
        if y.dtype != x.dtype:
            raise TypeError("divide(): argument position 1 and argument position 2 must have the same dtype."
                            "But x is {}, y is {}".format(x.dtype, y.dtype))
        elif x.dtype in _supported_int_dtype_:
            x = paddle.cast(x, paddle.get_default_dtype())
            y = paddle.cast(y, paddle.get_default_dtype())

    # rule 4: x is Tensor, y is scalar
    elif isinstance(x, Variable) and not isinstance(y, Variable):
        if x.dtype in _supported_int_dtype_:
            x = paddle.cast(x, paddle.get_default_dtype())
        y = paddle.fill_constant(shape=[1], dtype=x.dtype, value=y)

    # rule 5: x is scalar, y is Tensor
    elif not isinstance(x, Variable) and isinstance(y, Variable):
        if y.dtype in _supported_int_dtype_:
            y = paddle.cast(y, paddle.get_default_dtype())
        x = paddle.fill_constant(shape=[1], dtype=y.dtype, value=x)

388
    return _elementwise_op(LayerHelper(op_type, **locals()))
389 390


391 392 393
def floor_divide(x, y, name=None):
    """
    Floor divide two tensors element-wise. The equation is:
394

395 396
    .. math::
        out = x // y
397

398 399
    **Note**:
    ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
400

401 402 403 404
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
405

406 407
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
408

409
    Examples:
410

411
        ..  code-block:: python
412

413 414
            import paddle
            import numpy as np
415

416
            paddle.disable_static()
417

418 419 420 421 422 423
            np_x = np.array([2, 3, 8, 7])
            np_y = np.array([1, 5, 3, 3])
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
            z = paddle.floor_divide(x, y)
            print(z.numpy())  # [2, 0, 2, 2]
424

425 426 427 428
    """
    op_type = 'elementwise_floordiv'
    axis = -1
    if in_dygraph_mode():
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
        # rule 1 : avoid numpy.ndarray
        if isinstance(x, numpy.ndarray) or isinstance(y, numpy.ndarray):
            raise TypeError("floor_divide(): arguments must be Tensor or scalar, not numpy.ndarray.")

        # rule 2: both the inputs are not Tensor
        elif not isinstance(x, paddle.Tensor) and not isinstance(y, paddle.Tensor):
            x = paddle.full(shape=[1], dtype=paddle.get_default_dtype(), fill_value=x)
            y = paddle.full(shape=[1], dtype=paddle.get_default_dtype(), fill_value=y)

        # rule 3: both the inputs are Tensor
        elif isinstance(x, paddle.Tensor) and isinstance(y, paddle.Tensor):
            if y.dtype != x.dtype:
                raise TypeError("floor_divide(): argument position 1 and argument position 2 must have the same dtype."
                                "But x is {}, y is {}".format(x.dtype, y.dtype))

        # rule 4: x is Tensor, y is scalar
        elif isinstance(x, paddle.Tensor) and not isinstance(y, paddle.Tensor):
            y = paddle.full(shape=[1], dtype=x.dtype, fill_value=y)

        # rule 5: x is scalar, y is Tensor
        elif not isinstance(x, paddle.Tensor) and isinstance(y, paddle.Tensor):
            x = paddle.full(shape=[1], dtype=y.dtype, fill_value=x)

452 453
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
454

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
    # rule 1 : avoid numpy.ndarray
    if isinstance(x, numpy.ndarray) or isinstance(y, numpy.ndarray):
        raise TypeError("divide(): arguments must be Tensor or scalar, not numpy.ndarray.")

    # rule 2: both the inputs are not Tensor
    elif not isinstance(x, Variable) and not isinstance(y, Variable):
        x = paddle.fill_constant(shape=[1], dtype=paddle.get_default_dtype(), value=x)
        y = paddle.fill_constant(shape=[1], dtype=paddle.get_default_dtype(), value=y)

    # rule 3: both the inputs are Tensor
    elif isinstance(x, Variable) and isinstance(y, Variable):
        if y.dtype != x.dtype:
            raise TypeError("divide(): argument position 1 and argument position 2 must have the same dtype."
                            "But x is {}, y is {}".format(x.dtype, y.dtype))

    # rule 4: x is Tensor, y is scalar
    elif isinstance(x, Variable) and not isinstance(y, Variable):
        y = paddle.fill_constant(shape=[1], dtype=x.dtype, value=y)

    # rule 5: x is scalar, y is Tensor
    elif not isinstance(x, Variable) and isinstance(y, Variable):
        x = paddle.fill_constant(shape=[1], dtype=y.dtype, value=x)

478
    return _elementwise_op(LayerHelper(op_type, **locals()))
479 480


481
def remainder(x, y, name=None):
482
    """
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
    Mod two tensors element-wise. The equation is:

    .. math::
        out = x \% y

    **Note**:
    ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.

    Examples:

        ..  code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()

            np_x = np.array([2, 3, 8, 7])
            np_y = np.array([1, 5, 3, 3])
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
            z = paddle.remainder(x, y)
            print(z.numpy())  # [0, 3, 2, 1]

    """
    op_type = 'elementwise_mod'
517 518
    axis = -1
    if in_dygraph_mode():
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
        # rule 1 : avoid numpy.ndarray
        if isinstance(x, numpy.ndarray) or isinstance(y, numpy.ndarray):
            raise TypeError("remainder(): arguments must be Tensor or scalar, not numpy.ndarray.")

        elif not isinstance(x, paddle.Tensor):
            raise TypeError("remainder(): arguments position 1 must be Tensor, not {}".format(type(x)))

