math.py 78.5 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
from __future__ import print_function
Y
Yang Zhang 已提交
18
import numpy as np
19

20
from paddle.common_ops_import import *
21 22
from paddle.tensor import cast
import paddle
23
from ..fluid import layers
24
from ..fluid.framework import core, _varbase_creator, in_dygraph_mode, Variable, convert_np_dtype_to_dtype_
L
Li Fuchen 已提交
25 26
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
27
from ..fluid.layers.layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn
28 29 30

# TODO: define math functions
# yapf: disable
31 32 33 34 35
from ..fluid.layers import abs    #DEFINE_ALIAS
from ..fluid.layers import acos    #DEFINE_ALIAS
from ..fluid.layers import asin    #DEFINE_ALIAS
from ..fluid.layers import ceil    #DEFINE_ALIAS
from ..fluid.layers import cos    #DEFINE_ALIAS
36 37
from ..fluid.layers import sinh    #DEFINE_ALIAS
from ..fluid.layers import cosh    #DEFINE_ALIAS
38 39 40 41 42 43 44
# from ..fluid.layers import elementwise_add    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_div    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_floordiv    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_mod    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_mul    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_pow    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_sub    #DEFINE_ALIAS
45 46 47 48
from ..fluid.layers import exp    #DEFINE_ALIAS
from ..fluid.layers import floor    #DEFINE_ALIAS
from ..fluid.layers import log    #DEFINE_ALIAS
from ..fluid.layers import reciprocal    #DEFINE_ALIAS
49 50
from ..fluid.layers import reduce_all    #DEFINE_ALIAS
from ..fluid.layers import reduce_any    #DEFINE_ALIAS
51 52 53 54
# from ..fluid.layers import reduce_max    #DEFINE_ALIAS
# from ..fluid.layers import reduce_min    #DEFINE_ALIAS
# from ..fluid.layers import reduce_prod    #DEFINE_ALIAS
# from ..fluid.layers import reduce_sum    #DEFINE_ALIAS
55 56 57 58 59 60 61
from ..fluid.layers import round    #DEFINE_ALIAS
from ..fluid.layers import rsqrt    #DEFINE_ALIAS
from ..fluid.layers import scale    #DEFINE_ALIAS
from ..fluid.layers import square    #DEFINE_ALIAS
from ..fluid.layers import stanh    #DEFINE_ALIAS
from ..fluid.layers import atan    #DEFINE_ALIAS
from ..fluid.layers import erf    #DEFINE_ALIAS
62 63
from ..fluid.layers import sqrt    #DEFINE_ALIAS
from ..fluid.layers import sin    #DEFINE_ALIAS
64

65
from ..fluid.layers import multiplex    #DEFINE_ALIAS
G
guofei 已提交
66
from ..fluid import layers
67

68

69
__all__ = [
70 71 72 73 74 75
        'abs',
        'acos',
        'asin',
        'atan',
        'ceil',
        'cos',
76
        'cosh',
77 78 79
        'cumsum',
        'exp',
        'floor',
80
        'increment',
81
        'log',
J
joejiong 已提交
82
        'log2',
J
joejiong 已提交
83
        'log10',
84
        'logsumexp',
85
        'mul',
86
        'multiplex',
87
        'pow',
88
        'prod',
89 90 91 92 93 94
        'reciprocal',
        'round',
        'rsqrt',
        'scale',
        'sign',
        'sin',
95
        'sinh',
96 97 98 99 100
        'sqrt',
        'square',
        'stanh',
        'sum',
        'tanh',
S
Steffy-zxf 已提交
101
        'add_n',
102
        'max',
103
        'maximum',
104
        'min',
105
        'minimum',
106
        'mm',
107 108 109 110 111
        'divide',
        'floor_divide',
        'remainder',
        'mod',
        'floor_mod',
112
        'multiply',
113 114 115
        'add',
        'atan',
        'logsumexp',
116
        'inverse',
117 118 119 120
        'log1p',
        'erf',
        'addcmul',
        'addmm',
Y
Yang Zhang 已提交
121
        'clip',
L
Li Fuchen 已提交
122
        'trace',
J
Jack Zhou 已提交
123 124 125
        'kron',
        'isfinite',
        'isinf',
L
Leo Chen 已提交
126 127
        'isnan',
        'broadcast_shape'
128 129 130
]
# yapf: enable.

131 132 133 134 135 136 137 138 139 140 141 142 143
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

144
def pow(x, y, name=None):
145
    """
146
    Compute the power of tensor elements. The equation is:
S
swtkiwi 已提交
147

148 149
    .. math::
        out = x^{y} 
150

151 152
    **Note**:
    ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
153 154


155 156 157 158 159
    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        y (Tensor): An N-D Tensor with type float32, float64, int32 or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
160
    Returns:
161
        N-D Tensor. A location into which the result is stored. Its dimension equals with $x$.
162 163 164

    Examples:

165
        ..  code-block:: python
166 167 168

            import paddle

169 170 171
            paddle.disable_static()
            
            # example 1: y is a float
172
            x = paddle.to_tensor([1, 2, 3])
173 174
            y = 2
            res = paddle.pow(x, y)
J
joejiong 已提交
175
            print(res) # [1 4 9]
176 177
            
            # example 2: y is a Tensor
178
            y = paddle.full(shape=[1], fill_value=2, dtype='float32')
179
            res = paddle.pow(x, y)
J
joejiong 已提交
180
            print(res) # [1 4 9]
181 182

