math.py 68.8 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
from __future__ import print_function
18

19
from paddle.common_ops_import import *
20
from ..fluid import layers
L
Li Fuchen 已提交
21 22 23
from ..fluid.framework import core, _varbase_creator, in_dygraph_mode, Variable
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
24
from ..fluid.layers.layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn
25
import sys
26 27 28

# TODO: define math functions
# yapf: disable
29 30 31 32 33
from ..fluid.layers import abs    #DEFINE_ALIAS
from ..fluid.layers import acos    #DEFINE_ALIAS
from ..fluid.layers import asin    #DEFINE_ALIAS
from ..fluid.layers import ceil    #DEFINE_ALIAS
from ..fluid.layers import cos    #DEFINE_ALIAS
34 35
from ..fluid.layers import sinh    #DEFINE_ALIAS
from ..fluid.layers import cosh    #DEFINE_ALIAS
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
from ..fluid.layers import elementwise_add    #DEFINE_ALIAS
from ..fluid.layers import elementwise_div    #DEFINE_ALIAS
from ..fluid.layers import elementwise_floordiv    #DEFINE_ALIAS
from ..fluid.layers import elementwise_mod    #DEFINE_ALIAS
from ..fluid.layers import elementwise_mul    #DEFINE_ALIAS
from ..fluid.layers import elementwise_pow    #DEFINE_ALIAS
from ..fluid.layers import elementwise_sub    #DEFINE_ALIAS
from ..fluid.layers import exp    #DEFINE_ALIAS
from ..fluid.layers import floor    #DEFINE_ALIAS
from ..fluid.layers import log    #DEFINE_ALIAS
from ..fluid.layers import reciprocal    #DEFINE_ALIAS
from ..fluid.layers import reduce_max    #DEFINE_ALIAS
from ..fluid.layers import reduce_min    #DEFINE_ALIAS
from ..fluid.layers import reduce_prod    #DEFINE_ALIAS
from ..fluid.layers import reduce_sum    #DEFINE_ALIAS
from ..fluid.layers import round    #DEFINE_ALIAS
from ..fluid.layers import rsqrt    #DEFINE_ALIAS
from ..fluid.layers import scale    #DEFINE_ALIAS
from ..fluid.layers import square    #DEFINE_ALIAS
from ..fluid.layers import stanh    #DEFINE_ALIAS
from ..fluid.layers import atan    #DEFINE_ALIAS
from ..fluid.layers import erf    #DEFINE_ALIAS
58 59
from ..fluid.layers import sqrt    #DEFINE_ALIAS
from ..fluid.layers import sin    #DEFINE_ALIAS
60

61 62 63
from ..fluid.layers import increment    #DEFINE_ALIAS
from ..fluid.layers import multiplex    #DEFINE_ALIAS
from ..fluid.layers import sums    #DEFINE_ALIAS
G
guofei 已提交
64
from ..fluid import layers
65

66
__all__ = [
67 68 69 70 71 72
        'abs',
        'acos',
        'asin',
        'atan',
        'ceil',
        'cos',
73
        'cosh',
74 75 76 77 78 79 80 81 82
        'cumsum',
        'elementwise_add',
        'elementwise_div',
        'elementwise_floordiv',
        'elementwise_mod',
        'elementwise_pow',
        'elementwise_sub',
        'exp',
        'floor',
83
        'increment',
84
        'log',
85
        'logsumexp',
86
        'mul',
87
        'multiplex',
G
guofei 已提交
88
        'prod',
89 90 91 92 93 94 95 96 97 98 99
        'pow',
        'reciprocal',
        'reduce_max',
        'reduce_min',
        'reduce_prod',
        'reduce_sum',
        'round',
        'rsqrt',
        'scale',
        'sign',
        'sin',
100
        'sinh',
101 102 103 104
        'sqrt',
        'square',
        'stanh',
        'sum',
105
        'sums',
106 107 108
        'tanh',
        'elementwise_sum',
        'max',
109
        'maximum',
110
        'min',
111
        'minimum',
112
        'mm',
113 114 115 116 117
        'divide',
        'floor_divide',
        'remainder',
        'mod',
        'floor_mod',
118
        'multiply',
119 120 121
        'add',
        'atan',
        'logsumexp',
122
        'inverse',
123 124 125 126
        'log1p',
        'erf',
        'addcmul',
        'addmm',
Y
Yang Zhang 已提交
127
        'clip',
L
Li Fuchen 已提交
128
        'trace',
J
Jack Zhou 已提交
129 130 131 132
        'kron',
        'isfinite',
        'isinf',
        'isnan'
133 134 135
]
# yapf: enable.

136
@templatedoc()
W
WuHaobo 已提交
137
def pow(input, exponent, name=None):
138
    """
139 140
	:alias_main: paddle.pow
	:alias: paddle.pow,paddle.tensor.pow,paddle.tensor.math.pow
S
swtkiwi 已提交
141

142 143 144 145 146 147 148
    This is Pow Activation Operator.

    :math:`out = input^{exponent}`

    Args:
        input(Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float32`` or ``float64``.
        exponent(float32|Variable): A scalar with type ``float32`` or a ``Tensor`` with shape [1] and type ``float32``.
149
        name(str, optional): The default value is None. Normally there is no need for user to set this property.
150 151 152 153 154 155 156 157 158 159
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``input``.