        # rule 3: both the inputs are Tensor
        elif isinstance(y, paddle.Tensor):
            if y.dtype != x.dtype:
                raise TypeError("remainder(): argument position 1 and argument position 2 must have the same dtype."
                                "But x is {}, y is {}".format(x.dtype, y.dtype))

        # rule 4: x is Tensor, y is scalar
        elif not isinstance(y, paddle.Tensor):
            y = paddle.full(shape=[1], dtype=x.dtype, fill_value=y)

536
        return _elementwise_op_in_dygraph(
537
            x, y, axis=axis, op_name=op_type)
538

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
    # rule 1 : avoid numpy.ndarray
    if isinstance(x, numpy.ndarray) or isinstance(y, numpy.ndarray):
        raise TypeError("remainder(): arguments must be Tensor or scalar, not numpy.ndarray.")

    elif not isinstance(x, Variable):
        raise TypeError("remainder(): arguments position 1 must be Tensor, not {}".format(type(x)))

    # rule 3: both the inputs are Tensor
    elif isinstance(y, Variable):
        if y.dtype != x.dtype:
            raise TypeError("remainder(): argument position 1 and argument position 2 must have the same dtype."
                            "But x is {}, y is {}".format(x.dtype, y.dtype))

    # rule 4: x is Tensor, y is scalar
    elif not isinstance(y, paddle.Tensor):
        y = paddle.fill_constant(shape=[1], dtype=x.dtype, value=y)

556 557 558
    return _elementwise_op(LayerHelper(op_type, **locals()))


559 560 561 562
mod = remainder  #DEFINE_ALIAS
floor_mod = remainder  #DEFINE_ALIAS


563 564 565 566 567 568 569 570 571 572 573 574
def multiply(x, y, axis=-1, name=None):
    """
	:alias_main: paddle.multiply
	:alias: paddle.multiply,paddle.tensor.multiply,paddle.tensor.math.multiply

Examples:

    .. code-block:: python

        import paddle
        import numpy as np

575
        paddle.disable_static()
576 577
        x_data = np.array([[1, 2], [3, 4]], dtype=np.float32)
        y_data = np.array([[5, 6], [7, 8]], dtype=np.float32)
578 579
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
580 581 582 583 584
        res = paddle.multiply(x, y)
        print(res.numpy()) # [[5, 12], [21, 32]]

        x_data = np.array([[[1, 2, 3], [1, 2, 3]]], dtype=np.float32)
        y_data = np.array([1, 2], dtype=np.float32)
585 586
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
587 588 589 590 591 592 593 594 595 596 597 598
        res = paddle.multiply(x, y, axis=1)
        print(res.numpy()) # [[[1, 2, 3], [2, 4, 6]]]

    """
    op_type = 'elementwise_mul'
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)

    return _elementwise_op(LayerHelper(op_type, **locals()))

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
def maximum(x, y, axis=-1, name=None):
    """
Examples:

    .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()
  
        x_data = np.array([[1, 2], [3, 4]], dtype=np.float32)
        y_data = np.array([[5, 6], [7, 8]], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[[5. 6.]
        # [7. 8.]]

        x_data = np.array([[[1, 2, 3], [1, 2, 3]]], dtype=np.float32)
        y_data = np.array([1, 2], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.maximum(x, y, axis=1)
        print(res.numpy())
        #[[[1. 2. 3.]
        #  [2. 2. 3.]]]

        x_data = np.array([2, 3, 5], dtype=np.float32)
        y_data = np.array([1, 4, np.nan], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[ 2.  4. nan]

        x_data = np.array([5, 3, np.inf], dtype=np.float32)
        y_data = np.array([1, 4, 5], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[ 5.  4. inf]
    """
    op_type = 'elementwise_max'
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

def minimum(x, y, axis=-1, name=None):
    """
Examples:

    .. code-block:: python

        import paddle
        import numpy as np
        paddle.disable_static()
  
        x_data = np.array([[1, 2], [3, 4]], dtype=np.float32)
        y_data = np.array([[5, 6], [7, 8]], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[[1. 2.]
        # [3. 4.]]

        x_data = np.array([[[1, 2, 3], [1, 2, 3]]], dtype=np.float32)
        y_data = np.array([1, 2], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.minimum(x, y, axis=1)
        print(res.numpy())
        #[[[1. 1. 1.]
        #  [2. 2. 2.]]]

        x_data = np.array([2, 3, 5], dtype=np.float32)
        y_data = np.array([1, 4, np.nan], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[ 1.  3. nan]

        x_data = np.array([5, 3, np.inf], dtype=np.float32)
        y_data = np.array([1, 4, 5], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[1. 3. 5.]
    """
    op_type = 'elementwise_min'
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))
701

702 703
for func in [
        add,
704 705 706
        maximum,
        minimum,
        multiply
707
]:
708
    proto_dict = {'add': 'elementwise_add', 'div': 'elementwise_div', 'maximum': 'elementwise_max', 'minimum': 'elementwise_min', 'multiply': 'elementwise_mul'}
709 710
    op_proto = OpProtoHolder.instance().get_op_proto(proto_dict[func.__name__])

Y
Yang Zhang 已提交
711 712 713 714 715 716 717
    additional_args_lines = [
        "name (string, optional): Name of the output. \
        Default is None. It's used to print debug info for developers. Details: \
        :ref:`api_guide_Name` "
    ]

    func.__doc__ = _generate_doc_string_(
718 719
        op_proto,
        additional_args_lines=additional_args_lines,
720
        skip_attrs_set={"x_data_format", "y_data_format", "axis",
721
            "use_quantizer", "mkldnn_data_type", "Scale_x", "Scale_y", "Scale_out"
722
        }) + """\n""" + str(func.__doc__)
723