    """
183
    # in dynamic graph mode
W
WuHaobo 已提交
184
    if in_dygraph_mode():
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
        if isinstance(y, (int, float)):
            return core.ops.pow(x, 'factor', y)
        elif isinstance(y, (paddle.Tensor, Variable)):
            if x.dtype != y.dtype:
                y = cast(y, dtype='float64')
                x = cast(x, dtype='float64')
            return _elementwise_op_in_dygraph(
                x, y, axis=-1, act=None, op_name='elementwise_pow')
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype))
    # in static graph mode
    else:
        if isinstance(y, (int, float)):
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
            if x.dtype != y.dtype:
                y = cast(y, dtype='float64')
                x = cast(x, dtype='float64')
J
joejiong 已提交
211
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
212 213 214
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (type(y)))
215 216 217



218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
    op = getattr(core.ops, op_name)
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)

    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)


def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

238 239
    out = helper.kwargs.get('out', None)

240 241 242 243 244 245 246 247 248 249 250 251
    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
252 253 254 255 256 257

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(name=name, dtype=x.dtype, persistable=False)
258 259 260 261 262 263 264 265 266 267 268

    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


Y
Yang Zhang 已提交
269
def add(x, y, name=None):
270
    """
271
    Examples:
272 273 274 275

    ..  code-block:: python

        import paddle
276 277
        x = paddle.to_tensor([2, 3, 4], 'float64')
        y = paddle.to_tensor([1, 5, 2], 'float64')
W
WuHaobo 已提交
278
        z = paddle.add(x, y)
279
        print(z)  # [3., 8., 6. ]
280 281 282 283 284 285

    """
    op_type = 'elementwise_add'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
Y
Yang Zhang 已提交
286
            x, y, axis=axis, op_name=op_type)
287 288 289 290

    return _elementwise_op(LayerHelper(op_type, **locals()))


291
def divide(x, y, name=None):
292
    """
293
    Divide two tensors element-wise. The equation is:
294

295 296
    .. math::
        out = x / y
297

298 299
    **Note**:
    ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
300

301 302 303 304
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
305

306 307
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
308

309
    Examples:
310

311
        ..  code-block:: python
312

313
            import paddle
314

315
            paddle.disable_static()
316

317 318
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
319 320
            z = paddle.divide(x, y)
            print(z.numpy())  # [2., 0.6, 2.]
321

322 323 324 325 326 327 328
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
329

330
    return _elementwise_op(LayerHelper(op_type, **locals()))
331 332


333 334 335
def floor_divide(x, y, name=None):
    """
    Floor divide two tensors element-wise. The equation is:
336

337 338
    .. math::
        out = x // y
339

340 341
    **Note**:
    ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
342

343 344 345 346
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
347

348 349
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
350

351
    Examples:
352

353
        ..  code-block:: python
354

355
            import paddle
356

357
            paddle.disable_static()
358

359 360
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
361 362
            z = paddle.floor_divide(x, y)
            print(z.numpy())  # [2, 0, 2, 2]
363

364 365 366 367 368 369
    """
    op_type = 'elementwise_floordiv'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
370

371
    return _elementwise_op(LayerHelper(op_type, **locals()))
372 373


374
def remainder(x, y, name=None):
375
    r"""
376 377 378 379 380 381
    Mod two tensors element-wise. The equation is:

    .. math::
        out = x \% y

    **Note**:
W
WangXi 已提交
382
    ``paddle.mod`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
383 384

    Args:
W
WangXi 已提交
385 386
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
387 388 389 390 391 392 393 394 395 396 397
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.

    Examples:

        ..  code-block:: python

            import paddle

398 399
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
W
WangXi 已提交
400 401
            z = paddle.mod(x, y)
            print(z)  # [0, 3, 2, 1]
402 403 404

    """
    op_type = 'elementwise_mod'
405 406 407
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
408
            x, y, axis=axis, op_name=op_type)
409 410 411 412

    return _elementwise_op(LayerHelper(op_type, **locals()))


413 414 415 416
mod = remainder  #DEFINE_ALIAS
floor_mod = remainder  #DEFINE_ALIAS


417
def multiply(x, y, name=None):
418
    """
419
    multiply two tensors element-wise. The equation is:
420

421 422
    .. math::
        out = x * y
423

424 425
    **Note**:
    ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
426

427 428 429 430
    Args:
        x (Tensor): the input tensor, its data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, its data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
431

432 433
    Returns:
        N-D Tensor. A location into which the result is stored. Its dimension equals with $x$.
434

435 436 437 438 439 440
    Examples:

        ..  code-block:: python

            import paddle

441 442
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
443
            res = paddle.multiply(x, y)
444
            print(res) # [[5, 12], [21, 32]]
445

446
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
447 448 449
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
450 451 452 453

    """
    op_type = 'elementwise_mul'
    act = None
454
    axis = -1
455

456 457 458 459 460
    if x.dtype != y.dtype:
        raise TypeError(
            'Input tensors must be same type, but received type of x: %s, type of y: %s '
            % (x.dtype, y.dtype))

461
    if in_dygraph_mode():
462
        if not isinstance(x, (paddle.Tensor)):
463 464 465 466
            raise TypeError(
                    'Input x must tensor type, but received type of x: %s'
                    % (x.dtype))

467 468 469 470
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

471 472 473 474 475 476 477 478 479 480 481
def maximum(x, y, axis=-1, name=None):
    """
Examples:

    .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()
  
482 483
        x = paddle.to_tensor([[1, 2], [3, 4]])
        y = paddle.to_tensor([[5, 6], [7, 8]])
484 485 486 487 488
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[[5. 6.]
        # [7. 8.]]

489 490
        x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
        y = paddle.to_tensor([1, 2])
491 492 493 494 495
        res = paddle.maximum(x, y, axis=1)
        print(res.numpy())
        #[[[1. 2. 3.]
        #  [2. 2. 3.]]]