    Examples:

        .. code-block:: python

            import paddle
160
            import paddle.fluid as fluid
161

162
            x = fluid.data(name="x", shape=[32,32], dtype="float32")
163 164

            # example 1: argument exponent is float
W
WuHaobo 已提交
165
            y_1 = paddle.pow(x, 2.0)
166 167 168
            # y_1 is x^{2.0}

            # example 2: argument exponent is Variable
169
            exponent_tensor = fluid.layers.fill_constant([1], "float32", 3.0)
W
WuHaobo 已提交
170
            y_2 = paddle.pow(x, exponent_tensor)
171 172
            # y_2 is x^{3.0}
    """
W
WuHaobo 已提交
173 174 175
    if in_dygraph_mode():
        return core.ops.pow(input, "exponent", exponent)

176 177 178 179 180 181 182 183 184
    helper = LayerHelper('pow', **locals())
    inputs = {'X': input}
    attrs = {}
    if isinstance(exponent, Variable):
        exponent.stop_gradient = True
        inputs['FactorTensor'] = exponent
    else:
        attrs['factor'] = exponent

W
WuHaobo 已提交
185 186 187 188 189
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    check_dtype(
        out.dtype, out.name,
        convert_dtype(input.dtype), 'pow',
        '(The out data type in pow must be the same with input data type.)')
190 191 192 193 194 195

    helper.append_op(
        type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out


196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
    op = getattr(core.ops, op_name)
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)

    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)


def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
W
WuHaobo 已提交
228 229 230 231 232
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
233 234 235 236 237 238 239 240 241 242 243

    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


Y
Yang Zhang 已提交
244
def add(x, y, name=None):
245 246 247 248 249 250 251 252
    """
Examples:

    ..  code-block:: python

        import paddle
        import numpy as np

Y
Yang Zhang 已提交
253 254 255 256 257
        paddle.disable_static()
        np_x = np.array([2, 3, 4]).astype('float64')
        np_y = np.array([1, 5, 2]).astype('float64')
        x = paddle.to_variable(np_x)
        y = paddle.to_variable(np_y)
W
WuHaobo 已提交
258
        z = paddle.add(x, y)
Y
Yang Zhang 已提交
259 260
        np_z = z.numpy()
        print(np_z)  # [3., 8., 6. ]
261 262 263 264 265 266

    """
    op_type = 'elementwise_add'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
Y
Yang Zhang 已提交
267
            x, y, axis=axis, op_name=op_type)
268 269 270 271

    return _elementwise_op(LayerHelper(op_type, **locals()))


272
def divide(x, y, name=None):
273
    """
274
    Divide two tensors element-wise. The equation is:
275

276 277
    .. math::
        out = x / y
278

279 280
    **Note**:
    ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
281

282 283 284 285
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
286

287 288
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
289

290
    Examples:
291

292
        ..  code-block:: python
293

294 295
            import paddle
            import numpy as np
296

297
            paddle.disable_static()
298

299 300 301 302 303 304
            np_x = np.array([2, 3, 4]).astype('float64')
            np_y = np.array([1, 5, 2]).astype('float64')
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
            z = paddle.divide(x, y)
            print(z.numpy())  # [2., 0.6, 2.]
305

306 307 308 309 310 311 312
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
313

314
    return _elementwise_op(LayerHelper(op_type, **locals()))
315 316


317 318 319
def floor_divide(x, y, name=None):
    """
    Floor divide two tensors element-wise. The equation is:
320

321 322
    .. math::
        out = x // y
323

324 325
    **Note**:
    ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
326

327 328 329 330
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
331

332 333
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
334

335
    Examples:
336

337
        ..  code-block:: python
338

339 340
            import paddle
            import numpy as np
341

342
            paddle.disable_static()
343

344 345 346 347 348 349
            np_x = np.array([2, 3, 8, 7])
            np_y = np.array([1, 5, 3, 3])
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
            z = paddle.floor_divide(x, y)
            print(z.numpy())  # [2, 0, 2, 2]
350

351 352 353 354 355 356
    """
    op_type = 'elementwise_floordiv'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
357

358
    return _elementwise_op(LayerHelper(op_type, **locals()))
359 360


361
def remainder(x, y, name=None):
362
    """
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    Mod two tensors element-wise. The equation is:

    .. math::
        out = x \% y

    **Note**:
    ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.

    Examples:

        ..  code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()

            np_x = np.array([2, 3, 8, 7])
            np_y = np.array([1, 5, 3, 3])
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
            z = paddle.remainder(x, y)
            print(z.numpy())  # [0, 3, 2, 1]

    """
    op_type = 'elementwise_mod'
397 398 399
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
400
            x, y, axis=axis, op_name=op_type)
401 402 403 404

    return _elementwise_op(LayerHelper(op_type, **locals()))


405 406 407 408
mod = remainder  #DEFINE_ALIAS
floor_mod = remainder  #DEFINE_ALIAS


409 410 411 412 413 414 415 416 417 418 419 420
def multiply(x, y, axis=-1, name=None):
    """
	:alias_main: paddle.multiply
	:alias: paddle.multiply,paddle.tensor.multiply,paddle.tensor.math.multiply

Examples:

    .. code-block:: python

        import paddle
        import numpy as np

421
        paddle.disable_static()
422 423
        x_data = np.array([[1, 2], [3, 4]], dtype=np.float32)
        y_data = np.array([[5, 6], [7, 8]], dtype=np.float32)
424 425
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
426 427 428 429 430
        res = paddle.multiply(x, y)
        print(res.numpy()) # [[5, 12], [21, 32]]

        x_data = np.array([[[1, 2, 3], [1, 2, 3]]], dtype=np.float32)
        y_data = np.array([1, 2], dtype=np.float32)
431 432
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
433 434 435 436 437 438 439 440 441 442 443 444
        res = paddle.multiply(x, y, axis=1)
        print(res.numpy()) # [[[1, 2, 3], [2, 4, 6]]]

    """
    op_type = 'elementwise_mul'
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)

    return _elementwise_op(LayerHelper(op_type, **locals()))

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
def maximum(x, y, axis=-1, name=None):
    """
Examples:

    .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()
  
        x_data = np.array([[1, 2], [3, 4]], dtype=np.float32)
        y_data = np.array([[5, 6], [7, 8]], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[[5. 6.]
        # [7. 8.]]

        x_data = np.array([[[1, 2, 3], [1, 2, 3]]], dtype=np.float32)
        y_data = np.array([1, 2], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.maximum(x, y, axis=1)
        print(res.numpy())
        #[[[1. 2. 3.]
        #  [2. 2. 3.]]]

