math.py 76.6 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
from __future__ import print_function
Y
Yang Zhang 已提交
18
import numpy as np
19

20
from paddle.common_ops_import import *
21 22
from paddle.tensor import cast
import paddle
23
from ..fluid import layers
24
from ..fluid.framework import core, _varbase_creator, in_dygraph_mode, Variable, convert_np_dtype_to_dtype_
L
Li Fuchen 已提交
25 26
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
27
from ..fluid.layers.layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn
28 29 30

# TODO: define math functions
# yapf: disable
31 32 33 34 35
from ..fluid.layers import abs    #DEFINE_ALIAS
from ..fluid.layers import acos    #DEFINE_ALIAS
from ..fluid.layers import asin    #DEFINE_ALIAS
from ..fluid.layers import ceil    #DEFINE_ALIAS
from ..fluid.layers import cos    #DEFINE_ALIAS
36 37
from ..fluid.layers import sinh    #DEFINE_ALIAS
from ..fluid.layers import cosh    #DEFINE_ALIAS
38 39 40 41 42 43 44
# from ..fluid.layers import elementwise_add    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_div    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_floordiv    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_mod    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_mul    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_pow    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_sub    #DEFINE_ALIAS
45 46 47 48
from ..fluid.layers import exp    #DEFINE_ALIAS
from ..fluid.layers import floor    #DEFINE_ALIAS
from ..fluid.layers import log    #DEFINE_ALIAS
from ..fluid.layers import reciprocal    #DEFINE_ALIAS
49 50
from ..fluid.layers import reduce_all    #DEFINE_ALIAS
from ..fluid.layers import reduce_any    #DEFINE_ALIAS
51 52 53 54
# from ..fluid.layers import reduce_max    #DEFINE_ALIAS
# from ..fluid.layers import reduce_min    #DEFINE_ALIAS
# from ..fluid.layers import reduce_prod    #DEFINE_ALIAS
# from ..fluid.layers import reduce_sum    #DEFINE_ALIAS
55 56 57 58 59 60 61
from ..fluid.layers import round    #DEFINE_ALIAS
from ..fluid.layers import rsqrt    #DEFINE_ALIAS
from ..fluid.layers import scale    #DEFINE_ALIAS
from ..fluid.layers import square    #DEFINE_ALIAS
from ..fluid.layers import stanh    #DEFINE_ALIAS
from ..fluid.layers import atan    #DEFINE_ALIAS
from ..fluid.layers import erf    #DEFINE_ALIAS
62 63
from ..fluid.layers import sqrt    #DEFINE_ALIAS
from ..fluid.layers import sin    #DEFINE_ALIAS
64

65
from ..fluid.layers import multiplex    #DEFINE_ALIAS
G
guofei 已提交
66
from ..fluid import layers
67

68

69
__all__ = [
70 71 72 73 74 75
        'abs',
        'acos',
        'asin',
        'atan',
        'ceil',
        'cos',
76
        'cosh',
77 78 79
        'cumsum',
        'exp',
        'floor',
80
        'increment',
81
        'log',
J
joejiong 已提交
82
        'log2',
J
joejiong 已提交
83
        'log10',
84
        'logsumexp',
85
        'mul',
86
        'multiplex',
87
        'pow',
88
        'prod',
89 90 91 92 93 94
        'reciprocal',
        'round',
        'rsqrt',
        'scale',
        'sign',
        'sin',
95
        'sinh',
96 97 98 99 100
        'sqrt',
        'square',
        'stanh',
        'sum',
        'tanh',
S
Steffy-zxf 已提交
101
        'add_n',
102
        'max',
103
        'maximum',
104
        'min',
105
        'minimum',
106
        'mm',
107 108 109 110 111
        'divide',
        'floor_divide',
        'remainder',
        'mod',
        'floor_mod',
112
        'multiply',
113 114 115
        'add',
        'atan',
        'logsumexp',
116
        'inverse',
117 118 119 120
        'log1p',
        'erf',
        'addcmul',
        'addmm',
Y
Yang Zhang 已提交
121
        'clip',
L
Li Fuchen 已提交
122
        'trace',
J
Jack Zhou 已提交
123 124 125
        'kron',
        'isfinite',
        'isinf',
L
Leo Chen 已提交
126 127
        'isnan',
        'broadcast_shape'
128 129 130
]
# yapf: enable.

131 132 133 134 135 136 137 138 139 140 141 142 143
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

144
def pow(x, y, name=None):
145
    """
146
    Compute the power of tensor elements. The equation is:
S
swtkiwi 已提交
147

148 149
    .. math::
        out = x^{y} 
150

151 152
    **Note**:
    ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
153 154


155 156 157 158 159
    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        y (Tensor): An N-D Tensor with type float32, float64, int32 or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
160
    Returns:
161
        N-D Tensor. A location into which the result is stored. Its dimension equals with $x$.
162 163 164

    Examples:

165
        ..  code-block:: python
166 167 168

            import paddle

169
            # example 1: y is a float
170
            x = paddle.to_tensor([1, 2, 3])
171 172
            y = 2
            res = paddle.pow(x, y)
J
joejiong 已提交
173
            print(res) # [1 4 9]
174 175
            
            # example 2: y is a Tensor
176
            y = paddle.full(shape=[1], fill_value=2, dtype='float32')
177
            res = paddle.pow(x, y)
J
joejiong 已提交
178
            print(res) # [1 4 9]
179 180