496 497
        x = paddle.to_tensor([2, 3, 5], dtype='float32')
        y = paddle.to_tensor([1, 4, np.nan], dtype='float32')
498 499 500 501
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[ 2.  4. nan]

502 503
        x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
        y = paddle.to_tensor([1, 4, 5], dtype='float32')
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[ 5.  4. inf]
    """
    op_type = 'elementwise_max'
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

def minimum(x, y, axis=-1, name=None):
    """
Examples:

    .. code-block:: python

        import paddle
        import numpy as np
523

524 525
        paddle.disable_static()
  
526 527
        x = paddle.to_tensor([[1, 2], [3, 4]], dtype='float32')
        y = paddle.to_tensor([[5, 6], [7, 8]], dtype='float32')
528 529 530 531 532
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[[1. 2.]
        # [3. 4.]]

533 534
        x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]], dtype='float32')
        y = paddle.to_tensor([1, 2], dtype='float32')
535 536 537 538 539
        res = paddle.minimum(x, y, axis=1)
        print(res.numpy())
        #[[[1. 1. 1.]
        #  [2. 2. 2.]]]

540 541
        x = paddle.to_tensor([2, 3, 5], dtype='float32')
        y = paddle.to_tensor([1, 4, np.nan], dtype='float32')
542 543 544 545
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[ 1.  3. nan]

546 547
        x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
        y = paddle.to_tensor([1, 4, 5], dtype='float32')
548 549 550 551 552 553 554 555 556 557
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[1. 3. 5.]
    """
    op_type = 'elementwise_min'
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))
558

559 560
for func in [
        add,
561 562 563
        maximum,
        minimum,
        multiply
564
]:
565
    proto_dict = {'add': 'elementwise_add', 'div': 'elementwise_div', 'maximum': 'elementwise_max', 'minimum': 'elementwise_min', 'multiply': 'elementwise_mul'}
566 567
    op_proto = OpProtoHolder.instance().get_op_proto(proto_dict[func.__name__])

Y
Yang Zhang 已提交
568 569 570 571 572 573 574
    additional_args_lines = [
        "name (string, optional): Name of the output. \
        Default is None. It's used to print debug info for developers. Details: \
        :ref:`api_guide_Name` "
    ]

    func.__doc__ = _generate_doc_string_(
575 576
        op_proto,
        additional_args_lines=additional_args_lines,
577
        skip_attrs_set={"x_data_format", "y_data_format", "axis",
578
            "use_quantizer", "mkldnn_data_type", "Scale_x", "Scale_y", "Scale_out"
579
        }) + """\n""" + str(func.__doc__)
580

Y
Yang Zhang 已提交
581

582
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
583 584 585 586
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
587 588 589
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
590
            Tensor variable with a single element, otherwise must be in the
591 592 593 594 595 596 597
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
598
            value is False.
599
        name (str, optional): The default value is None. Normally there is no need for
600 601 602
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
603 604
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
        it's data type is the same as `x`.
605 606

    Raises:
607 608
        ValueError: If the data type of `x` is float64, :attr:`dtype` can not be float32 or int32.
        ValueError: If the data type of `x` is int64, :attr:`dtype` can not be int32.
609
        TypeError: The type of :attr:`axis` must be int, list or tuple.
610

611 612 613 614
    Examples:
        .. code-block:: python

            import paddle
615

616
            # x is a Tensor with following elements:
617 618 619
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
620 621
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
622
            out1 = paddle.sum(x)  # [3.5]
623 624 625
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
626

627
            # y is a Tensor with shape [2, 2, 2] and elements as below:
628 629 630
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
631 632
            y = paddle.to_tensor([[[1, 2], [3, 4]], 
                                  [[5, 6], [7, 8]]])
633 634
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
635
    """
636 637 638 639 640 641 642 643 644 645 646
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

647
    attrs = {
648 649 650
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
651 652 653 654
    }
    dtype_flag = False
    if dtype is not None:
        if dtype in ['float64', 'int64']:
655 656
            if (convert_dtype(x.dtype) == "float32" and dtype == "float64") or \
               (convert_dtype(x.dtype) == "int32" and dtype == "int64"):
657
                attrs.update({
658
                    'in_dtype': x.dtype,
659 660 661 662 663
                    'out_dtype': convert_np_dtype_to_dtype_(dtype)
                })
                dtype_flag = True

    if in_dygraph_mode():
664
        axis = axis if axis != None and axis != [] else [0]
665
        if dtype_flag:
666 667 668
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag, 'in_dtype',
                                       x.dtype, 'out_dtype',
669 670
                                       convert_np_dtype_to_dtype_(dtype))
        else:
671 672
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
673
    check_variable_and_dtype(
674
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'sum')
675 676 677 678 679 680 681 682 683 684 685

    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'sum')
        x_dtype = convert_dtype(x.dtype)

        if (x_dtype == "float64" and dtype in ["float32", "int32"]) or \
                (x_dtype == "int64" and dtype == "int32"):
            raise ValueError("The input(x)'s dtype is {} but the attr(dtype) of sum is {}, "
                             "which may cause data type overflows. Please reset attr(dtype) of sum."
                             .format(x_dtype, dtype))

686 687
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'sum')

688 689 690 691 692
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_(dtype))
    else:
693
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
694 695
    helper.append_op(
        type='reduce_sum',
696
        inputs={'X': x},
697 698 699
        outputs={'Out': out},
        attrs=attrs)
    return out
700

701

702
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
703
def add_n(inputs, name=None):
704
    """
S
Steffy-zxf 已提交
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
    This OP is used to sum one or more Tensor of the input.
    