        x_data = np.array([2, 3, 5], dtype=np.float32)
        y_data = np.array([1, 4, np.nan], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[ 2.  4. nan]

        x_data = np.array([5, 3, np.inf], dtype=np.float32)
        y_data = np.array([1, 4, 5], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[ 5.  4. inf]
    """
    op_type = 'elementwise_max'
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

def minimum(x, y, axis=-1, name=None):
    """
Examples:

    .. code-block:: python

        import paddle
        import numpy as np
        paddle.disable_static()
  
        x_data = np.array([[1, 2], [3, 4]], dtype=np.float32)
        y_data = np.array([[5, 6], [7, 8]], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[[1. 2.]
        # [3. 4.]]

        x_data = np.array([[[1, 2, 3], [1, 2, 3]]], dtype=np.float32)
        y_data = np.array([1, 2], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.minimum(x, y, axis=1)
        print(res.numpy())
        #[[[1. 1. 1.]
        #  [2. 2. 2.]]]

        x_data = np.array([2, 3, 5], dtype=np.float32)
        y_data = np.array([1, 4, np.nan], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[ 1.  3. nan]

        x_data = np.array([5, 3, np.inf], dtype=np.float32)
        y_data = np.array([1, 4, 5], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[1. 3. 5.]
    """
    op_type = 'elementwise_min'
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))
547

548 549
for func in [
        add,
550 551 552
        maximum,
        minimum,
        multiply
553
]:
554
    proto_dict = {'add': 'elementwise_add', 'div': 'elementwise_div', 'maximum': 'elementwise_max', 'minimum': 'elementwise_min', 'multiply': 'elementwise_mul'}
555 556
    op_proto = OpProtoHolder.instance().get_op_proto(proto_dict[func.__name__])

Y
Yang Zhang 已提交
557 558 559 560 561 562 563
    additional_args_lines = [
        "name (string, optional): Name of the output. \
        Default is None. It's used to print debug info for developers. Details: \
        :ref:`api_guide_Name` "
    ]

    func.__doc__ = _generate_doc_string_(
564 565
        op_proto,
        additional_args_lines=additional_args_lines,
566
        skip_attrs_set={"x_data_format", "y_data_format", "axis",
567
            "use_quantizer", "mkldnn_data_type", "Scale_x", "Scale_y", "Scale_out"
568
        }) + """\n""" + str(func.__doc__)
569

Y
Yang Zhang 已提交
570

571
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
572 573 574 575
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
576 577 578
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
579
            Tensor variable with a single element, otherwise must be in the
580 581 582 583 584 585 586
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
587
            value is False.
588
        name (str, optional): The default value is None. Normally there is no need for
589 590 591
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
592 593
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
        it's data type is the same as `x`.
594 595

    Raises:
596 597
        ValueError: The :attr:`dtype` must be float64 or int64.
        TypeError: The type of :attr:`axis` must be int, list or tuple.
598

599 600 601
    Examples:
        .. code-block:: python

602
            import numpy as np
603
            import paddle
604 605
            paddle.disable_static()

606 607 608 609
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
610 611
            x_data = np.array([[0.2, 0.3, 0.5, 0.9],[0.1, 0.2, 0.6, 0.7]]).astype('float32')
            x = paddle.to_variable(x_data)
612
            out1 = paddle.sum(x)  # [3.5]
613 614 615
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
616 617 618 619 620

            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
621 622 623 624
            y_data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]).astype('float32')
            y = paddle.to_variable(y_data)
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
625
    """
626 627 628 629 630 631 632 633 634 635 636
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

637
    attrs = {
638 639 640
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
641 642 643 644
    }
    dtype_flag = False
    if dtype is not None:
        if dtype in ['float64', 'int64']:
645 646
            if (convert_dtype(x.dtype) == "float32" and dtype == "float64") or \
               (convert_dtype(x.dtype) == "int32" and dtype == "int64"):
647
                attrs.update({
648
                    'in_dtype': x.dtype,
649 650 651 652 653 654 655 656 657
                    'out_dtype': convert_np_dtype_to_dtype_(dtype)
                })
                dtype_flag = True
        else:
            raise ValueError(
                "The value of 'dtype' in sum op must be float64, int64, but received of {}".
                format(dtype))

    if in_dygraph_mode():
658
        axis = axis if axis != None and axis != [] else [0]
659
        if dtype_flag:
660 661 662
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag, 'in_dtype',
                                       x.dtype, 'out_dtype',
663 664
                                       convert_np_dtype_to_dtype_(dtype))
        else:
665 666
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
667
    check_variable_and_dtype(
668 669 670
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'sum')
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'sum')

671 672 673 674 675
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_(dtype))
    else:
676
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
677 678
    helper.append_op(
        type='reduce_sum',
679
        inputs={'X': x},
680 681 682
        outputs={'Out': out},
        attrs=attrs)
    return out
683

684

685 686 687
@templatedoc(op_type="sum")
def elementwise_sum(inputs, name=None):
    """
688 689
	:alias_main: paddle.elementwise_sum
	:alias: paddle.elementwise_sum,paddle.tensor.elementwise_sum,paddle.tensor.math.elementwise_sum
S
swtkiwi 已提交
690

691
    ${comment}
692

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
    Case 1:
    ::
        Input:
            Input. Shape = [2, 3]
            Input = [[1, 2, 3],
                     [4, 5, 6]]

        Output:
            The output. Shape = [2, 3]
            Output = [[1, 2, 3],
                      [4, 5, 6]]

    Case 2:
    ::
        Input:
            First input:
            Input1. Shape = [2, 3]
            Input1 = [[1, 2, 3],
                      [4, 5, 6]]

        The second input:
            Input2. Shape = [2, 3]
            Input2 = [[7, 8, 9],
                      [10, 11, 12]]

        Output:
            The output. Shape = [2, 3]
            Output = [[8, 10, 12],
                      [14, 16, 18]]