Y
Yang Zhang 已提交
724

725
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
726 727 728 729
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
730 731 732
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
733
            Tensor variable with a single element, otherwise must be in the
734 735 736 737 738 739 740
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
741
            value is False.
742
        name (str, optional): The default value is None. Normally there is no need for
743 744 745
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
746 747
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
        it's data type is the same as `x`.
748 749

    Raises:
750 751
        ValueError: The :attr:`dtype` must be float64 or int64.
        TypeError: The type of :attr:`axis` must be int, list or tuple.
752

753 754 755
    Examples:
        .. code-block:: python

756
            import numpy as np
757
            import paddle
758 759
            paddle.disable_static()

760 761 762 763
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
764 765
            x_data = np.array([[0.2, 0.3, 0.5, 0.9],[0.1, 0.2, 0.6, 0.7]]).astype('float32')
            x = paddle.to_variable(x_data)
766
            out1 = paddle.sum(x)  # [3.5]
767 768 769
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
770 771 772 773 774

            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
775 776 777 778
            y_data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]).astype('float32')
            y = paddle.to_variable(y_data)
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
779
    """
780 781 782 783 784 785 786 787 788 789 790
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

791
    attrs = {
792 793 794
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
795 796 797 798
    }
    dtype_flag = False
    if dtype is not None:
        if dtype in ['float64', 'int64']:
799 800
            if (convert_dtype(x.dtype) == "float32" and dtype == "float64") or \
               (convert_dtype(x.dtype) == "int32" and dtype == "int64"):
801
                attrs.update({
802
                    'in_dtype': x.dtype,
803 804 805 806 807 808 809 810 811
                    'out_dtype': convert_np_dtype_to_dtype_(dtype)
                })
                dtype_flag = True
        else:
            raise ValueError(
                "The value of 'dtype' in sum op must be float64, int64, but received of {}".
                format(dtype))

    if in_dygraph_mode():
812
        axis = axis if axis != None and axis != [] else [0]
813
        if dtype_flag:
814 815 816
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag, 'in_dtype',
                                       x.dtype, 'out_dtype',
817 818
                                       convert_np_dtype_to_dtype_(dtype))
        else:
819 820
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
821
    check_variable_and_dtype(
822 823 824
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'sum')
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'sum')

825 826 827 828 829
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_(dtype))
    else:
830
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
831 832
    helper.append_op(
        type='reduce_sum',
833
        inputs={'X': x},
834 835 836
        outputs={'Out': out},
        attrs=attrs)
    return out
837

838

839 840 841
@templatedoc(op_type="sum")
def elementwise_sum(inputs, name=None):
    """
842 843
	:alias_main: paddle.elementwise_sum
	:alias: paddle.elementwise_sum,paddle.tensor.elementwise_sum,paddle.tensor.math.elementwise_sum
S
swtkiwi 已提交
844

845
    ${comment}
846

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
    Case 1:
    ::
        Input:
            Input. Shape = [2, 3]
            Input = [[1, 2, 3],
                     [4, 5, 6]]

        Output:
            The output. Shape = [2, 3]
            Output = [[1, 2, 3],
                      [4, 5, 6]]

    Case 2:
    ::
        Input:
            First input:
            Input1. Shape = [2, 3]
            Input1 = [[1, 2, 3],
                      [4, 5, 6]]

        The second input:
            Input2. Shape = [2, 3]
            Input2 = [[7, 8, 9],
                      [10, 11, 12]]

        Output:
            The output. Shape = [2, 3]
            Output = [[8, 10, 12],
                      [14, 16, 18]]

    Args:
878 879
        inputs (Variable|list(Variable)):  A Varaible list. The shape and data type of the list elementsshould be consistent.
            Variable can be multi-dimensional Tensoror LoDTensor, and data types can be: float32, float64, int32, int64.
880 881 882 883
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
884
        Variable: the sum of input :math:`inputs` . its shape and data types are consistent with :math:`inputs` .
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid

            input0 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=5)
            input1 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=3)
            sum = paddle.elementwise_sum([input0, input1])

            # You can print out 'sum' via executor.
            out = fluid.layers.Print(sum, message="the sum of input0 and input1: ")
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_main_program())

            # The printed result is:
            # 1570701754	the sum of input0 and input1: 	The place is:CPUPlace
            # Tensor[elementwise_sum_0.tmp_0]
            #    shape: [2,3,]
            #    dtype: l
            #    data: 8,8,8,8,8,8,

            # the sum of input0 and input1 is 2-D Tensor with shape [2,3].
            # dtype is the corresponding C++ data type, which may vary in different environments.
910 911
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
912 913 914 915
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
    """

    helper = LayerHelper('elementwise_sum', **locals())
916 917 918 919 920 921 922 923 924 925 926
    check_type(inputs, 'inputs', (Variable, tuple, list), 'elementwise_sum')
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
                   ['float32', 'float64', 'int32', 'int64'], 'elementwise_sum')
    else:
        check_variable_and_dtype(inputs, "inputs", \
                ['float32', 'float64', 'int32', 'int64'], 'elementwise_sum')


927 928 929 930 931 932 933 934 935 936 937
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})

    return out


W
WuHaobo 已提交
938
def mm(input, mat2, name=None):
939
    """
940 941
	:alias_main: paddle.mm
	:alias: paddle.mm,paddle.tensor.mm,paddle.tensor.math.mm
S
swtkiwi 已提交
942

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        mat2 (Variable): The input variable which is a Tensor or LoDTensor.
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Variable: The product Tensor (or LoDTensor) variable.