    For example:

    .. code-block:: text
    
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
       
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
740 741

    Args:
S
Steffy-zxf 已提交
742 743
        inputs (Tensor|list(Tensor)):  A Tensor list. The shape and data type of the list elements should be consistent.
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
744 745 746 747
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
S
Steffy-zxf 已提交
748
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
749 750 751 752 753 754

    Examples:
        .. code-block:: python

            import paddle

S
Steffy-zxf 已提交
755 756 757 758 759
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
            # [[8., 10., 12.], 
            #  [14., 16., 18.]]
760
    """
S
Steffy-zxf 已提交
761 762 763 764
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
        return core.ops.sum(inputs, 'use_mkldnn', False)
765

S
Steffy-zxf 已提交
766 767
    helper = LayerHelper('add_n', **locals())
    check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
768 769 770 771
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
S
Steffy-zxf 已提交
772
                   ['float32', 'float64', 'int32', 'int64'], 'add_n')
773 774
    else:
        check_variable_and_dtype(inputs, "inputs", \
S
Steffy-zxf 已提交
775
                ['float32', 'float64', 'int32', 'int64'], 'add_n')
776 777


778 779 780 781 782 783 784 785 786 787 788
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})

    return out


W
WuHaobo 已提交
789
def mm(input, mat2, name=None):
790
    """
791 792
	:alias_main: paddle.mm
	:alias: paddle.mm,paddle.tensor.mm,paddle.tensor.math.mm
S
swtkiwi 已提交
793

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        mat2 (Variable): The input variable which is a Tensor or LoDTensor.
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Variable: The product Tensor (or LoDTensor) variable.

    Examples:
        .. code-block:: python

            # Examples to clarify shapes of the inputs and output
            # x: [B, ..., M, K], mat2: [B, ..., K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, ..., M, N]

            # x: [B, M, K], mat2: [B, K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, M, N]

            # x: [B, M, K], mat2: [K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, M, N]

            # x: [M, K], mat2: [K, N]
            # fluid.layers.matmul(x, mat2)  # out: [M, N]

            # x: [B, M, K], mat2: [K]
            # fluid.layers.matmul(x, mat2)  # out: [B, M]

            # x: [K], mat2: [K]
            # fluid.layers.matmul(x, mat2)  # out: [1]

            import paddle
            import paddle.fluid as fluid
            x = fluid.data(name='x', shape=[2, 3], dtype='float32')
            mat2 = fluid.data(name='mat2', shape=[3, 2], dtype='float32')
            out = paddle.mm(x, mat2) # out shape is [2, 2]
    """
    if in_dygraph_mode():
W
WuHaobo 已提交
842
        out = _varbase_creator(dtype=input.dtype)
843 844
        core.ops.matmul(input, mat2, out)
        return out
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
882
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
883 884 885 886
    helper.append_op(
        type='matmul', inputs={'X': input,
                               'Y': mat2}, outputs={'Out': out})
    return out
887

888

Y
yaoxuefeng 已提交
889
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
890
    """
891 892
	:alias_main: paddle.addmm
	:alias: paddle.addmm,paddle.tensor.addmm,paddle.tensor.math.addmm
S
swtkiwi 已提交
893

894 895 896 897 898 899 900 901 902 903 904 905
    **addmm**

    This operator is used to perform matrix multiplication for input $x$ and $y$.
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
906 907 908
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
909
        beta (float): Coefficient of $input$.
Y
yaoxuefeng 已提交
910
        alpha (float): Coefficient of $x*y$.
911 912 913
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.

    Returns:
Y
yaoxuefeng 已提交
914
        Tensor: The output Tensor of addmm op.
915 916 917

    Examples:
        ..  code-block:: python
Y
yaoxuefeng 已提交
918
            
919 920
            import paddle

Y
yaoxuefeng 已提交
921 922 923
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
924

Y
yaoxuefeng 已提交
925
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
926 927

            print( out.numpy() )
928 929 930
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
    if not len(input_shape) == len(x_shape) == len(y_shape) == 2:
        raise ValueError("The dimention of input, x, y should be 2 but receive input's shape: {}, x's shape: {}, y's shape: {}".format(input_shape, x_shape, y_shape))
    if input_shape[0] != x_shape[0]:
        if input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
        if input_shape[1] != y_shape[1] and input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
    if input_shape[1] != y_shape[1]:
        if input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
        if input_shape[0] != x_shape[0] and input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
    if x_shape[1] != y_shape[0]:
        raise ValueError("The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(x_shape, y_shape))



951 952 953 954
    if in_dygraph_mode():
        out = core.ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
        return out

955 956 957 958
    inputs = {'Input': input, "X": x, "Y": y}
    attrs = {'Alpha': alpha, 'Beta': beta}

    helper = LayerHelper("addmm", **locals())
Y
yaoxuefeng 已提交
959
    check_variable_and_dtype(input, 'Input', ['float32', 'float64'], 'addmm')
960 961 962 963 964 965 966
    check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
    check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out})
    return out
967 968


969
def logsumexp(x, axis=None, keepdim=False, name=None):
970
    r"""
971
    This OP calculates the log of the sum of exponentials of ``x`` along ``axis`` .
972

973
    .. math::
974
       logsumexp(x) = \\log\\sum exp(x)
975

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
994

995
    Returns:
996 997
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
998

999
    Examples:
1000

1001
    .. code-block:: python
1002

1003 1004
        import paddle

1005
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
1006 1007
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
1008 1009

    """
1010 1011 1012 1013 1014 1015 1016
    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]
1017

1018
    if in_dygraph_mode():
1019
        return core.ops.logsumexp(x, 'axis', axis, 'keepdim', keepdim, 'reduce_all', reduce_all)
1020

1021 1022 1023
    check_variable_and_dtype(x, 'x',
                             ['float32', 'float64'],
                             'logsumexp')
1024

1025
    helper = LayerHelper('logsumexp', **locals())
1026
    attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all':reduce_all}
1027 1028 1029 1030
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs)
    return out
1031

S
swtkiwi 已提交
1032

1033 1034
def inverse(x, name=None):
    """
1035 1036 1037 1038 1039
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
1040
        x (Variable): The input tensor. The last two
1041 1042 1043 1044 1045 1046 1047 1048
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information,
            please refer to :ref:`api_guide_Name`