    """
181
    # in dynamic graph mode
W
WuHaobo 已提交
182
    if in_dygraph_mode():
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
        if isinstance(y, (int, float)):
            return core.ops.pow(x, 'factor', y)
        elif isinstance(y, (paddle.Tensor, Variable)):
            if x.dtype != y.dtype:
                y = cast(y, dtype='float64')
                x = cast(x, dtype='float64')
            return _elementwise_op_in_dygraph(
                x, y, axis=-1, act=None, op_name='elementwise_pow')
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype))
    # in static graph mode
    else:
        if isinstance(y, (int, float)):
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
            if x.dtype != y.dtype:
                y = cast(y, dtype='float64')
                x = cast(x, dtype='float64')
J
joejiong 已提交
209
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
210 211 212
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (type(y)))
213 214 215



216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
    op = getattr(core.ops, op_name)
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)

    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)


def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

236 237
    out = helper.kwargs.get('out', None)

238 239 240 241 242 243 244 245 246 247 248 249
    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
250 251 252 253 254 255

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(name=name, dtype=x.dtype, persistable=False)
256 257 258 259 260 261 262 263 264 265 266

    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


Y
Yang Zhang 已提交
267
def add(x, y, name=None):
268
    """
269
    Examples:
270 271 272 273

    ..  code-block:: python

        import paddle
274 275
        x = paddle.to_tensor([2, 3, 4], 'float64')
        y = paddle.to_tensor([1, 5, 2], 'float64')
W
WuHaobo 已提交
276
        z = paddle.add(x, y)
277
        print(z)  # [3., 8., 6. ]
278 279 280 281 282 283

    """
    op_type = 'elementwise_add'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
Y
Yang Zhang 已提交
284
            x, y, axis=axis, op_name=op_type)
285 286 287 288

    return _elementwise_op(LayerHelper(op_type, **locals()))


289
def divide(x, y, name=None):
290
    """
291
    Divide two tensors element-wise. The equation is:
292

293 294
    .. math::
        out = x / y
295

296 297
    **Note**:
    ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
298

299 300 301 302
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
303

304 305
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
306

307
    Examples:
308

309
        ..  code-block:: python
310

311
            import paddle
312

313 314
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
315
            z = paddle.divide(x, y)
316
            print(z)  # [2., 0.6, 2.]
317

318 319 320 321 322 323 324
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
325

326
    return _elementwise_op(LayerHelper(op_type, **locals()))
327 328


329 330 331
def floor_divide(x, y, name=None):
    """
    Floor divide two tensors element-wise. The equation is:
332

333 334
    .. math::
        out = x // y
335

336 337
    **Note**:
    ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
338

339 340 341 342
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
343

344 345
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
346

347
    Examples:
348

349
        ..  code-block:: python
350

351
            import paddle
352

353 354
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
355
            z = paddle.floor_divide(x, y)
356
            print(z)  # [2, 0, 2, 2]
357

358 359 360 361 362 363
    """
    op_type = 'elementwise_floordiv'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
364

365
    return _elementwise_op(LayerHelper(op_type, **locals()))
366 367


368
def remainder(x, y, name=None):
369
    r"""
370 371 372
    Mod two tensors element-wise. The equation is:

    .. math::
373

374 375 376
        out = x \% y

    **Note**:
377
    ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
378 379

    Args:
W
WangXi 已提交
380 381
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
382 383 384 385 386 387 388 389 390 391 392
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.

    Examples:

        ..  code-block:: python

            import paddle

393 394
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
395
            z = paddle.remainder(x, y)
W
WangXi 已提交
396
            print(z)  # [0, 3, 2, 1]
397 398 399

    """
    op_type = 'elementwise_mod'
400 401 402
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
403
            x, y, axis=axis, op_name=op_type)
404 405 406 407

    return _elementwise_op(LayerHelper(op_type, **locals()))


408 409 410 411
mod = remainder  #DEFINE_ALIAS
floor_mod = remainder  #DEFINE_ALIAS


412
def multiply(x, y, name=None):
413
    """
414
    multiply two tensors element-wise. The equation is:
415

416 417
    .. math::
        out = x * y
418

419 420
    **Note**:
    ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
421

422 423 424 425
    Args:
        x (Tensor): the input tensor, its data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, its data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
426

427 428
    Returns:
        N-D Tensor. A location into which the result is stored. Its dimension equals with $x$.
429

430 431 432 433 434 435
    Examples:

        ..  code-block:: python

            import paddle

436 437
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
438
            res = paddle.multiply(x, y)
439
            print(res) # [[5, 12], [21, 32]]
440

441
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
442 443 444
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
445 446 447 448

    """
    op_type = 'elementwise_mul'
    act = None
449
    axis = -1
450

451 452 453 454 455
    if x.dtype != y.dtype:
        raise TypeError(
            'Input tensors must be same type, but received type of x: %s, type of y: %s '
            % (x.dtype, y.dtype))

456
    if in_dygraph_mode():
457
        if not isinstance(x, (paddle.Tensor)):
458 459 460 461
            raise TypeError(
                    'Input x must tensor type, but received type of x: %s'
                    % (x.dtype))

462 463 464 465
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

466 467 468 469 470 471 472 473 474
def maximum(x, y, axis=-1, name=None):
    """
Examples:

    .. code-block:: python

        import paddle
        import numpy as np

475 476
        x = paddle.to_tensor([[1, 2], [3, 4]])
        y = paddle.to_tensor([[5, 6], [7, 8]])
477
        res = paddle.maximum(x, y)
N
Noel 已提交
478
        print(res)
479 480 481
        #[[5. 6.]
        # [7. 8.]]

482 483
        x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
        y = paddle.to_tensor([1, 2])
484
        res = paddle.maximum(x, y, axis=1)
N
Noel 已提交
485
        print(res)
486 487 488
        #[[[1. 2. 3.]
        #  [2. 2. 3.]]]