    Examples:
        .. code-block:: python

            # Examples to clarify shapes of the inputs and output
            # x: [B, ..., M, K], mat2: [B, ..., K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, ..., M, N]

            # x: [B, M, K], mat2: [B, K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, M, N]

            # x: [B, M, K], mat2: [K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, M, N]

            # x: [M, K], mat2: [K, N]
            # fluid.layers.matmul(x, mat2)  # out: [M, N]

            # x: [B, M, K], mat2: [K]
            # fluid.layers.matmul(x, mat2)  # out: [B, M]

            # x: [K], mat2: [K]
            # fluid.layers.matmul(x, mat2)  # out: [1]

            import paddle
            import paddle.fluid as fluid
            x = fluid.data(name='x', shape=[2, 3], dtype='float32')
            mat2 = fluid.data(name='mat2', shape=[3, 2], dtype='float32')
            out = paddle.mm(x, mat2) # out shape is [2, 2]
    """
    if in_dygraph_mode():
W
WuHaobo 已提交
991
        out = _varbase_creator(dtype=input.dtype)
992 993
        core.ops.matmul(input, mat2, out)
        return out
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
1031
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
1032 1033 1034 1035
    helper.append_op(
        type='matmul', inputs={'X': input,
                               'Y': mat2}, outputs={'Out': out})
    return out
1036

1037

Y
yaoxuefeng 已提交
1038
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
1039
    """
1040 1041
	:alias_main: paddle.addmm
	:alias: paddle.addmm,paddle.tensor.addmm,paddle.tensor.math.addmm
S
swtkiwi 已提交
1042

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
    **addmm**

    This operator is used to perform matrix multiplication for input $x$ and $y$.
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
        input (Variable): The input Tensor/LoDTensor to be added to the final result.
        x (Variable): The first input Tensor/LoDTensor for matrix multiplication.
        y (Variable): The second input Tensor/LoDTensor for matrix multiplication.
        beta (float): Coefficient of $input$.
Y
yaoxuefeng 已提交
1059
        alpha (float): Coefficient of $x*y$.
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.

    Returns:
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of addmm op.

    Examples:
        ..  code-block:: python

            import numpy as np
            import paddle

            data_x = np.ones((2, 2)).astype(np.float32)
            data_y = np.ones((2, 2)).astype(np.float32)
            data_input = np.ones((2, 2)).astype(np.float32)

1075
            paddle.disable_static()
Y
yaoxuefeng 已提交
1076

1077 1078 1079
            x = paddle.to_variable(data_x)
            y = paddle.to_variable(data_y)
            input = paddle.to_variable(data_input)
Y
yaoxuefeng 已提交
1080 1081 1082 1083

            out = paddle.tensor.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )

            print( out.numpy() )
1084 1085 1086
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
    if not len(input_shape) == len(x_shape) == len(y_shape) == 2:
        raise ValueError("The dimention of input, x, y should be 2 but receive input's shape: {}, x's shape: {}, y's shape: {}".format(input_shape, x_shape, y_shape))
    if input_shape[0] != x_shape[0]:
        if input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
        if input_shape[1] != y_shape[1] and input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
    if input_shape[1] != y_shape[1]:
        if input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
        if input_shape[0] != x_shape[0] and input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
    if x_shape[1] != y_shape[0]:
        raise ValueError("The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(x_shape, y_shape))



1107 1108 1109 1110
    if in_dygraph_mode():
        out = core.ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
        return out

1111 1112 1113 1114
    inputs = {'Input': input, "X": x, "Y": y}
    attrs = {'Alpha': alpha, 'Beta': beta}

    helper = LayerHelper("addmm", **locals())
Y
yaoxuefeng 已提交
1115
    check_variable_and_dtype(input, 'Input', ['float32', 'float64'], 'addmm')
1116 1117 1118 1119 1120 1121 1122
    check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
    check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out})
    return out
1123 1124


1125
def logsumexp(x, axis=None, keepdim=False, name=None):
1126
    """
1127
    This OP calculates the log of the sum of exponentials of ``x`` along ``axis`` .
1128

1129 1130
    .. math::
       logsumexp(x) = \log\sum exp(x)
1131

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1150

1151
    Returns:
1152 1153
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
1154

1155
    Examples:
1156

1157
    .. code-block:: python
1158

1159 1160 1161
        import paddle
        import numpy as np

1162
        paddle.disable_static()
1163

1164 1165 1166 1167
        x = np.array([[-1.5, 0., 2.], [3., 1.2, -2.4]])
        x = paddle.to_tensor(x)
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
1168 1169

    """
1170 1171 1172 1173 1174 1175 1176
    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]
1177

1178 1179 1180
    if in_dygraph_mode():
        return core.ops.logsumexp(x, 'dim', axis, 'keep_dim', keepdim,
                                    'reduce_all', reduce_all)
1181

1182 1183 1184
    check_variable_and_dtype(x, 'x',
                             ['float32', 'float64'],
                             'logsumexp')
1185

1186 1187 1188 1189 1190 1191
    helper = LayerHelper('logsumexp', **locals())
    attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs)
    return out
1192

S
swtkiwi 已提交
1193

1194 1195
def inverse(x, name=None):
    """
1196 1197 1198 1199 1200
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
1201
        x (Variable): The input tensor. The last two
1202 1203 1204 1205 1206 1207 1208 1209
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information,
            please refer to :ref:`api_guide_Name`

    Returns:
1210 1211
        Variable: A Tensor holds the inverse of x. The shape and data type
                        is the same as x.
1212 1213 1214 1215 1216 1217 1218 1219

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            mat_np = np.array([[2, 0], [0, 2]]).astype("float32")
1220 1221 1222 1223
            paddle.disable_static()
            mat = paddle.to_variable(mat_np)
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
1224 1225 1226