    Returns:
1049 1050
        Variable: A Tensor holds the inverse of x. The shape and data type
                        is the same as x.
1051 1052 1053 1054 1055

    Examples:
        .. code-block:: python

            import paddle
1056
            paddle.disable_static()
1057 1058

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
1059 1060
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
1061 1062 1063

    """
    if in_dygraph_mode():
1064
        return core.ops.inverse(x)
1065

1066 1067
    def _check_input(x):
        check_variable_and_dtype(x, 'x',
1068
                                 ['float32', 'float64'], 'inverse')
1069
        if len(x.shape) < 2:
1070 1071 1072
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
1073 1074
                "x's shape: %s." % (len(x.shape), x.shape))
    _check_input(x)
1075
    helper = LayerHelper('inverse', **locals())
1076
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1077
    helper.append_op(
1078
        type='inverse', inputs={'Input': [x] }, outputs={'Output': [out]})
1079 1080 1081
    return out


1082
def max(x, axis=None, keepdim=False, name=None):
1083
    """
S
swtkiwi 已提交
1084

1085
    Computes the maximum of tensor elements over the given axis.
1086 1087

    Args:
1088
        x(Tensor): A tensor, the data type is float32,
1089
            float64, int32, int64.
1090
        axis(list|int, optional): The axis along which the maximum is computed.
1091
            If :attr:`None`, compute the maximum over all elements of
李灿 已提交
1092
            `x` and return a Tensor variable with a single element,
1093 1094 1095
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1096
            output Tensor. The result tensor will have one fewer dimension
1097
            than the `x` unless :attr:`keepdim` is true, default
1098
            value is False.
1099
        name(str, optional): The default value is None.  Normally there is no need for
1100 1101 1102
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
1103
        Tensor, results of maximum on the specified axis of input tensor,
1104
        it's data type is the same as `x`.
1105 1106 1107

    Examples:
        .. code-block:: python
1108

1109
            import paddle
1110

1111 1112 1113 1114
            paddle.disable_static()

            # data_x is a variable with shape [2, 4]
            # the axis is a int element
1115 1116 1117

            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
            result1 = paddle.max(x)
            print(result1.numpy())
            #[0.9]
            result2 = paddle.max(x, axis=0)
            print(result2.numpy()) 
            #[0.2 0.3 0.6 0.9]
            result3 = paddle.max(x, axis=-1)
            print(result3.numpy())
            #[0.9 0.7]
            result4 = paddle.max(x, axis=1, keepdim=True)
            print(result4.numpy())
            #[[0.9]
            # [0.7]]

            # data_y is a variable with shape [2, 2, 2]
            # the axis is list 
1134 1135 1136

            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1137 1138 1139 1140 1141 1142
            result5 = paddle.max(y, axis=[1, 2])
            print(result5.numpy())
            #[4. 8.]
            result6 = paddle.max(y, axis=[0, 1])
            print(result6.numpy())
            #[7. 8.]
1143 1144
    """

1145
    if axis is not None and not isinstance(axis, list):
1146 1147 1148 1149 1150 1151 1152 1153
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))

1154 1155 1156 1157 1158
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    if in_dygraph_mode():
        return core.ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
                                   'reduce_all', reduce_all)
1159

1160
    helper = LayerHelper('max', **locals())
1161
    check_variable_and_dtype(
1162
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max')
1163

1164
    out = helper.create_variable_for_type_inference(
1165
            dtype=x.dtype)
1166 1167
    helper.append_op(
        type='reduce_max',
1168
        inputs={'X': x},
1169 1170
        outputs={'Out': out},
        attrs={
1171 1172
            'dim': axis,
            'keep_dim': keepdim,
1173 1174 1175 1176
            'reduce_all': reduce_all
        })
    return out

1177
def min(x, axis=None, keepdim=False, name=None):
1178
    """
S
swtkiwi 已提交
1179

1180
    Computes the minimum of tensor elements over the given axis
1181

1182
    Args:
1183 1184
        x(Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis(list|int, optional): The axis along which the minimum is computed.
1185
            If :attr:`None`, compute the minimum over all elements of
1186
            `x` and return a Tensor variable with a single element,
1187 1188 1189
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1190
            output Tensor. The result tensor will have one fewer dimension
1191
            than the `x` unless :attr:`keepdim` is true, default
1192
            value is False.
W
WuHaobo 已提交
1193
        name(str, optional): The default value is None.  Normally there is no need for 
1194
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1195

1196
    Returns:
1197
        Tensor, results of minimum on the specified axis of input tensor,
1198
        it's data type is the same as input's Tensor.
1199

1200 1201 1202
    Examples:
        .. code-block:: python

1203
            import paddle
1204

1205
            paddle.disable_static()
1206

1207
            # x is a tensor with shape [2, 4]
1208
            # the axis is a int element
1209 1210
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
            result1 = paddle.min(x)
            print(result1.numpy())
            #[0.1]
            result2 = paddle.min(x, axis=0)
            print(result2.numpy())
            #[0.1 0.2 0.5 0.7]
            result3 = paddle.min(x, axis=-1)
            print(result3.numpy()) 
            #[0.2 0.1]
            result4 = paddle.min(x, axis=1, keepdim=True)
            print(result4.numpy())
            #[[0.2]
            # [0.1]]

1225
            # y is a variable with shape [2, 2, 2]
1226
            # the axis is list 
1227 1228
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1229 1230 1231 1232 1233 1234 1235
            result5 = paddle.min(y, axis=[1, 2])
            print(result5.numpy()) 
            #[1. 5.]
            result6 = paddle.min(y, axis=[0, 1])
            print(result6.numpy())
            #[1. 2.]
    """
1236