489 490
        x = paddle.to_tensor([2, 3, 5], dtype='float32')
        y = paddle.to_tensor([1, 4, np.nan], dtype='float32')
491
        res = paddle.maximum(x, y)
N
Noel 已提交
492
        print(res)
493 494
        #[ 2.  4. nan]

495 496
        x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
        y = paddle.to_tensor([1, 4, 5], dtype='float32')
497
        res = paddle.maximum(x, y)
N
Noel 已提交
498
        print(res)
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
        #[ 5.  4. inf]
    """
    op_type = 'elementwise_max'
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

def minimum(x, y, axis=-1, name=None):
    """
Examples:

    .. code-block:: python

        import paddle
        import numpy as np
  
517 518
        x = paddle.to_tensor([[1, 2], [3, 4]], dtype='float32')
        y = paddle.to_tensor([[5, 6], [7, 8]], dtype='float32')
519
        res = paddle.minimum(x, y)
N
Noel 已提交
520
        print(res)
521 522 523
        #[[1. 2.]
        # [3. 4.]]

524 525
        x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]], dtype='float32')
        y = paddle.to_tensor([1, 2], dtype='float32')
526
        res = paddle.minimum(x, y, axis=1)
N
Noel 已提交
527
        print(res)
528 529 530
        #[[[1. 1. 1.]
        #  [2. 2. 2.]]]

531 532
        x = paddle.to_tensor([2, 3, 5], dtype='float32')
        y = paddle.to_tensor([1, 4, np.nan], dtype='float32')
533
        res = paddle.minimum(x, y)
N
Noel 已提交
534
        print(res)
535 536
        #[ 1.  3. nan]

537 538
        x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
        y = paddle.to_tensor([1, 4, 5], dtype='float32')
539
        res = paddle.minimum(x, y)
N
Noel 已提交
540
        print(res)
541 542 543 544 545 546 547 548
        #[1. 3. 5.]
    """
    op_type = 'elementwise_min'
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))
549

550 551
for func in [
        add,
552 553 554
        maximum,
        minimum,
        multiply
555
]:
556
    proto_dict = {'add': 'elementwise_add', 'div': 'elementwise_div', 'maximum': 'elementwise_max', 'minimum': 'elementwise_min', 'multiply': 'elementwise_mul'}
557 558
    op_proto = OpProtoHolder.instance().get_op_proto(proto_dict[func.__name__])

Y
Yang Zhang 已提交
559 560 561 562 563 564 565
    additional_args_lines = [
        "name (string, optional): Name of the output. \
        Default is None. It's used to print debug info for developers. Details: \
        :ref:`api_guide_Name` "
    ]

    func.__doc__ = _generate_doc_string_(
566 567
        op_proto,
        additional_args_lines=additional_args_lines,
568
        skip_attrs_set={"x_data_format", "y_data_format", "axis",
569
            "use_quantizer", "mkldnn_data_type", "Scale_x", "Scale_y", "Scale_out"
570
        }) + """\n""" + str(func.__doc__)
571

Y
Yang Zhang 已提交
572

573
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
574 575 576 577
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
578 579 580
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
581
            Tensor with a single element, otherwise must be in the
582 583 584 585 586 587 588
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
589
            value is False.
590
        name (str, optional): The default value is None. Normally there is no need for
591 592 593
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
594 595
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
        it's data type is the same as `x`.
596 597

    Raises:
598 599
        ValueError: If the data type of `x` is float64, :attr:`dtype` can not be float32 or int32.
        ValueError: If the data type of `x` is int64, :attr:`dtype` can not be int32.
600
        TypeError: The type of :attr:`axis` must be int, list or tuple.
601

602 603 604 605
    Examples:
        .. code-block:: python

            import paddle
606

607
            # x is a Tensor with following elements:
608 609 610
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
611 612
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
613
            out1 = paddle.sum(x)  # [3.5]
614 615 616
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
617

618
            # y is a Tensor with shape [2, 2, 2] and elements as below:
619 620 621
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
622 623
            y = paddle.to_tensor([[[1, 2], [3, 4]], 
                                  [[5, 6], [7, 8]]])
624 625
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
626
    """
627 628 629 630 631 632 633 634 635 636 637
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

638
    attrs = {
639 640 641
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
642 643 644 645
    }
    dtype_flag = False
    if dtype is not None:
        if dtype in ['float64', 'int64']:
646 647
            if (convert_dtype(x.dtype) == "float32" and dtype == "float64") or \
               (convert_dtype(x.dtype) == "int32" and dtype == "int64"):
648
                attrs.update({
649
                    'in_dtype': x.dtype,
650 651 652 653 654
                    'out_dtype': convert_np_dtype_to_dtype_(dtype)
                })
                dtype_flag = True

    if in_dygraph_mode():
655
        axis = axis if axis != None and axis != [] else [0]
656
        if dtype_flag:
657 658 659
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag, 'in_dtype',
                                       x.dtype, 'out_dtype',
660 661
                                       convert_np_dtype_to_dtype_(dtype))
        else:
662 663
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
664
    check_variable_and_dtype(
665
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'sum')
666 667 668 669 670 671 672 673 674 675 676

    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'sum')
        x_dtype = convert_dtype(x.dtype)

        if (x_dtype == "float64" and dtype in ["float32", "int32"]) or \
                (x_dtype == "int64" and dtype == "int32"):
            raise ValueError("The input(x)'s dtype is {} but the attr(dtype) of sum is {}, "
                             "which may cause data type overflows. Please reset attr(dtype) of sum."
                             .format(x_dtype, dtype))

677 678
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'sum')

679 680 681 682 683
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_(dtype))
    else:
684
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
685 686
    helper.append_op(
        type='reduce_sum',
687
        inputs={'X': x},
688 689 690
        outputs={'Out': out},
        attrs=attrs)
    return out
691

692

693
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
694
def add_n(inputs, name=None):
695
    """
S
Steffy-zxf 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
    This OP is used to sum one or more Tensor of the input.
    