    """
    if in_dygraph_mode():
1227
        return core.ops.inverse(x)
1228

1229 1230
    def _check_input(x):
        check_variable_and_dtype(x, 'x',
1231
                                 ['float32', 'float64'], 'inverse')
1232
        if len(x.shape) < 2:
1233 1234 1235
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
1236 1237
                "x's shape: %s." % (len(x.shape), x.shape))
    _check_input(x)
1238
    helper = LayerHelper('inverse', **locals())
1239
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1240
    helper.append_op(
1241
        type='inverse', inputs={'Input': [x] }, outputs={'Output': [out]})
1242 1243 1244
    return out


1245
def max(x, axis=None, keepdim=False, name=None):
1246
    """
S
swtkiwi 已提交
1247

1248
    Computes the maximum of tensor elements over the given axis.
1249 1250

    Args:
1251
        x(Tensor): A tensor, the data type is float32,
1252
            float64, int32, int64.
1253
        axis(list|int, optional): The axis along which the maximum is computed.
1254
            If :attr:`None`, compute the maximum over all elements of
1255
             `x` and return a Tensor variable with a single element,
1256 1257 1258
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1259
            output Tensor. The result tensor will have one fewer dimension
1260
            than the `x` unless :attr:`keepdim` is true, default
1261
            value is False.
1262
        name(str, optional): The default value is None.  Normally there is no need for
1263 1264 1265
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
1266
        Tensor, results of maximum on the specified axis of input tensor,
1267
        it's data type is the same as `x`.
1268 1269 1270

    Examples:
        .. code-block:: python
1271 1272

            import numpy as np
1273
            import paddle
1274

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
            paddle.disable_static()

            # data_x is a variable with shape [2, 4]
            # the axis is a int element
            data_x = np.array([[0.2, 0.3, 0.5, 0.9],
                               [0.1, 0.2, 0.6, 0.7]])
            x = paddle.to_variable(data_x)
            result1 = paddle.max(x)
            print(result1.numpy())
            #[0.9]
            result2 = paddle.max(x, axis=0)
            print(result2.numpy()) 
            #[0.2 0.3 0.6 0.9]
            result3 = paddle.max(x, axis=-1)
            print(result3.numpy())
            #[0.9 0.7]
            result4 = paddle.max(x, axis=1, keepdim=True)
            print(result4.numpy())
            #[[0.9]
            # [0.7]]

            # data_y is a variable with shape [2, 2, 2]
            # the axis is list 
            data_y = np.array([[[1.0, 2.0], [3.0, 4.0]],
                               [[5.0, 6.0], [7.0, 8.0]]])
            y = paddle.to_variable(data_y)
            result5 = paddle.max(y, axis=[1, 2])
            print(result5.numpy())
            #[4. 8.]
            result6 = paddle.max(y, axis=[0, 1])
            print(result6.numpy())
            #[7. 8.]
1307 1308
    """

1309
    if axis is not None and not isinstance(axis, list):
1310 1311 1312 1313 1314 1315 1316 1317
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))

1318 1319 1320 1321 1322
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    if in_dygraph_mode():
        return core.ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
                                   'reduce_all', reduce_all)
1323

1324
    helper = LayerHelper('max', **locals())
1325
    check_variable_and_dtype(
1326
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max')
1327

1328 1329
    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
1330 1331
    helper.append_op(
        type='reduce_max',
1332
        inputs={'X': x},
1333 1334
        outputs={'Out': out},
        attrs={
1335 1336
            'dim': axis,
            'keep_dim': keepdim,
1337 1338 1339 1340
            'reduce_all': reduce_all
        })
    return out

1341
def min(x, axis=None, keepdim=False, name=None):
1342
    """
S
swtkiwi 已提交
1343

1344
    Computes the minimum of tensor elements over the given axis
1345

1346
    Args:
1347 1348
        x(Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis(list|int, optional): The axis along which the minimum is computed.
1349
            If :attr:`None`, compute the minimum over all elements of
1350
            `x` and return a Tensor variable with a single element,
1351 1352 1353
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1354
            output Tensor. The result tensor will have one fewer dimension
1355
            than the `x` unless :attr:`keepdim` is true, default
1356
            value is False.
W
WuHaobo 已提交
1357
        name(str, optional): The default value is None.  Normally there is no need for 
1358
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1359

1360
    Returns:
1361
        Tensor, results of minimum on the specified axis of input tensor,
1362
        it's data type is the same as input's Tensor.
1363

1364 1365 1366
    Examples:
        .. code-block:: python

1367 1368
            import numpy as np
            import paddle
1369

1370
            paddle.disable_static()
1371

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
            # data_x is a variable with shape [2, 4]
            # the axis is a int element
            data_x = np.array([[0.2, 0.3, 0.5, 0.9],
                            [0.1, 0.2, 0.6, 0.7]])
            x = paddle.to_variable(data_x)
            result1 = paddle.min(x)
            print(result1.numpy())
            #[0.1]
            result2 = paddle.min(x, axis=0)
            print(result2.numpy())
            #[0.1 0.2 0.5 0.7]
            result3 = paddle.min(x, axis=-1)
            print(result3.numpy()) 
            #[0.2 0.1]
            result4 = paddle.min(x, axis=1, keepdim=True)
            print(result4.numpy())
            #[[0.2]
            # [0.1]]