    Args:
724 725
        inputs (Variable|list(Variable)):  A Varaible list. The shape and data type of the list elementsshould be consistent.
            Variable can be multi-dimensional Tensoror LoDTensor, and data types can be: float32, float64, int32, int64.
726 727 728 729
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
730
        Variable: the sum of input :math:`inputs` . its shape and data types are consistent with :math:`inputs` .
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid

            input0 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=5)
            input1 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=3)
            sum = paddle.elementwise_sum([input0, input1])

            # You can print out 'sum' via executor.
            out = fluid.layers.Print(sum, message="the sum of input0 and input1: ")
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_main_program())

            # The printed result is:
            # 1570701754	the sum of input0 and input1: 	The place is:CPUPlace
            # Tensor[elementwise_sum_0.tmp_0]
            #    shape: [2,3,]
            #    dtype: l
            #    data: 8,8,8,8,8,8,

            # the sum of input0 and input1 is 2-D Tensor with shape [2,3].
            # dtype is the corresponding C++ data type, which may vary in different environments.
756 757
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
758 759 760 761
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
    """

    helper = LayerHelper('elementwise_sum', **locals())
762 763 764 765 766 767 768 769 770 771 772
    check_type(inputs, 'inputs', (Variable, tuple, list), 'elementwise_sum')
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
                   ['float32', 'float64', 'int32', 'int64'], 'elementwise_sum')
    else:
        check_variable_and_dtype(inputs, "inputs", \
                ['float32', 'float64', 'int32', 'int64'], 'elementwise_sum')


773 774 775 776 777 778 779 780 781 782 783
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})

    return out


W
WuHaobo 已提交
784
def mm(input, mat2, name=None):
785
    """
786 787
	:alias_main: paddle.mm
	:alias: paddle.mm,paddle.tensor.mm,paddle.tensor.math.mm
S
swtkiwi 已提交
788

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        mat2 (Variable): The input variable which is a Tensor or LoDTensor.
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Variable: The product Tensor (or LoDTensor) variable.

    Examples:
        .. code-block:: python

            # Examples to clarify shapes of the inputs and output
            # x: [B, ..., M, K], mat2: [B, ..., K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, ..., M, N]

            # x: [B, M, K], mat2: [B, K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, M, N]

            # x: [B, M, K], mat2: [K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, M, N]

            # x: [M, K], mat2: [K, N]
            # fluid.layers.matmul(x, mat2)  # out: [M, N]

            # x: [B, M, K], mat2: [K]
            # fluid.layers.matmul(x, mat2)  # out: [B, M]

            # x: [K], mat2: [K]
            # fluid.layers.matmul(x, mat2)  # out: [1]

            import paddle
            import paddle.fluid as fluid
            x = fluid.data(name='x', shape=[2, 3], dtype='float32')
            mat2 = fluid.data(name='mat2', shape=[3, 2], dtype='float32')
            out = paddle.mm(x, mat2) # out shape is [2, 2]
    """
    if in_dygraph_mode():
W
WuHaobo 已提交
837
        out = _varbase_creator(dtype=input.dtype)
838 839
        core.ops.matmul(input, mat2, out)
        return out
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
877
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
878 879 880 881
    helper.append_op(
        type='matmul', inputs={'X': input,
                               'Y': mat2}, outputs={'Out': out})
    return out
882

883

Y
yaoxuefeng 已提交
884
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
885
    """
886 887
	:alias_main: paddle.addmm
	:alias: paddle.addmm,paddle.tensor.addmm,paddle.tensor.math.addmm
S
swtkiwi 已提交
888

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
    **addmm**

    This operator is used to perform matrix multiplication for input $x$ and $y$.
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
        input (Variable): The input Tensor/LoDTensor to be added to the final result.
        x (Variable): The first input Tensor/LoDTensor for matrix multiplication.
        y (Variable): The second input Tensor/LoDTensor for matrix multiplication.
        beta (float): Coefficient of $input$.
Y
yaoxuefeng 已提交
905
        alpha (float): Coefficient of $x*y$.
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.

    Returns:
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of addmm op.

    Examples:
        ..  code-block:: python

            import numpy as np
            import paddle

            data_x = np.ones((2, 2)).astype(np.float32)
            data_y = np.ones((2, 2)).astype(np.float32)
            data_input = np.ones((2, 2)).astype(np.float32)

921
            paddle.disable_static()
Y
yaoxuefeng 已提交
922

923 924 925
            x = paddle.to_variable(data_x)
            y = paddle.to_variable(data_y)
            input = paddle.to_variable(data_input)
Y
yaoxuefeng 已提交
926 927 928 929

            out = paddle.tensor.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )

            print( out.numpy() )
930 931 932
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
    if not len(input_shape) == len(x_shape) == len(y_shape) == 2:
        raise ValueError("The dimention of input, x, y should be 2 but receive input's shape: {}, x's shape: {}, y's shape: {}".format(input_shape, x_shape, y_shape))
    if input_shape[0] != x_shape[0]:
        if input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
        if input_shape[1] != y_shape[1] and input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
    if input_shape[1] != y_shape[1]:
        if input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
        if input_shape[0] != x_shape[0] and input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
    if x_shape[1] != y_shape[0]:
        raise ValueError("The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(x_shape, y_shape))



953 954 955 956
    if in_dygraph_mode():
        out = core.ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
        return out

957 958 959 960
    inputs = {'Input': input, "X": x, "Y": y}
    attrs = {'Alpha': alpha, 'Beta': beta}

    helper = LayerHelper("addmm", **locals())
Y
yaoxuefeng 已提交
961
    check_variable_and_dtype(input, 'Input', ['float32', 'float64'], 'addmm')
962 963 964 965 966 967 968
    check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
    check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out})
    return out
969 970


971
def logsumexp(x, axis=None, keepdim=False, name=None):
972
    """
973
    This OP calculates the log of the sum of exponentials of ``x`` along ``axis`` .
974