    For example:

    .. code-block:: text
    
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
       
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
731 732

    Args:
S
Steffy-zxf 已提交
733 734
        inputs (Tensor|list(Tensor)):  A Tensor list. The shape and data type of the list elements should be consistent.
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
735 736 737 738
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
S
Steffy-zxf 已提交
739
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
740 741 742 743 744 745

    Examples:
        .. code-block:: python

            import paddle

S
Steffy-zxf 已提交
746 747 748 749 750
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
            # [[8., 10., 12.], 
            #  [14., 16., 18.]]
751
    """
S
Steffy-zxf 已提交
752 753 754 755
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
        return core.ops.sum(inputs, 'use_mkldnn', False)
756

S
Steffy-zxf 已提交
757 758
    helper = LayerHelper('add_n', **locals())
    check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
759 760 761 762
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
S
Steffy-zxf 已提交
763
                   ['float32', 'float64', 'int32', 'int64'], 'add_n')
764 765
    else:
        check_variable_and_dtype(inputs, "inputs", \
S
Steffy-zxf 已提交
766
                ['float32', 'float64', 'int32', 'int64'], 'add_n')
767 768


769 770 771 772 773 774 775 776 777 778 779
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})

    return out


W
WuHaobo 已提交
780
def mm(input, mat2, name=None):
781
    """
S
swtkiwi 已提交
782

783 784 785 786 787 788 789 790 791 792
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

793 794
    This op does not support broadcasting. See paddle.matmul.

795
    Args:
796
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
797
        mat2 (Tensor): The input tensor which is a Tensor.
798 799 800 801
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
N
Noel 已提交
802
        Tensor: The product Tensor.
803 804 805 806 807

    Examples:
        .. code-block:: python

            import paddle
808 809 810 811 812 813 814 815
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
816

817 818
    """
    if in_dygraph_mode():
W
WuHaobo 已提交
819
        out = _varbase_creator(dtype=input.dtype)
820 821
        core.ops.matmul(input, mat2, out)
        return out
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
859
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
860 861 862 863
    helper.append_op(
        type='matmul', inputs={'X': input,
                               'Y': mat2}, outputs={'Out': out})
    return out
864

865

Y
yaoxuefeng 已提交
866
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
867
    """
868 869
	:alias_main: paddle.addmm
	:alias: paddle.addmm,paddle.tensor.addmm,paddle.tensor.math.addmm
S
swtkiwi 已提交
870

871 872 873 874 875 876 877 878 879 880 881 882
    **addmm**

    This operator is used to perform matrix multiplication for input $x$ and $y$.
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
883 884 885
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
886
        beta (float): Coefficient of $input$.
Y
yaoxuefeng 已提交
887
        alpha (float): Coefficient of $x*y$.
888 889 890
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.

    Returns:
Y
yaoxuefeng 已提交
891
        Tensor: The output Tensor of addmm op.
892 893 894

    Examples:
        ..  code-block:: python
Y
yaoxuefeng 已提交
895
            
896 897
            import paddle

Y
yaoxuefeng 已提交
898 899 900
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
901

Y
yaoxuefeng 已提交
902
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
903

N
Noel 已提交
904
            print(out)
905 906 907
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
    if not len(input_shape) == len(x_shape) == len(y_shape) == 2:
        raise ValueError("The dimention of input, x, y should be 2 but receive input's shape: {}, x's shape: {}, y's shape: {}".format(input_shape, x_shape, y_shape))
    if input_shape[0] != x_shape[0]:
        if input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
        if input_shape[1] != y_shape[1] and input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
    if input_shape[1] != y_shape[1]:
        if input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
        if input_shape[0] != x_shape[0] and input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
    if x_shape[1] != y_shape[0]:
        raise ValueError("The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(x_shape, y_shape))



928 929 930 931
    if in_dygraph_mode():
        out = core.ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
        return out

932 933 934 935
    inputs = {'Input': input, "X": x, "Y": y}
    attrs = {'Alpha': alpha, 'Beta': beta}

    helper = LayerHelper("addmm", **locals())
Y
yaoxuefeng 已提交
936
    check_variable_and_dtype(input, 'Input', ['float32', 'float64'], 'addmm')
937 938 939 940 941 942 943
    check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
    check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out})
    return out
944 945


946
def logsumexp(x, axis=None, keepdim=False, name=None):
947
    r"""
948
    This OP calculates the log of the sum of exponentials of ``x`` along ``axis`` .
949

950
    .. math::
951
       logsumexp(x) = \\log\\sum exp(x)
952

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
971

972
    Returns:
973 974
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
975

976
    Examples:
977

978
    .. code-block:: python
979

980 981
        import paddle

982
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
983 984
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
985 986

    """
987 988 989 990 991 992 993
    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]
994

995
    if in_dygraph_mode():
996
        return core.ops.logsumexp(x, 'axis', axis, 'keepdim', keepdim, 'reduce_all', reduce_all)
997

998 999 1000
    check_variable_and_dtype(x, 'x',
                             ['float32', 'float64'],
                             'logsumexp')
1001

1002
    helper = LayerHelper('logsumexp', **locals())
1003
    attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all':reduce_all}
1004 1005 1006 1007
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs)
    return out
1008

S
swtkiwi 已提交
1009

1010 1011
def inverse(x, name=None):
    """
1012 1013 1014 1015 1016
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
1017
        x (Tensor): The input tensor. The last two
1018 1019 1020 1021 1022 1023 1024 1025
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information,
            please refer to :ref:`api_guide_Name`