1237
    if axis is not None and not isinstance(axis, list):
1238 1239 1240 1241 1242 1243 1244
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))
1245 1246
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
1247
    if in_dygraph_mode():
1248
        return core.ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
1249
                                   'reduce_all', reduce_all)
1250 1251 1252 1253 1254 1255

    helper = LayerHelper('min', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min')

    out = helper.create_variable_for_type_inference(
1256
            dtype=x.dtype)
1257 1258
    helper.append_op(
        type='reduce_min',
1259
        inputs={'X': x},
1260 1261
        outputs={'Out': out},
        attrs={
1262 1263
            'dim': axis,
            'keep_dim': keepdim,
1264 1265 1266 1267 1268
            'reduce_all': reduce_all
        })
    return out


W
WuHaobo 已提交
1269
def log1p(x, name=None):
1270
    r"""
1271 1272 1273
    Calculates the natural log of the given input tensor, element-wise.
    .. math::
        Out = \\ln(x+1)
S
Steffy-zxf 已提交
1274

1275
    Args:
S
Steffy-zxf 已提交
1276
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
1277 1278 1279
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
S
Steffy-zxf 已提交
1280
        Tensor, the natural log of the input Tensor computed element-wise.
1281

1282 1283
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
1284

1285
            import paddle
S
Steffy-zxf 已提交
1286 1287 1288 1289

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
1290 1291 1292 1293 1294 1295 1296 1297 1298
    """

    if in_dygraph_mode():
        return core.ops.log1p(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
1299
    out = helper.create_variable_for_type_inference(dtype)
1300 1301
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
1302

J
joejiong 已提交
1303
def log2(x, name=None):
1304
    r"""
J
joejiong 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

        Out = \\log_2x

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
    if in_dygraph_mode():
        return core.ops.log2(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log2")
    inputs = {'X': [x]}
    helper = LayerHelper('log2', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
    return out
W
WuHaobo 已提交
1351

J
joejiong 已提交
1352 1353

def log10(x, name=None):
1354
    r"""
J
joejiong 已提交
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

        Out = \\log_10_x

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
    if in_dygraph_mode():
        return core.ops.log10(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log10")
    inputs = {'X': [x]}
    helper = LayerHelper('log10', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
    return out


W
WuHaobo 已提交
1403
def addcmul(input, tensor1, tensor2, value=1.0, name=None):
B
Bai Yifan 已提交
1404
    """
S
swtkiwi 已提交
1405

B
Bai Yifan 已提交
1406 1407 1408 1409 1410
    Calculate the element-wise multiplication of tensor1 and tensor2,
    then multiply the result by value, and add it to input. The shape of input,
    tensor1, tensor2 should be broadcastable.
    The equation is:
    ..  math::
1411

B
Bai Yifan 已提交
1412 1413
        out = input + value * tensor1 * tensor2
    Args:
1414 1415 1416
        input(Tensor): The input to be added. A Tensor with type float32, float64, int32, int64.
        tensor1(Tensor): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
        tensor2(Tensor): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
B
Bai Yifan 已提交
1417 1418 1419 1420
        value(int|float): The multiplier for tensor1*tensor2. For float32 and float64 type input, value must be float, otherwise an integer.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
    Returns:
1421
        out(Tensor): The output result. A Tensor with the same data type as input's.
B
Bai Yifan 已提交
1422 1423
    Examples:
        .. code-block:: python
1424
          
B
Bai Yifan 已提交
1425
          import paddle
1426 1427 1428
          input = paddle.ones([2,2])
          tensor1 = paddle.ones([2,2])
          tensor2 = paddle.ones([2,2])
1429
          out = paddle.tensor.math.addcmul(input, tensor1, tensor2, value=0.5)
1430 1431 1432
          print(out.numpy())
          # [[1.5 1.5]
          # [1.5 1.5]]
B
Bai Yifan 已提交
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
    """

    check_variable_and_dtype(input, 'input', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    check_variable_and_dtype(tensor1, 'tensor1', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    check_variable_and_dtype(tensor2, 'tensor2', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    if convert_dtype(input.dtype) in ['float32', 'float64']:
        check_type(value, 'value', float, 'addcmul')
    if convert_dtype(input.dtype) in ['int32', 'int64']:
        check_type(value, 'value', int, 'addcmul')

W
WuHaobo 已提交
1443
    out = layers.elementwise_add(input, layers.elementwise_mul(tensor1, tensor2) * value)
B
Bai Yifan 已提交
1444
    return out
1445 1446


Y
Yang Zhang 已提交
1447
def clip(x, min=None, max=None, name=None):
1448
    """
Y
Yang Zhang 已提交
1449
    **clip layer**
1450

Y
Yang Zhang 已提交
1451
    This operator clip all elements in input into the range [ min, max ] and return
1452 1453 1454 1455
    a resulting tensor as the following equation:

    .. math::

1456
        Out = MIN(MAX(x, min), max)
1457 1458

    Args:
Y
Yang Zhang 已提交
1459 1460
        x (Tensor): An N-D Tensor with data type float32 or float64.
        min (float32|Tensor): The lower bound with type ``float32`` or a ``Tensor``
1461
            with shape [1] and type ``int32``, ``float32``, ``float64``.
Y
Yang Zhang 已提交
1462
        max (float32|Tensor): The upper bound with type ``float32`` or a ``Tensor``
1463 1464 1465 1466 1467 1468
            with shape [1] and type ``int32``, ``float32``, ``float64``.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
Y
Yang Zhang 已提交
1469
        Tensor: A Tensor with the same data type and data shape as input.
1470 1471 1472 1473 1474

    Examples:
        .. code-block:: python

            import paddle
1475
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
1476 1477
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
1478
            print(out1)
Y
Yang Zhang 已提交
1479 1480
            # [[3.5, 3.5]
            # [4.5, 5.0]]
1481
            print(out2)
Y
Yang Zhang 已提交
1482 1483
            # [[2.5, 3.5]
            # [[4.5, 6.4]
1484 1485
    """