975 976
    .. math::
       logsumexp(x) = \log\sum exp(x)
977

978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
996

997
    Returns:
998 999
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
1000

1001
    Examples:
1002

1003
    .. code-block:: python
1004

1005 1006 1007
        import paddle
        import numpy as np

1008
        paddle.disable_static()
1009

1010 1011 1012 1013
        x = np.array([[-1.5, 0., 2.], [3., 1.2, -2.4]])
        x = paddle.to_tensor(x)
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
1014 1015

    """
1016 1017 1018 1019 1020 1021 1022
    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]
1023

1024 1025 1026
    if in_dygraph_mode():
        return core.ops.logsumexp(x, 'dim', axis, 'keep_dim', keepdim,
                                    'reduce_all', reduce_all)
1027

1028 1029 1030
    check_variable_and_dtype(x, 'x',
                             ['float32', 'float64'],
                             'logsumexp')
1031

1032 1033 1034 1035 1036 1037
    helper = LayerHelper('logsumexp', **locals())
    attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs)
    return out
1038

S
swtkiwi 已提交
1039

1040 1041
def inverse(x, name=None):
    """
1042 1043 1044 1045 1046
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
1047
        x (Variable): The input tensor. The last two
1048 1049 1050 1051 1052 1053 1054 1055
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information,
            please refer to :ref:`api_guide_Name`

    Returns:
1056 1057
        Variable: A Tensor holds the inverse of x. The shape and data type
                        is the same as x.
1058 1059 1060 1061 1062 1063 1064 1065

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            mat_np = np.array([[2, 0], [0, 2]]).astype("float32")
1066 1067 1068 1069
            paddle.disable_static()
            mat = paddle.to_variable(mat_np)
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
1070 1071 1072

    """
    if in_dygraph_mode():
1073
        return core.ops.inverse(x)
1074

1075 1076
    def _check_input(x):
        check_variable_and_dtype(x, 'x',
1077
                                 ['float32', 'float64'], 'inverse')
1078
        if len(x.shape) < 2:
1079 1080 1081
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
1082 1083
                "x's shape: %s." % (len(x.shape), x.shape))
    _check_input(x)
1084
    helper = LayerHelper('inverse', **locals())
1085
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1086
    helper.append_op(
1087
        type='inverse', inputs={'Input': [x] }, outputs={'Output': [out]})
1088 1089 1090
    return out


1091
def max(x, axis=None, keepdim=False, name=None):
1092
    """
S
swtkiwi 已提交
1093

1094
    Computes the maximum of tensor elements over the given axis.
1095 1096

    Args:
1097
        x(Tensor): A tensor, the data type is float32,
1098
            float64, int32, int64.
1099
        axis(list|int, optional): The axis along which the maximum is computed.
1100
            If :attr:`None`, compute the maximum over all elements of
1101
             `x` and return a Tensor variable with a single element,
1102 1103 1104
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1105
            output Tensor. The result tensor will have one fewer dimension
1106
            than the `x` unless :attr:`keepdim` is true, default
1107
            value is False.
1108
        name(str, optional): The default value is None.  Normally there is no need for
1109 1110 1111
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
1112
        Tensor, results of maximum on the specified axis of input tensor,
1113
        it's data type is the same as `x`.
1114 1115 1116

    Examples:
        .. code-block:: python
1117 1118

            import numpy as np
1119
            import paddle
1120

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
            paddle.disable_static()

            # data_x is a variable with shape [2, 4]
            # the axis is a int element
            data_x = np.array([[0.2, 0.3, 0.5, 0.9],
                               [0.1, 0.2, 0.6, 0.7]])
            x = paddle.to_variable(data_x)
            result1 = paddle.max(x)
            print(result1.numpy())
            #[0.9]
            result2 = paddle.max(x, axis=0)
            print(result2.numpy()) 
            #[0.2 0.3 0.6 0.9]
            result3 = paddle.max(x, axis=-1)
            print(result3.numpy())
            #[0.9 0.7]
            result4 = paddle.max(x, axis=1, keepdim=True)
            print(result4.numpy())
            #[[0.9]
            # [0.7]]

            # data_y is a variable with shape [2, 2, 2]
            # the axis is list 
            data_y = np.array([[[1.0, 2.0], [3.0, 4.0]],
                               [[5.0, 6.0], [7.0, 8.0]]])
            y = paddle.to_variable(data_y)
            result5 = paddle.max(y, axis=[1, 2])
            print(result5.numpy())
            #[4. 8.]
            result6 = paddle.max(y, axis=[0, 1])
            print(result6.numpy())
            #[7. 8.]
1153 1154
    """

1155
    if axis is not None and not isinstance(axis, list):
1156 1157 1158 1159 1160 1161 1162 1163
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))

1164 1165 1166 1167 1168
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    if in_dygraph_mode():
        return core.ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
                                   'reduce_all', reduce_all)
1169

1170
    helper = LayerHelper('max', **locals())
1171
    check_variable_and_dtype(
1172
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max')
1173

1174 1175
    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
1176 1177
    helper.append_op(
        type='reduce_max',
1178
        inputs={'X': x},
1179 1180
        outputs={'Out': out},
        attrs={
1181 1182
            'dim': axis,
            'keep_dim': keepdim,
1183 1184 1185 1186
            'reduce_all': reduce_all
        })
    return out

1187
def min(x, axis=None, keepdim=False, name=None):
1188
    """
S
swtkiwi 已提交
1189

1190
    Computes the minimum of tensor elements over the given axis
1191

1192
    Args:
1193 1194
        x(Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis(list|int, optional): The axis along which the minimum is computed.
1195
            If :attr:`None`, compute the minimum over all elements of
1196
            `x` and return a Tensor variable with a single element,
1197 1198 1199
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1200
            output Tensor. The result tensor will have one fewer dimension
1201
            than the `x` unless :attr:`keepdim` is true, default
1202
            value is False.
W
WuHaobo 已提交
1203
        name(str, optional): The default value is None.  Normally there is no need for 
1204
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1205