    Returns:
1026
        Tensor: A Tensor holds the inverse of x. The shape and data type
1027
                        is the same as x.
1028 1029 1030 1031 1032

    Examples:
        .. code-block:: python

            import paddle
1033 1034

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
1035 1036
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
1037 1038 1039

    """
    if in_dygraph_mode():
1040
        return core.ops.inverse(x)
1041

1042 1043
    def _check_input(x):
        check_variable_and_dtype(x, 'x',
1044
                                 ['float32', 'float64'], 'inverse')
1045
        if len(x.shape) < 2:
1046 1047 1048
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
1049 1050
                "x's shape: %s." % (len(x.shape), x.shape))
    _check_input(x)
1051
    helper = LayerHelper('inverse', **locals())
1052
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1053
    helper.append_op(
1054
        type='inverse', inputs={'Input': [x] }, outputs={'Output': [out]})
1055 1056 1057
    return out


1058
def max(x, axis=None, keepdim=False, name=None):
1059
    """
S
swtkiwi 已提交
1060

1061
    Computes the maximum of tensor elements over the given axis.
1062 1063

    Args:
1064
        x(Tensor): A tensor, the data type is float32,
1065
            float64, int32, int64.
1066
        axis(list|int, optional): The axis along which the maximum is computed.
1067
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
1068
            `x` and return a Tensor with a single element,
1069 1070 1071
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1072
            output Tensor. The result tensor will have one fewer dimension
1073
            than the `x` unless :attr:`keepdim` is true, default
1074
            value is False.
1075
        name(str, optional): The default value is None.  Normally there is no need for
1076 1077 1078
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
1079
        Tensor, results of maximum on the specified axis of input tensor,
1080
        it's data type is the same as `x`.
1081 1082 1083

    Examples:
        .. code-block:: python
1084

1085
            import paddle
1086

N
Noel 已提交
1087
            # data_x is a Tensor with shape [2, 4]
1088
            # the axis is a int element
1089 1090 1091

            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1092
            result1 = paddle.max(x)
N
Noel 已提交
1093
            print(result1)
1094 1095
            #[0.9]
            result2 = paddle.max(x, axis=0)
N
Noel 已提交
1096
            print(result2) 
1097 1098
            #[0.2 0.3 0.6 0.9]
            result3 = paddle.max(x, axis=-1)
N
Noel 已提交
1099
            print(result3)
1100 1101
            #[0.9 0.7]
            result4 = paddle.max(x, axis=1, keepdim=True)
N
Noel 已提交
1102
            print(result4)
1103 1104 1105
            #[[0.9]
            # [0.7]]

N
Noel 已提交
1106
            # data_y is a Tensor with shape [2, 2, 2]
1107
            # the axis is list 
1108 1109 1110

            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1111
            result5 = paddle.max(y, axis=[1, 2])
N
Noel 已提交
1112
            print(result5)
1113 1114
            #[4. 8.]
            result6 = paddle.max(y, axis=[0, 1])
N
Noel 已提交
1115
            print(result6)
1116
            #[7. 8.]
1117 1118
    """

1119
    if axis is not None and not isinstance(axis, list):
1120 1121 1122 1123 1124 1125 1126 1127
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))

1128 1129 1130 1131 1132
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    if in_dygraph_mode():
        return core.ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
                                   'reduce_all', reduce_all)
1133

1134
    helper = LayerHelper('max', **locals())
1135
    check_variable_and_dtype(
1136
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max')
1137

1138
    out = helper.create_variable_for_type_inference(
1139
            dtype=x.dtype)
1140 1141
    helper.append_op(
        type='reduce_max',
1142
        inputs={'X': x},
1143 1144
        outputs={'Out': out},
        attrs={
1145 1146
            'dim': axis,
            'keep_dim': keepdim,
1147 1148 1149 1150
            'reduce_all': reduce_all
        })
    return out

1151
def min(x, axis=None, keepdim=False, name=None):
1152
    """
S
swtkiwi 已提交
1153

1154
    Computes the minimum of tensor elements over the given axis
1155

1156
    Args:
1157 1158
        x(Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis(list|int, optional): The axis along which the minimum is computed.
1159
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
1160
            `x` and return a Tensor with a single element,
1161 1162 1163
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1164
            output Tensor. The result tensor will have one fewer dimension
1165
            than the `x` unless :attr:`keepdim` is true, default
1166
            value is False.
W
WuHaobo 已提交
1167
        name(str, optional): The default value is None.  Normally there is no need for 
1168
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1169

1170
    Returns:
1171
        Tensor, results of minimum on the specified axis of input tensor,
1172
        it's data type is the same as input's Tensor.
1173

1174 1175 1176
    Examples:
        .. code-block:: python

1177
            import paddle
1178

1179
            # x is a tensor with shape [2, 4]
1180
            # the axis is a int element
1181 1182
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1183
            result1 = paddle.min(x)
N
Noel 已提交
1184
            print(result1)
1185 1186
            #[0.1]
            result2 = paddle.min(x, axis=0)
N
Noel 已提交
1187
            print(result2)
1188 1189
            #[0.1 0.2 0.5 0.7]
            result3 = paddle.min(x, axis=-1)
N
Noel 已提交
1190
            print(result3) 
1191 1192
            #[0.2 0.1]
            result4 = paddle.min(x, axis=1, keepdim=True)
N
Noel 已提交
1193
            print(result4)
1194 1195 1196
            #[[0.2]
            # [0.1]]