Y
Yang Zhang 已提交
1486 1487
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
1488

W
WuHaobo 已提交
1489
    if in_dygraph_mode():
1490 1491 1492 1493
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
Y
Yang Zhang 已提交
1494 1495
        min = fmin if min is None else min
        max = fmax if max is None else max
Y
Yang Zhang 已提交
1496
        return core.ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
1497

1498
    if min is not None:
Y
Yang Zhang 已提交
1499
        check_type(min, 'min', (float, int, Variable), 'clip')
1500 1501
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1502
                        'clip', '(When the type of min in clip is Variable.)')
1503
    if max is not None:
Y
Yang Zhang 已提交
1504
        check_type(max, 'max', (float, int, Variable), 'clip')
1505 1506
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1507
                        'clip', '(When the type of max in clip is Variable.)')
1508

Y
Yang Zhang 已提交
1509
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'clip')
Y
Yang Zhang 已提交
1510 1511

    inputs = {'X': x}
Y
Yang Zhang 已提交
1512
    attrs = {'min': fmin, 'max': fmax}
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
1526
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
1527
    output = helper.create_variable_for_type_inference(
Y
Yang Zhang 已提交
1528
        dtype=helper.input_dtype('x'))
1529 1530 1531 1532
    helper.append_op(
        type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs)

    return output
F
Feiyu Chan 已提交
1533

W
WuHaobo 已提交
1534

1535
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
1536
    """
1537
    **trace**
S
swtkiwi 已提交
1538

1539
    This OP computes the sum along diagonals of the input tensor x.
1540 1541

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
1542

1543
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
1544
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
1545
    of the input tensor x.
L
Li Fuchen 已提交
1546

1547
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
1548 1549 1550 1551

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
1552
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
1553

L
Li Fuchen 已提交
1554
    Args:
1555
        x(Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
1556 1557 1558
        offset(int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1(int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2(int, optional): The second axis with respect to take diagonal. Default: 1.
L
Li Fuchen 已提交
1559 1560 1561
        name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
1562
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
1563 1564 1565 1566 1567

    Examples:
        .. code-block:: python

            import paddle
1568

1569 1570 1571
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
1572 1573 1574
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
1575
    """
1576 1577
    inputs = {'Input': [x]}
    attrs = {'offset': offset, 'axis1': axis1, 'axis2': axis2}
L
Li Fuchen 已提交
1578 1579

    def __check_input(input, offset, dim1, dim2):
1580
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
1581 1582 1583
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

1584
        input_shape = list(x.shape)
L
Li Fuchen 已提交
1585
        assert len(input_shape) >= 2,                     \
1586 1587
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
1588 1589
                len(input_shape)

1590 1591
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
1592

1593 1594 1595
        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
1596

1597 1598 1599
        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
1600 1601


1602 1603 1604
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
1605

1606 1607 1608
    if in_dygraph_mode():
        return core.ops.trace(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)

L
Li Fuchen 已提交
1609
    if not in_dygraph_mode():
1610
        __check_input(input, offset, axis1, axis2)
L
Li Fuchen 已提交
1611 1612
    helper = LayerHelper('trace', **locals())

1613
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
1614 1615 1616

    helper.append_op(
        type='trace',
1617
        inputs={'Input': [x]},
L
Li Fuchen 已提交
1618
        attrs={'offset': offset,
1619 1620
               'axis1': axis1,
               'axis2': axis2},
L
Li Fuchen 已提交
1621 1622 1623
        outputs={'Out': [out]})
    return out

F
Feiyu Chan 已提交
1624
@templatedoc(op_type="kron")
W
WuHaobo 已提交
1625
def kron(x, y, name=None):
S
swtkiwi 已提交
1626
    """
1627 1628
	:alias_main: paddle.kron
	:alias: paddle.kron,paddle.tensor.kron,paddle.tensor.math.kron
S
swtkiwi 已提交
1629 1630

${comment}
F
Feiyu Chan 已提交
1631 1632

    Args:
1633
        x (Variable): the fist operand of kron op, data type: float16, float32,
F
Feiyu Chan 已提交
1634
            float64, int32 or int64.
1635 1636
        y (Variable): the second operand of kron op, data type: float16,
            float32, float64, int32 or int64. Its data type should be the same
F
Feiyu Chan 已提交
1637
            with x.
1638 1639
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
F
Feiyu Chan 已提交
1640 1641 1642 1643 1644 1645 1646
            refer to :ref:`api_guide_Name`.

    Returns:
        Variable: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.

    Examples:
        .. code-block:: python
1647

F
Feiyu Chan 已提交
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
          import paddle
          from paddle import fluid
          import paddle.fluid.dygraph as dg
          import numpy as np

          a = np.arange(1, 5).reshape(2, 2).astype(np.float32)
          b = np.arange(1, 10).reshape(3, 3).astype(np.float32)

          place = fluid.CPUPlace()
          with dg.guard(place):
              a_var = dg.to_variable(a)
              b_var = dg.to_variable(b)
              c_var = paddle.kron(a_var, b_var)
              c_np = c_var.numpy()
          print(c_np)

          #[[ 1.  2.  3.  2.  4.  6.]
          # [ 4.  5.  6.  8. 10. 12.]
          # [ 7.  8.  9. 14. 16. 18.]
          # [ 3.  6.  9.  4.  8. 12.]
          # [12. 15. 18. 16. 20. 24.]
          # [21. 24. 27. 28. 32. 36.]]
    """
    if in_dygraph_mode():
        return core.ops.kron(x, y)

    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

W
WuHaobo 已提交
1678
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
1679 1680
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
1681 1682 1683 1684


def cumsum(x, axis=None, dtype=None, name=None):
    """
1685 1686 1687 1688
    The cumulative sum of the elements along a given axis. 
    