            # data_y is a variable with shape [2, 2, 2]
            # the axis is list 
            data_y = np.array([[[1.0, 2.0], [3.0, 4.0]],
                               [[5.0, 6.0], [7.0, 8.0]]])
            y = paddle.to_variable(data_y)
            result5 = paddle.min(y, axis=[1, 2])
            print(result5.numpy()) 
            #[1. 5.]
            result6 = paddle.min(y, axis=[0, 1])
            print(result6.numpy())
            #[1. 2.]
    """
1403

1404
    if axis is not None and not isinstance(axis, list):
1405 1406 1407 1408 1409 1410 1411
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))
1412 1413
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
1414
    if in_dygraph_mode():
1415
        return core.ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
1416
                                   'reduce_all', reduce_all)
1417 1418 1419 1420 1421 1422 1423

    helper = LayerHelper('min', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min')

    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
1424 1425
    helper.append_op(
        type='reduce_min',
1426
        inputs={'X': x},
1427 1428
        outputs={'Out': out},
        attrs={
1429 1430
            'dim': axis,
            'keep_dim': keepdim,
1431 1432 1433 1434 1435
            'reduce_all': reduce_all
        })
    return out


W
WuHaobo 已提交
1436
def log1p(x, name=None):
1437
    """
1438 1439
	:alias_main: paddle.log1p
	:alias: paddle.log1p,paddle.tensor.log1p,paddle.tensor.math.log1p
S
swtkiwi 已提交
1440

1441 1442 1443 1444 1445 1446 1447 1448 1449
    Calculates the natural log of the given input tensor, element-wise.
    .. math::
        Out = \\ln(x+1)
    Args:
        x (Variable): Input LoDTensor or Tensor. Must be one of the following types: float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
        Variable: The natural log of the input LoDTensor or Tensor computed element-wise.
1450

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
    Examples:
        .. code-block:: python
            import paddle
            import paddle.fluid as fluid
            import numpy as np
            # Graph Organizing
            x = fluid.data(name="x", shape=[2,1], dtype="float32")
            res = paddle.log1p(x)
            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())
            # Execute
            x_i = np.array([[0], [1]]).astype(np.float32)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[0.], [0.6931472]]
    """

    if in_dygraph_mode():
        return core.ops.log1p(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
1474
    out = helper.create_variable_for_type_inference(dtype)
1475 1476
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
1477

W
WuHaobo 已提交
1478

W
WuHaobo 已提交
1479
def addcmul(input, tensor1, tensor2, value=1.0, name=None):
B
Bai Yifan 已提交
1480
    """
1481 1482
	:alias_main: paddle.addcmul
	:alias: paddle.addcmul,paddle.tensor.addcmul,paddle.tensor.math.addcmul
S
swtkiwi 已提交
1483

B
Bai Yifan 已提交
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
    Calculate the element-wise multiplication of tensor1 and tensor2,
    then multiply the result by value, and add it to input. The shape of input,
    tensor1, tensor2 should be broadcastable.
    The equation is:
    ..  math::
        out = input + value * tensor1 * tensor2
    Args:
        input(Variable): The input to be added. A Tensor with type float32, float64, int32, int64.
        tensor1(Variable): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
        tensor2(Variable): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
        value(int|float): The multiplier for tensor1*tensor2. For float32 and float64 type input, value must be float, otherwise an integer.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
    Returns:
        out(Variable): The output result. A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
          import paddle
          import paddle.fluid as fluid
          input = fluid.data(name='input', dtype='float32', shape=[3, 4])
          tensor1 = fluid.data(name='tenosr1', dtype='float32', shape=[1, 4])
          tensor2 = fluid.data(name='tensor2', dtype='float32', shape=[3, 4])
          data = paddle.addcmul(input, tensor1, tensor2, value=1.0)
    """

    check_variable_and_dtype(input, 'input', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    check_variable_and_dtype(tensor1, 'tensor1', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    check_variable_and_dtype(tensor2, 'tensor2', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    if convert_dtype(input.dtype) in ['float32', 'float64']:
        check_type(value, 'value', float, 'addcmul')
    if convert_dtype(input.dtype) in ['int32', 'int64']:
        check_type(value, 'value', int, 'addcmul')

W
WuHaobo 已提交
1517
    out = layers.elementwise_add(input, layers.elementwise_mul(tensor1, tensor2) * value)
B
Bai Yifan 已提交
1518
    return out
1519 1520


Y
Yang Zhang 已提交
1521
def clip(x, min=None, max=None, name=None):
1522
    """
Y
Yang Zhang 已提交
1523 1524
        :alias_main: paddle.clip
        :alias: paddle.clip,paddle.tensor.clip,paddle.tensor.math.clip
S
swtkiwi 已提交
1525

Y
Yang Zhang 已提交
1526
    **clip layer**
1527

Y
Yang Zhang 已提交
1528
    This operator clip all elements in input into the range [ min, max ] and return
1529 1530 1531 1532
    a resulting tensor as the following equation:

    .. math::

1533
        Out = MIN(MAX(x, min), max)
1534 1535

    Args:
Y
Yang Zhang 已提交
1536 1537
        x (Tensor): An N-D Tensor with data type float32 or float64.
        min (float32|Tensor): The lower bound with type ``float32`` or a ``Tensor``
1538
            with shape [1] and type ``int32``, ``float32``, ``float64``.
Y
Yang Zhang 已提交
1539
        max (float32|Tensor): The upper bound with type ``float32`` or a ``Tensor``
1540 1541 1542 1543 1544 1545
            with shape [1] and type ``int32``, ``float32``, ``float64``.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
Y
Yang Zhang 已提交
1546
        Tensor: A Tensor with the same data type and data shape as input.
1547 1548 1549 1550 1551 1552 1553

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

Y
Yang Zhang 已提交
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
            paddle.disable_static()
            x = np.array([[1.2,3.5], [4.5,6.4]]).astype('float32')
            x1 = paddle.to_variable(x)
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
            print(out1.numpy())
            # [[3.5, 3.5]
            # [4.5, 5.0]]
            print(out2.numpy())
            # [[2.5, 3.5]
            # [[4.5, 6.4]
1565 1566 1567 1568
    """

    assert min is not None or max is not None, "either min or max should be defined."