N
Noel 已提交
1197
            # y is a Tensor with shape [2, 2, 2]
1198
            # the axis is list 
1199 1200
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1201
            result5 = paddle.min(y, axis=[1, 2])
N
Noel 已提交
1202
            print(result5) 
1203 1204
            #[1. 5.]
            result6 = paddle.min(y, axis=[0, 1])
N
Noel 已提交
1205
            print(result6)
1206 1207
            #[1. 2.]
    """
1208

1209
    if axis is not None and not isinstance(axis, list):
1210 1211 1212 1213 1214 1215 1216
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))
1217 1218
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
1219
    if in_dygraph_mode():
1220
        return core.ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
1221
                                   'reduce_all', reduce_all)
1222 1223 1224 1225 1226 1227

    helper = LayerHelper('min', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min')

    out = helper.create_variable_for_type_inference(
1228
            dtype=x.dtype)
1229 1230
    helper.append_op(
        type='reduce_min',
1231
        inputs={'X': x},
1232 1233
        outputs={'Out': out},
        attrs={
1234 1235
            'dim': axis,
            'keep_dim': keepdim,
1236 1237 1238 1239 1240
            'reduce_all': reduce_all
        })
    return out


W
WuHaobo 已提交
1241
def log1p(x, name=None):
1242
    r"""
1243
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
1244

1245 1246
    .. math::
        Out = \\ln(x+1)
S
Steffy-zxf 已提交
1247

1248
    Args:
S
Steffy-zxf 已提交
1249
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
1250 1251 1252
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
S
Steffy-zxf 已提交
1253
        Tensor, the natural log of the input Tensor computed element-wise.
1254

1255 1256
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
1257

1258
            import paddle
S
Steffy-zxf 已提交
1259 1260 1261 1262

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
1263 1264 1265 1266 1267 1268 1269 1270 1271
    """

    if in_dygraph_mode():
        return core.ops.log1p(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
1272
    out = helper.create_variable_for_type_inference(dtype)
1273 1274
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
1275

J
joejiong 已提交
1276
def log2(x, name=None):
1277
    r"""
J
joejiong 已提交
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

        Out = \\log_2x

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
    if in_dygraph_mode():
        return core.ops.log2(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log2")
    inputs = {'X': [x]}
    helper = LayerHelper('log2', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
    return out
W
WuHaobo 已提交
1324

J
joejiong 已提交
1325 1326

def log10(x, name=None):
1327
    r"""
J
joejiong 已提交
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

        Out = \\log_10_x

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
    if in_dygraph_mode():
        return core.ops.log10(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log10")
    inputs = {'X': [x]}
    helper = LayerHelper('log10', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
    return out


W
WuHaobo 已提交
1376
def addcmul(input, tensor1, tensor2, value=1.0, name=None):
B
Bai Yifan 已提交
1377
    """
S
swtkiwi 已提交
1378

B
Bai Yifan 已提交
1379 1380 1381 1382 1383
    Calculate the element-wise multiplication of tensor1 and tensor2,
    then multiply the result by value, and add it to input. The shape of input,
    tensor1, tensor2 should be broadcastable.
    The equation is:
    ..  math::
1384

B
Bai Yifan 已提交
1385 1386
        out = input + value * tensor1 * tensor2
    Args:
1387 1388 1389
        input(Tensor): The input to be added. A Tensor with type float32, float64, int32, int64.
        tensor1(Tensor): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
        tensor2(Tensor): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
B
Bai Yifan 已提交
1390 1391 1392 1393
        value(int|float): The multiplier for tensor1*tensor2. For float32 and float64 type input, value must be float, otherwise an integer.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
    Returns:
1394
        out(Tensor): The output result. A Tensor with the same data type as input's.
B
Bai Yifan 已提交
1395 1396
    Examples:
        .. code-block:: python
1397

B
Bai Yifan 已提交
1398
          import paddle
1399 1400 1401
          input = paddle.ones([2,2])
          tensor1 = paddle.ones([2,2])
          tensor2 = paddle.ones([2,2])
1402
          out = paddle.tensor.math.addcmul(input, tensor1, tensor2, value=0.5)
N
Noel 已提交
1403
          print(out)
1404 1405
          # [[1.5 1.5]
          # [1.5 1.5]]
B
Bai Yifan 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
    """

    check_variable_and_dtype(input, 'input', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    check_variable_and_dtype(tensor1, 'tensor1', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    check_variable_and_dtype(tensor2, 'tensor2', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    if convert_dtype(input.dtype) in ['float32', 'float64']:
        check_type(value, 'value', float, 'addcmul')
    if convert_dtype(input.dtype) in ['int32', 'int64']:
        check_type(value, 'value', int, 'addcmul')

W
WuHaobo 已提交
1416
    out = layers.elementwise_add(input, layers.elementwise_mul(tensor1, tensor2) * value)
B
Bai Yifan 已提交
1417
    return out
1418 1419


Y
Yang Zhang 已提交
1420
def clip(x, min=None, max=None, name=None):
1421
    """
Y
Yang Zhang 已提交
1422
    This operator clip all elements in input into the range [ min, max ] and return
1423 1424 1425 1426
    a resulting tensor as the following equation:

    .. math::

1427
        Out = MIN(MAX(x, min), max)
1428 1429

    Args:
Y
Yang Zhang 已提交
1430 1431
        x (Tensor): An N-D Tensor with data type float32 or float64.
        min (float32|Tensor): The lower bound with type ``float32`` or a ``Tensor``
1432
            with shape [1] and type ``int32``, ``float32``, ``float64``.
Y
Yang Zhang 已提交
1433
        max (float32|Tensor): The upper bound with type ``float32`` or a ``Tensor``
1434 1435 1436 1437 1438 1439
            with shape [1] and type ``int32``, ``float32``, ``float64``.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
Y
Yang Zhang 已提交
1440
        Tensor: A Tensor with the same data type and data shape as input.
1441 1442 1443 1444 1445