1206
    Returns:
1207
        Tensor, results of minimum on the specified axis of input tensor,
1208
        it's data type is the same as input's Tensor.
1209

1210 1211 1212
    Examples:
        .. code-block:: python

1213 1214
            import numpy as np
            import paddle
1215

1216
            paddle.disable_static()
1217

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
            # data_x is a variable with shape [2, 4]
            # the axis is a int element
            data_x = np.array([[0.2, 0.3, 0.5, 0.9],
                            [0.1, 0.2, 0.6, 0.7]])
            x = paddle.to_variable(data_x)
            result1 = paddle.min(x)
            print(result1.numpy())
            #[0.1]
            result2 = paddle.min(x, axis=0)
            print(result2.numpy())
            #[0.1 0.2 0.5 0.7]
            result3 = paddle.min(x, axis=-1)
            print(result3.numpy()) 
            #[0.2 0.1]
            result4 = paddle.min(x, axis=1, keepdim=True)
            print(result4.numpy())
            #[[0.2]
            # [0.1]]

            # data_y is a variable with shape [2, 2, 2]
            # the axis is list 
            data_y = np.array([[[1.0, 2.0], [3.0, 4.0]],
                               [[5.0, 6.0], [7.0, 8.0]]])
            y = paddle.to_variable(data_y)
            result5 = paddle.min(y, axis=[1, 2])
            print(result5.numpy()) 
            #[1. 5.]
            result6 = paddle.min(y, axis=[0, 1])
            print(result6.numpy())
            #[1. 2.]
    """
1249

1250
    if axis is not None and not isinstance(axis, list):
1251 1252 1253 1254 1255 1256 1257
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))
1258 1259
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
1260
    if in_dygraph_mode():
1261
        return core.ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
1262
                                   'reduce_all', reduce_all)
1263 1264 1265 1266 1267 1268 1269

    helper = LayerHelper('min', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min')

    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
1270 1271
    helper.append_op(
        type='reduce_min',
1272
        inputs={'X': x},
1273 1274
        outputs={'Out': out},
        attrs={
1275 1276
            'dim': axis,
            'keep_dim': keepdim,
1277 1278 1279 1280 1281
            'reduce_all': reduce_all
        })
    return out


W
WuHaobo 已提交
1282
def log1p(x, name=None):
1283
    """
1284 1285
	:alias_main: paddle.log1p
	:alias: paddle.log1p,paddle.tensor.log1p,paddle.tensor.math.log1p
S
swtkiwi 已提交
1286

1287 1288 1289 1290 1291 1292 1293 1294 1295
    Calculates the natural log of the given input tensor, element-wise.
    .. math::
        Out = \\ln(x+1)
    Args:
        x (Variable): Input LoDTensor or Tensor. Must be one of the following types: float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
        Variable: The natural log of the input LoDTensor or Tensor computed element-wise.
1296

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
    Examples:
        .. code-block:: python
            import paddle
            import paddle.fluid as fluid
            import numpy as np
            # Graph Organizing
            x = fluid.data(name="x", shape=[2,1], dtype="float32")
            res = paddle.log1p(x)
            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())
            # Execute
            x_i = np.array([[0], [1]]).astype(np.float32)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[0.], [0.6931472]]
    """

    if in_dygraph_mode():
        return core.ops.log1p(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
1320
    out = helper.create_variable_for_type_inference(dtype)
1321 1322
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
1323

W
WuHaobo 已提交
1324

W
WuHaobo 已提交
1325
def addcmul(input, tensor1, tensor2, value=1.0, name=None):
B
Bai Yifan 已提交
1326
    """
1327 1328
	:alias_main: paddle.addcmul
	:alias: paddle.addcmul,paddle.tensor.addcmul,paddle.tensor.math.addcmul
S
swtkiwi 已提交
1329

B
Bai Yifan 已提交
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
    Calculate the element-wise multiplication of tensor1 and tensor2,
    then multiply the result by value, and add it to input. The shape of input,
    tensor1, tensor2 should be broadcastable.
    The equation is:
    ..  math::
        out = input + value * tensor1 * tensor2
    Args:
        input(Variable): The input to be added. A Tensor with type float32, float64, int32, int64.
        tensor1(Variable): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
        tensor2(Variable): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
        value(int|float): The multiplier for tensor1*tensor2. For float32 and float64 type input, value must be float, otherwise an integer.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
    Returns:
        out(Variable): The output result. A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
          import paddle
          import paddle.fluid as fluid
          input = fluid.data(name='input', dtype='float32', shape=[3, 4])
          tensor1 = fluid.data(name='tenosr1', dtype='float32', shape=[1, 4])
          tensor2 = fluid.data(name='tensor2', dtype='float32', shape=[3, 4])
          data = paddle.addcmul(input, tensor1, tensor2, value=1.0)
    """

    check_variable_and_dtype(input, 'input', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    check_variable_and_dtype(tensor1, 'tensor1', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    check_variable_and_dtype(tensor2, 'tensor2', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    if convert_dtype(input.dtype) in ['float32', 'float64']:
        check_type(value, 'value', float, 'addcmul')
    if convert_dtype(input.dtype) in ['int32', 'int64']:
        check_type(value, 'value', int, 'addcmul')

W
WuHaobo 已提交
1363
    out = layers.elementwise_add(input, layers.elementwise_mul(tensor1, tensor2) * value)
B
Bai Yifan 已提交
1364
    return out
1365 1366


Y
Yang Zhang 已提交
1367
def clip(x, min=None, max=None, name=None):
1368
    """
Y
Yang Zhang 已提交
1369 1370
        :alias_main: paddle.clip
        :alias: paddle.clip,paddle.tensor.clip,paddle.tensor.math.clip
S
swtkiwi 已提交
1371

Y
Yang Zhang 已提交
1372
    **clip layer**
1373

Y
Yang Zhang 已提交
1374
    This operator clip all elements in input into the range [ min, max ] and return
1375 1376 1377 1378
    a resulting tensor as the following equation:

    .. math::