W
WuHaobo 已提交
1569 1570 1571
    if in_dygraph_mode():
        min = sys.float_info.min if min is None else min
        max = sys.float_info.max if max is None else max
Y
Yang Zhang 已提交
1572
        return core.ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
1573

1574
    if min is not None:
Y
Yang Zhang 已提交
1575
        check_type(min, 'min', (float, int, Variable), 'clip')
1576 1577
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1578
                        'clip', '(When the type of min in clip is Variable.)')
1579
    if max is not None:
Y
Yang Zhang 已提交
1580
        check_type(max, 'max', (float, int, Variable), 'clip')
1581 1582
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1583
                        'clip', '(When the type of max in clip is Variable.)')
1584

Y
Yang Zhang 已提交
1585 1586 1587
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'clip')

    inputs = {'X': x}
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
    attrs = {'min': sys.float_info.min, 'max': sys.float_info.max}

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
1602
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
1603
    output = helper.create_variable_for_type_inference(
Y
Yang Zhang 已提交
1604
        dtype=helper.input_dtype())
1605 1606 1607 1608
    helper.append_op(
        type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs)

    return output
F
Feiyu Chan 已提交
1609

W
WuHaobo 已提交
1610

1611
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
1612
    """
1613 1614
	:alias_main: paddle.trace
	:alias: paddle.trace,paddle.tensor.trace,paddle.tensor.math.trace
S
swtkiwi 已提交
1615

1616
    This OP computes the sum along diagonals of the input tensor x.
1617 1618

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
1619

1620
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
1621
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
1622
    of the input tensor x.
L
Li Fuchen 已提交
1623

1624
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
1625 1626 1627 1628

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
1629

L
Li Fuchen 已提交
1630
    Args:
1631 1632 1633 1634
        x(Variable): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset(int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1(int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2(int, optional): The second axis with respect to take diagonal. Default: 1.
L
Li Fuchen 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
        name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
        Variable: the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
1645

L
Li Fuchen 已提交
1646 1647 1648
            case1 = np.random.randn(2, 3).astype('float32')
            case2 = np.random.randn(3, 10, 10).astype('float32')
            case3 = np.random.randn(3, 10, 5, 10).astype('float32')
1649

1650
            paddle.disable_static()
1651

1652 1653 1654
            case1 = paddle.to_variable(case1)
            case2 = paddle.to_variable(case2)
            case3 = paddle.to_variable(case3)
1655 1656 1657
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
1658
    """
1659 1660
    inputs = {'Input': [x]}
    attrs = {'offset': offset, 'axis1': axis1, 'axis2': axis2}
L
Li Fuchen 已提交
1661 1662

    def __check_input(input, offset, dim1, dim2):
1663
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
1664 1665 1666
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

1667
        input_shape = list(x.shape)
L
Li Fuchen 已提交
1668
        assert len(input_shape) >= 2,                     \
1669 1670
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
1671 1672
                len(input_shape)

1673 1674
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
1675

1676 1677 1678
        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
1679

1680 1681 1682
        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
1683 1684


1685 1686 1687
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
1688 1689

    if not in_dygraph_mode():
1690
        __check_input(input, offset, axis1, axis2)
L
Li Fuchen 已提交
1691 1692
    helper = LayerHelper('trace', **locals())

1693
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
1694 1695 1696

    helper.append_op(
        type='trace',
1697
        inputs={'Input': [x]},
L
Li Fuchen 已提交
1698
        attrs={'offset': offset,
1699 1700
               'axis1': axis1,
               'axis2': axis2},
L
Li Fuchen 已提交
1701 1702 1703
        outputs={'Out': [out]})
    return out

F
Feiyu Chan 已提交
1704
@templatedoc(op_type="kron")
W
WuHaobo 已提交
1705
def kron(x, y, name=None):
S
swtkiwi 已提交
1706
    """
1707 1708
	:alias_main: paddle.kron
	:alias: paddle.kron,paddle.tensor.kron,paddle.tensor.math.kron
S
swtkiwi 已提交
1709 1710

${comment}
F
Feiyu Chan 已提交
1711 1712

    Args:
1713
        x (Variable): the fist operand of kron op, data type: float16, float32,
F
Feiyu Chan 已提交
1714
            float64, int32 or int64.
1715 1716
        y (Variable): the second operand of kron op, data type: float16,
            float32, float64, int32 or int64. Its data type should be the same
F
Feiyu Chan 已提交
1717
            with x.
1718 1719
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
F
Feiyu Chan 已提交
1720 1721 1722 1723 1724 1725 1726
            refer to :ref:`api_guide_Name`.

    Returns:
        Variable: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.

    Examples:
        .. code-block:: python
1727

F
Feiyu Chan 已提交
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
          import paddle
          from paddle import fluid
          import paddle.fluid.dygraph as dg
          import numpy as np

          a = np.arange(1, 5).reshape(2, 2).astype(np.float32)
          b = np.arange(1, 10).reshape(3, 3).astype(np.float32)

          place = fluid.CPUPlace()
          with dg.guard(place):
              a_var = dg.to_variable(a)
              b_var = dg.to_variable(b)
              c_var = paddle.kron(a_var, b_var)
              c_np = c_var.numpy()
          print(c_np)

          #[[ 1.  2.  3.  2.  4.  6.]
          # [ 4.  5.  6.  8. 10. 12.]
          # [ 7.  8.  9. 14. 16. 18.]
          # [ 3.  6.  9.  4.  8. 12.]
          # [12. 15. 18. 16. 20. 24.]
          # [21. 24. 27. 28. 32. 36.]]
    """
    if in_dygraph_mode():
        return core.ops.kron(x, y)

    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

W
WuHaobo 已提交
1758
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
1759 1760
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779


def cumsum(x, axis=None, dtype=None, name=None):
    """
    The cumulative sum of the elements along a given axis. The first element of the result is the same of the first element of the input. 