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
1446

1447
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
1448 1449
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
1450
            print(out1)
Y
Yang Zhang 已提交
1451 1452
            # [[3.5, 3.5]
            # [4.5, 5.0]]
1453
            print(out2)
Y
Yang Zhang 已提交
1454 1455
            # [[2.5, 3.5]
            # [[4.5, 6.4]
1456 1457
    """

Y
Yang Zhang 已提交
1458 1459
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
1460

W
WuHaobo 已提交
1461
    if in_dygraph_mode():
1462 1463 1464 1465
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
Y
Yang Zhang 已提交
1466 1467
        min = fmin if min is None else min
        max = fmax if max is None else max
Y
Yang Zhang 已提交
1468
        return core.ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
1469

1470
    if min is not None:
Y
Yang Zhang 已提交
1471
        check_type(min, 'min', (float, int, Variable), 'clip')
1472 1473
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1474
                        'clip', '(When the type of min in clip is Variable.)')
1475
    if max is not None:
Y
Yang Zhang 已提交
1476
        check_type(max, 'max', (float, int, Variable), 'clip')
1477 1478
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1479
                        'clip', '(When the type of max in clip is Variable.)')
1480

Y
Yang Zhang 已提交
1481
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'clip')
Y
Yang Zhang 已提交
1482 1483

    inputs = {'X': x}
Y
Yang Zhang 已提交
1484
    attrs = {'min': fmin, 'max': fmax}
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
1498
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
1499
    output = helper.create_variable_for_type_inference(
Y
Yang Zhang 已提交
1500
        dtype=helper.input_dtype('x'))
1501 1502 1503 1504
    helper.append_op(
        type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs)

    return output
F
Feiyu Chan 已提交
1505

W
WuHaobo 已提交
1506

1507
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
1508
    """
1509
    **trace**
S
swtkiwi 已提交
1510

1511
    This OP computes the sum along diagonals of the input tensor x.
1512 1513

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
1514

1515
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
1516
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
1517
    of the input tensor x.
L
Li Fuchen 已提交
1518

1519
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
1520 1521 1522 1523

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
1524
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
1525

L
Li Fuchen 已提交
1526
    Args:
1527
        x(Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
1528 1529 1530
        offset(int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1(int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2(int, optional): The second axis with respect to take diagonal. Default: 1.
L
Li Fuchen 已提交
1531 1532 1533
        name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
1534
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
1535 1536 1537 1538 1539

    Examples:
        .. code-block:: python

            import paddle
1540

1541 1542 1543
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
1544 1545 1546
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
1547
    """
1548 1549
    inputs = {'Input': [x]}
    attrs = {'offset': offset, 'axis1': axis1, 'axis2': axis2}
L
Li Fuchen 已提交
1550 1551

    def __check_input(input, offset, dim1, dim2):
1552
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
1553 1554 1555
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

1556
        input_shape = list(x.shape)
L
Li Fuchen 已提交
1557
        assert len(input_shape) >= 2,                     \
1558 1559
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
1560 1561
                len(input_shape)

1562 1563
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
1564

1565 1566 1567
        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
1568

1569 1570 1571
        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
1572 1573


1574 1575 1576
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
1577

1578 1579 1580
    if in_dygraph_mode():
        return core.ops.trace(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)

L
Li Fuchen 已提交
1581
    if not in_dygraph_mode():
1582
        __check_input(input, offset, axis1, axis2)
L
Li Fuchen 已提交
1583 1584
    helper = LayerHelper('trace', **locals())

1585
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
1586 1587 1588

    helper.append_op(
        type='trace',
1589
        inputs={'Input': [x]},
L
Li Fuchen 已提交
1590
        attrs={'offset': offset,
1591 1592
               'axis1': axis1,
               'axis2': axis2},
L
Li Fuchen 已提交
1593 1594 1595
        outputs={'Out': [out]})
    return out

F
Feiyu Chan 已提交
1596
@templatedoc(op_type="kron")
W
WuHaobo 已提交
1597
def kron(x, y, name=None):
S
swtkiwi 已提交
1598 1599 1600
    """

${comment}
F
Feiyu Chan 已提交
1601 1602

    Args:
N
Noel 已提交
1603
        x (Tensor): the fist operand of kron op, data type: float16, float32,
F
Feiyu Chan 已提交
1604
            float64, int32 or int64.
N
Noel 已提交
1605
        y (Tensor): the second operand of kron op, data type: float16,
1606
            float32, float64, int32 or int64. Its data type should be the same
F
Feiyu Chan 已提交
1607
            with x.
1608 1609
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
F
Feiyu Chan 已提交
1610 1611 1612
            refer to :ref:`api_guide_Name`.

    Returns:
N
Noel 已提交
1613
        Tensor: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
1614 1615 1616

    Examples:
        .. code-block:: python
1617

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
1629 1630 1631 1632 1633 1634 1635 1636
    """
    if in_dygraph_mode():
        return core.ops.kron(x, y)

    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

W
WuHaobo 已提交
1637
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
1638 1639
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
1640 1641 1642 1643


def cumsum(x, axis=None, dtype=None, name=None):
    """
1644 1645 1646 1647
    The cumulative sum of the elements along a given axis. 
    