1379
        Out = MIN(MAX(x, min), max)
1380 1381

    Args:
Y
Yang Zhang 已提交
1382 1383
        x (Tensor): An N-D Tensor with data type float32 or float64.
        min (float32|Tensor): The lower bound with type ``float32`` or a ``Tensor``
1384
            with shape [1] and type ``int32``, ``float32``, ``float64``.
Y
Yang Zhang 已提交
1385
        max (float32|Tensor): The upper bound with type ``float32`` or a ``Tensor``
1386 1387 1388 1389 1390 1391
            with shape [1] and type ``int32``, ``float32``, ``float64``.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
Y
Yang Zhang 已提交
1392
        Tensor: A Tensor with the same data type and data shape as input.
1393 1394 1395 1396 1397 1398 1399

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

Y
Yang Zhang 已提交
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
            paddle.disable_static()
            x = np.array([[1.2,3.5], [4.5,6.4]]).astype('float32')
            x1 = paddle.to_variable(x)
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
            print(out1.numpy())
            # [[3.5, 3.5]
            # [4.5, 5.0]]
            print(out2.numpy())
            # [[2.5, 3.5]
            # [[4.5, 6.4]
1411 1412 1413 1414
    """

    assert min is not None or max is not None, "either min or max should be defined."

W
WuHaobo 已提交
1415 1416 1417
    if in_dygraph_mode():
        min = sys.float_info.min if min is None else min
        max = sys.float_info.max if max is None else max
Y
Yang Zhang 已提交
1418
        return core.ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
1419

1420
    if min is not None:
Y
Yang Zhang 已提交
1421
        check_type(min, 'min', (float, int, Variable), 'clip')
1422 1423
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1424
                        'clip', '(When the type of min in clip is Variable.)')
1425
    if max is not None:
Y
Yang Zhang 已提交
1426
        check_type(max, 'max', (float, int, Variable), 'clip')
1427 1428
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1429
                        'clip', '(When the type of max in clip is Variable.)')
1430

Y
Yang Zhang 已提交
1431 1432 1433
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'clip')

    inputs = {'X': x}
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
    attrs = {'min': sys.float_info.min, 'max': sys.float_info.max}

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
1448
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
1449
    output = helper.create_variable_for_type_inference(
Y
Yang Zhang 已提交
1450
        dtype=helper.input_dtype())
1451 1452 1453 1454
    helper.append_op(
        type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs)

    return output
F
Feiyu Chan 已提交
1455

W
WuHaobo 已提交
1456

1457
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
1458
    """
1459 1460
	:alias_main: paddle.trace
	:alias: paddle.trace,paddle.tensor.trace,paddle.tensor.math.trace
S
swtkiwi 已提交
1461

1462
    This OP computes the sum along diagonals of the input tensor x.
1463 1464

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
1465

1466
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
1467
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
1468
    of the input tensor x.
L
Li Fuchen 已提交
1469

1470
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
1471 1472 1473 1474

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
1475

L
Li Fuchen 已提交
1476
    Args:
1477 1478 1479 1480
        x(Variable): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset(int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1(int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2(int, optional): The second axis with respect to take diagonal. Default: 1.
L
Li Fuchen 已提交
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
        name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
        Variable: the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
1491

L
Li Fuchen 已提交
1492 1493 1494
            case1 = np.random.randn(2, 3).astype('float32')
            case2 = np.random.randn(3, 10, 10).astype('float32')
            case3 = np.random.randn(3, 10, 5, 10).astype('float32')
1495

1496
            paddle.disable_static()
1497

1498 1499 1500
            case1 = paddle.to_variable(case1)
            case2 = paddle.to_variable(case2)
            case3 = paddle.to_variable(case3)
1501 1502 1503
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
1504
    """
1505 1506
    inputs = {'Input': [x]}
    attrs = {'offset': offset, 'axis1': axis1, 'axis2': axis2}
L
Li Fuchen 已提交
1507 1508

    def __check_input(input, offset, dim1, dim2):
1509
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
1510 1511 1512
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

1513
        input_shape = list(x.shape)
L
Li Fuchen 已提交
1514
        assert len(input_shape) >= 2,                     \
1515 1516
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
1517 1518
                len(input_shape)

1519 1520
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
1521

1522 1523 1524
        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
1525

1526 1527 1528
        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
1529 1530


1531 1532 1533
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
1534 1535

    if not in_dygraph_mode():
1536
        __check_input(input, offset, axis1, axis2)
L
Li Fuchen 已提交
1537 1538
    helper = LayerHelper('trace', **locals())

1539
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
1540 1541 1542

    helper.append_op(
        type='trace',
1543
        inputs={'Input': [x]},
L
Li Fuchen 已提交
1544
        attrs={'offset': offset,
1545 1546
               'axis1': axis1,
               'axis2': axis2},
L
Li Fuchen 已提交
1547 1548 1549
        outputs={'Out': [out]})
    return out

F
Feiyu Chan 已提交
1550
@templatedoc(op_type="kron")
W
WuHaobo 已提交
1551
def kron(x, y, name=None):
S
swtkiwi 已提交
1552
    """
1553 1554
	:alias_main: paddle.kron
	:alias: paddle.kron,paddle.tensor.kron,paddle.tensor.math.kron
S
swtkiwi 已提交
1555 1556

${comment}
F
Feiyu Chan 已提交
1557 1558

    Args:
1559
        x (Variable): the fist operand of kron op, data type: float16, float32,
F
Feiyu Chan 已提交
1560
            float64, int32 or int64.
1561 1562
        y (Variable): the second operand of kron op, data type: float16,
            float32, float64, int32 or int64. Its data type should be the same
F
Feiyu Chan 已提交
1563
            with x.
1564 1565
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
F
Feiyu Chan 已提交
1566 1567 1568 1569 1570 1571 1572
            refer to :ref:`api_guide_Name`.

    Returns:
        Variable: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.