    Args:
        x (Tensor): Input of cumsum operator, the Tensor needed to be cumsumed. 
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the result of cumsum operator, output of cumsum operator. 

    Examples:
        .. code-block:: python
            
            import paddle
1780
            from paddle import to_variable
1781 1782
            import numpy as np

1783
            paddle.disable_static()
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
            data_np = np.arange(12).reshape(3, 4)
            data = to_variable(data_np)

            y = paddle.cumsum(data)
            print(y.numpy())
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            print(y.numpy())
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
            
            y = paddle.cumsum(data, axis=-1)
            print(y.numpy())
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
            # VarType.FP64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = layers.cast(x, dtype)

    if in_dygraph_mode():
        if axis is None:
            return core.ops.cumsum(x, 'flatten', flatten)
        else:
            return core.ops.cumsum(x, 'axis', axis, 'flatten', flatten)

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
1828

J
Jack Zhou 已提交
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            paddle.disable_static()
            x_np = np.array([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
            x = paddle.to_tensor(x_np)
            out = paddle.tensor.isfinite(x)
            print(out.numpy())  # [False  True  True False  True False False]
    """
    if in_dygraph_mode():
        return core.ops.isfinite_v2(x)
    helper = LayerHelper("isfinite_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite')
    out = helper.create_variable_for_type_inference('bool')
    helper.append_op(type="isfinite_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            paddle.disable_static()
            x_np = np.array([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
            x = paddle.to_tensor(x_np)
            out = paddle.tensor.isinf(x)
            print(out.numpy())  # [ True False False  True False False False]
    """
    if in_dygraph_mode():
        return core.ops.isinf_v2(x)
    helper = LayerHelper("isinf_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            paddle.disable_static()
            x_np = np.array([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
            x = paddle.to_tensor(x_np)
            out = paddle.tensor.isnan(x)
            print(out.numpy())  # [False False False False False  True  True]
    """
    if in_dygraph_mode():
        return core.ops.isnan_v2(x)
    helper = LayerHelper("isnan_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
    return out


G
guofei 已提交
1923 1924 1925 1926 1927
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
1928
        x(Tensor): The input tensor, its data type should be float32, float64, int32, int64.
G
guofei 已提交
1929 1930 1931 1932 1933 1934 1935 1936 1937
        axis(int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`, 
            multiply all elements of `x` and return a Tensor with a single element, 
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`, 
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
        dtype(str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64, 
            int32, int64. If specified, the input tensor is casted to dtype before operator performed. 
            This is very useful for avoiding data type overflows. The default value is None, the dtype 
            of output is the same as input Tensor `x`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result 
1938
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
G
guofei 已提交
1939 1940 1941 1942 1943 1944 1945 1946 1947
        name(string, optional): The default value is None. Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor, result of product on the specified dim of input tensor.

    Raises:
        ValueError: The :attr:`dtype` must be float32, float64, int32 or int64.
        TypeError: The type of :attr:`axis` must be int, list or tuple.
J
Jack Zhou 已提交
1948
    
G
guofei 已提交
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()

            # the axis is a int element
            data_x = np.array([[0.2, 0.3, 0.5, 0.9],
                         [0.1, 0.2, 0.6, 0.7]]).astype(np.float32)
            x = paddle.to_tensor(data_x)
            out1 = paddle.prod(x)
            print(out1.numpy())
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            print(out2.numpy())
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            print(out3.numpy())
            # [0.02 0.06 0.3  0.63]
            print(out3.numpy().dtype)
            # float32

            out4 = paddle.prod(x, 0, keepdim=True)
            print(out4.numpy())
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            print(out5.numpy())
            # [0 0 0 0]
            print(out5.numpy().dtype)
            # int64

            # the axis is list
            data_y = np.array([[[1.0, 2.0], [3.0, 4.0]],
                               [[5.0, 6.0], [7.0, 8.0]]])
            y = paddle.to_tensor(data_y)
            out6 = paddle.prod(y, [0, 1])
            print(out6.numpy())
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            print(out7.numpy())
            # [  24. 1680.]

    """
    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod')
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
            x = layers.cast(x, dtype)

    return layers.reduce_prod(input=x, dim=axis, keep_dim=keepdim, name=name)
W
WangXi 已提交
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078


def sign(x, name=None):
    """
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): The default value is None. Normally there is no need for user to
            set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import numpy as np
          import paddle

          data = np.array([3.0, 0.0, -2.0, 1.7], dtype='float32')
          paddle.disable_static()
          x = paddle.to_tensor(data)
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
    if in_dygraph_mode():
        return core.ops.sign(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sign')
    helper = LayerHelper("sign", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out


def tanh(x, name=None):
    """
    Tanh Activation Operator.

    .. math::
        out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()

            x_data = np.array([-0.4, -0.2, 0.1, 0.3])
            x = paddle.to_tensor(x_data)
            out = paddle.tanh(x)
            print(out.numpy())
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
    if in_dygraph_mode():
        return core.ops.tanh(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanh')
    helper = LayerHelper('tanh', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
    return out