    **Note**:
    The first element of the result is the same of the first element of the input. 
1648 1649

    Args:
1650
        x (Tensor): The input tensor needed to be cumsumed.
1651 1652 1653 1654 1655
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1656
        Tensor, the result of cumsum operator. 
1657 1658 1659 1660 1661

    Examples:
        .. code-block:: python
            
            import paddle
1662 1663 1664
            
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
            
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
            # VarType.FP64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = layers.cast(x, dtype)

    if in_dygraph_mode():
        if axis is None:
            return core.ops.cumsum(x, 'flatten', flatten)
        else:
            return core.ops.cumsum(x, 'axis', axis, 'flatten', flatten)

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
1704

J
Jack Zhou 已提交
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
1721

1722
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1723
            out = paddle.tensor.isfinite(x)
N
Noel 已提交
1724
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
    """
    if in_dygraph_mode():
        return core.ops.isfinite_v2(x)
    helper = LayerHelper("isfinite_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite')
    out = helper.create_variable_for_type_inference('bool')
    helper.append_op(type="isfinite_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
1750
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1751
            out = paddle.tensor.isinf(x)
N
Noel 已提交
1752
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
    """
    if in_dygraph_mode():
        return core.ops.isinf_v2(x)
    helper = LayerHelper("isinf_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
1778
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1779
            out = paddle.tensor.isnan(x)
N
Noel 已提交
1780
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
    """
    if in_dygraph_mode():
        return core.ops.isnan_v2(x)
    helper = LayerHelper("isnan_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
    return out


G
guofei 已提交
1791 1792 1793 1794 1795
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
1796
        x(Tensor): The input tensor, its data type should be float32, float64, int32, int64.
G
guofei 已提交
1797 1798 1799 1800 1801 1802 1803 1804 1805
        axis(int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`, 
            multiply all elements of `x` and return a Tensor with a single element, 
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`, 
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
        dtype(str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64, 
            int32, int64. If specified, the input tensor is casted to dtype before operator performed. 
            This is very useful for avoiding data type overflows. The default value is None, the dtype 
            of output is the same as input Tensor `x`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result 
1806
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
G
guofei 已提交
1807 1808 1809 1810 1811 1812 1813 1814 1815
        name(string, optional): The default value is None. Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor, result of product on the specified dim of input tensor.

    Raises:
        ValueError: The :attr:`dtype` must be float32, float64, int32 or int64.
        TypeError: The type of :attr:`axis` must be int, list or tuple.
J
Jack Zhou 已提交
1816
    
G
guofei 已提交
1817 1818 1819 1820 1821 1822
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
1823 1824
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
            out1 = paddle.prod(x)
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
1841 1842
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod')
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
            x = layers.cast(x, dtype)

    return layers.reduce_prod(input=x, dim=axis, keep_dim=keepdim, name=name)
W
WangXi 已提交
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874


def sign(x, name=None):
    """
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): The default value is None. Normally there is no need for user to
            set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

1875
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
    if in_dygraph_mode():
        return core.ops.sign(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sign')
    helper = LayerHelper("sign", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out


def tanh(x, name=None):
1892
    r"""
W
WangXi 已提交
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
    Tanh Activation Operator.

    .. math::
        out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

1911
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
1912
            out = paddle.tanh(x)
N
Noel 已提交
1913
            print(out)
W
WangXi 已提交
1914 1915 1916 1917 1918 1919
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
    if in_dygraph_mode():
        return core.ops.tanh(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanh')
S
ShenLiang 已提交
1920
    check_type(x, 'x', (Variable), 'tanh')
W
WangXi 已提交
1921 1922 1923 1924
    helper = LayerHelper('tanh', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
    return out
S
Steffy-zxf 已提交
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

def increment(x, value=1.0, name=None):
    """
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
        value(float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
    if in_dygraph_mode():
        return core.ops.increment(x, 'step', value)

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
    helper = LayerHelper("increment", **locals())
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
        outputs={'Out': [x]},
        attrs={'step': float(value)})
    return x
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970


def all(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical and`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
1971
            Tensor with a single element, otherwise must be in the
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            import numpy as np
            
N
Noel 已提交
1996
            # x is a bool Tensor with following elements:
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
            #    [[True, False]
            #     [True, True]]
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            print(x)
            x = layers.cast(x, 'bool')
            
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
            
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
            
            # keep_dim=False, out3 should be [False, True], out.shape should be (2,)
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
            
            # keep_dim=True, out4 should be [[False], [True]], out.shape should be (2,1)
            out4 = paddle.all(x, axis=1, keep_dim=True)
            out4 = layers.cast(out4, 'int32')  # [[False], [True]]
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    dtype_flag = False


    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
        return core.ops.reduce_all(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
    check_variable_and_dtype(x, 'x', ['bool'], 'all')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')

    helper = LayerHelper('all', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_all',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out


def any(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical or`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
2067
            Tensor with a single element, otherwise must be in the
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            import numpy as np
            
N
Noel 已提交
2092
            # x is a bool Tensor with following elements:
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
            #    [[True, False]
            #     [False, False]]
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            print(x)
            x = layers.cast(x, 'bool')
            
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
            
            # out2 should be [True, False]
            out2 = paddle.any(x, axis=0)  # [True, False]
            print(out2)
            
            # keep_dim=False, out3 should be [True, False], out.shape should be (2,)
            out3 = paddle.any(x, axis=-1)  # [True, False]
            print(out3)
            
            # keep_dim=True, result should be [[True], [False]], out.shape should be (2,1)
            out4 = paddle.any(x, axis=1, keep_dim=True)
            out4 = layers.cast(out4, 'int32')  # [[True], [False]]
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    dtype_flag = False


    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
        return core.ops.reduce_any(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
    check_variable_and_dtype(x, 'x', ['bool'], 'any')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')

    helper = LayerHelper('any', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_any',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out
L
Leo Chen 已提交
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179

def broadcast_shape(x_shape, y_shape):
    """
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape, please refer to :ref:`user_guide_broadcasting` for more details.

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
        

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
            
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)