    Examples:
        .. code-block:: python
1573

F
Feiyu Chan 已提交
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
          import paddle
          from paddle import fluid
          import paddle.fluid.dygraph as dg
          import numpy as np

          a = np.arange(1, 5).reshape(2, 2).astype(np.float32)
          b = np.arange(1, 10).reshape(3, 3).astype(np.float32)

          place = fluid.CPUPlace()
          with dg.guard(place):
              a_var = dg.to_variable(a)
              b_var = dg.to_variable(b)
              c_var = paddle.kron(a_var, b_var)
              c_np = c_var.numpy()
          print(c_np)

          #[[ 1.  2.  3.  2.  4.  6.]
          # [ 4.  5.  6.  8. 10. 12.]
          # [ 7.  8.  9. 14. 16. 18.]
          # [ 3.  6.  9.  4.  8. 12.]
          # [12. 15. 18. 16. 20. 24.]
          # [21. 24. 27. 28. 32. 36.]]
    """
    if in_dygraph_mode():
        return core.ops.kron(x, y)

    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

W
WuHaobo 已提交
1604
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
1605 1606
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625


def cumsum(x, axis=None, dtype=None, name=None):
    """
    The cumulative sum of the elements along a given axis. The first element of the result is the same of the first element of the input. 

    Args:
        x (Tensor): Input of cumsum operator, the Tensor needed to be cumsumed. 
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the result of cumsum operator, output of cumsum operator. 

    Examples:
        .. code-block:: python
            
            import paddle
1626
            from paddle import to_variable
1627 1628
            import numpy as np

1629
            paddle.disable_static()
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
            data_np = np.arange(12).reshape(3, 4)
            data = to_variable(data_np)

            y = paddle.cumsum(data)
            print(y.numpy())
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            print(y.numpy())
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
            
            y = paddle.cumsum(data, axis=-1)
            print(y.numpy())
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
            # VarType.FP64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = layers.cast(x, dtype)

    if in_dygraph_mode():
        if axis is None:
            return core.ops.cumsum(x, 'flatten', flatten)
        else:
            return core.ops.cumsum(x, 'axis', axis, 'flatten', flatten)

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
1674

J
Jack Zhou 已提交
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            paddle.disable_static()
            x_np = np.array([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
            x = paddle.to_tensor(x_np)
            out = paddle.tensor.isfinite(x)
            print(out.numpy())  # [False  True  True False  True False False]
    """
    if in_dygraph_mode():
        return core.ops.isfinite_v2(x)
    helper = LayerHelper("isfinite_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite')
    out = helper.create_variable_for_type_inference('bool')
    helper.append_op(type="isfinite_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            paddle.disable_static()
            x_np = np.array([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
            x = paddle.to_tensor(x_np)
            out = paddle.tensor.isinf(x)
            print(out.numpy())  # [ True False False  True False False False]
    """
    if in_dygraph_mode():
        return core.ops.isinf_v2(x)
    helper = LayerHelper("isinf_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            paddle.disable_static()
            x_np = np.array([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
            x = paddle.to_tensor(x_np)
            out = paddle.tensor.isnan(x)
            print(out.numpy())  # [False False False False False  True  True]
    """
    if in_dygraph_mode():
        return core.ops.isnan_v2(x)
    helper = LayerHelper("isnan_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
    return out


G
guofei 已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
        x(Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis(int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`, 
            multiply all elements of `x` and return a Tensor with a single element, 
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`, 
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
        dtype(str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64, 
            int32, int64. If specified, the input tensor is casted to dtype before operator performed. 
            This is very useful for avoiding data type overflows. The default value is None, the dtype 
            of output is the same as input Tensor `x`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result 
            tensor will have one fewer dimension than the input unless keep_dim is true. Default is False.
        name(string, optional): The default value is None. Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor, result of product on the specified dim of input tensor.

    Raises:
        ValueError: The :attr:`dtype` must be float32, float64, int32 or int64.
        TypeError: The type of :attr:`axis` must be int, list or tuple.
J
Jack Zhou 已提交
1794
    
G
guofei 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()

            # the axis is a int element
            data_x = np.array([[0.2, 0.3, 0.5, 0.9],
                         [0.1, 0.2, 0.6, 0.7]]).astype(np.float32)
            x = paddle.to_tensor(data_x)
            out1 = paddle.prod(x)
            print(out1.numpy())
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            print(out2.numpy())
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            print(out3.numpy())
            # [0.02 0.06 0.3  0.63]
            print(out3.numpy().dtype)
            # float32

            out4 = paddle.prod(x, 0, keepdim=True)
            print(out4.numpy())
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            print(out5.numpy())
            # [0 0 0 0]
            print(out5.numpy().dtype)
            # int64

            # the axis is list
            data_y = np.array([[[1.0, 2.0], [3.0, 4.0]],
                               [[5.0, 6.0], [7.0, 8.0]]])
            y = paddle.to_tensor(data_y)
            out6 = paddle.prod(y, [0, 1])
            print(out6.numpy())
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            print(out7.numpy())
            # [  24. 1680.]

    """
    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod')
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
            x = layers.cast(x, dtype)

    return layers.reduce_prod(input=x, dim=axis, keep_dim=keepdim, name=name)
W
WangXi 已提交
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924


def sign(x, name=None):
    """
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): The default value is None. Normally there is no need for user to
            set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import numpy as np
          import paddle

          data = np.array([3.0, 0.0, -2.0, 1.7], dtype='float32')
          paddle.disable_static()
          x = paddle.to_tensor(data)
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
    if in_dygraph_mode():
        return core.ops.sign(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sign')
    helper = LayerHelper("sign", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out


def tanh(x, name=None):
    """
    Tanh Activation Operator.

    .. math::
        out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()

            x_data = np.array([-0.4, -0.2, 0.1, 0.3])
            x = paddle.to_tensor(x_data)
            out = paddle.tanh(x)
            print(out.numpy())
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
    if in_dygraph_mode():
        return core.ops.tanh(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanh')
    helper = LayerHelper('tanh', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
    return out