    **Note**:
    The first element of the result is the same of the first element of the input. 
1689 1690

    Args:
1691
        x (Tensor): The input tensor needed to be cumsumed.
1692 1693 1694 1695 1696
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1697
        Tensor, the result of cumsum operator. 
1698 1699 1700 1701 1702

    Examples:
        .. code-block:: python
            
            import paddle
1703 1704 1705
            
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
            
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
            # VarType.FP64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = layers.cast(x, dtype)

    if in_dygraph_mode():
        if axis is None:
            return core.ops.cumsum(x, 'flatten', flatten)
        else:
            return core.ops.cumsum(x, 'axis', axis, 'flatten', flatten)

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
1745

J
Jack Zhou 已提交
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_static()
1763
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
            out = paddle.tensor.isfinite(x)
            print(out.numpy())  # [False  True  True False  True False False]
    """
    if in_dygraph_mode():
        return core.ops.isfinite_v2(x)
    helper = LayerHelper("isfinite_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite')
    out = helper.create_variable_for_type_inference('bool')
    helper.append_op(type="isfinite_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_static()
1792
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
            out = paddle.tensor.isinf(x)
            print(out.numpy())  # [ True False False  True False False False]
    """
    if in_dygraph_mode():
        return core.ops.isinf_v2(x)
    helper = LayerHelper("isinf_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_static()
1821
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
            out = paddle.tensor.isnan(x)
            print(out.numpy())  # [False False False False False  True  True]
    """
    if in_dygraph_mode():
        return core.ops.isnan_v2(x)
    helper = LayerHelper("isnan_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
    return out


G
guofei 已提交
1834 1835 1836 1837 1838
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
1839
        x(Tensor): The input tensor, its data type should be float32, float64, int32, int64.
G
guofei 已提交
1840 1841 1842 1843 1844 1845 1846 1847 1848
        axis(int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`, 
            multiply all elements of `x` and return a Tensor with a single element, 
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`, 
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
        dtype(str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64, 
            int32, int64. If specified, the input tensor is casted to dtype before operator performed. 
            This is very useful for avoiding data type overflows. The default value is None, the dtype 
            of output is the same as input Tensor `x`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result 
1849
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
G
guofei 已提交
1850 1851 1852 1853 1854 1855 1856 1857 1858
        name(string, optional): The default value is None. Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor, result of product on the specified dim of input tensor.

    Raises:
        ValueError: The :attr:`dtype` must be float32, float64, int32 or int64.
        TypeError: The type of :attr:`axis` must be int, list or tuple.
J
Jack Zhou 已提交
1859
    
G
guofei 已提交
1860 1861 1862 1863 1864 1865
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
1866 1867
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
            out1 = paddle.prod(x)
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
1884 1885
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod')
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
            x = layers.cast(x, dtype)

    return layers.reduce_prod(input=x, dim=axis, keep_dim=keepdim, name=name)
W
WangXi 已提交
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918


def sign(x, name=None):
    """
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): The default value is None. Normally there is no need for user to
            set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

          paddle.disable_static()
1919
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
    if in_dygraph_mode():
        return core.ops.sign(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sign')
    helper = LayerHelper("sign", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out


def tanh(x, name=None):
1936
    r"""
W
WangXi 已提交
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
    Tanh Activation Operator.

    .. math::
        out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

            paddle.disable_static()
1956
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
1957 1958 1959 1960 1961 1962 1963 1964
            out = paddle.tanh(x)
            print(out.numpy())
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
    if in_dygraph_mode():
        return core.ops.tanh(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanh')
S
ShenLiang 已提交
1965
    check_type(x, 'x', (Variable), 'tanh')
W
WangXi 已提交
1966 1967 1968 1969
    helper = LayerHelper('tanh', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
    return out
S
Steffy-zxf 已提交
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

def increment(x, value=1.0, name=None):
    """
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
        value(float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
    if in_dygraph_mode():
        return core.ops.increment(x, 'step', value)

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
    helper = LayerHelper("increment", **locals())
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
        outputs={'Out': [x]},
        attrs={'step': float(value)})
    return x
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203


def all(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical and`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
            Tensor variable with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            import numpy as np
            
            # set as static mode
            paddle.disable_static()
            
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            print(x)
            x = layers.cast(x, 'bool')
            
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
            
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
            
            # keep_dim=False, out3 should be [False, True], out.shape should be (2,)
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
            
            # keep_dim=True, out4 should be [[False], [True]], out.shape should be (2,1)
            out4 = paddle.all(x, axis=1, keep_dim=True)
            out4 = layers.cast(out4, 'int32')  # [[False], [True]]
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    dtype_flag = False


    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
        return core.ops.reduce_all(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
    check_variable_and_dtype(x, 'x', ['bool'], 'all')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')

    helper = LayerHelper('all', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_all',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out


def any(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical or`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
            Tensor variable with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            import numpy as np
            
            # set as static mode
            paddle.disable_static()
            
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            print(x)
            x = layers.cast(x, 'bool')
            
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
            
            # out2 should be [True, False]
            out2 = paddle.any(x, axis=0)  # [True, False]
            print(out2)
            
            # keep_dim=False, out3 should be [True, False], out.shape should be (2,)
            out3 = paddle.any(x, axis=-1)  # [True, False]
            print(out3)
            
            # keep_dim=True, result should be [[True], [False]], out.shape should be (2,1)
            out4 = paddle.any(x, axis=1, keep_dim=True)
            out4 = layers.cast(out4, 'int32')  # [[True], [False]]
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    dtype_flag = False


    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
        return core.ops.reduce_any(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
    check_variable_and_dtype(x, 'x', ['bool'], 'any')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')

    helper = LayerHelper('any', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_any',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out
L
Leo Chen 已提交
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230

def broadcast_shape(x_shape, y_shape):
    """
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape, please refer to :ref:`user_guide_broadcasting` for more details.

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
        

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
            
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)