math.py 85.8 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
from __future__ import print_function
Y
Yang Zhang 已提交
18
import numpy as np
19

20 21 22 23 24 25
from paddle.common_ops_import import VarDesc
from paddle.common_ops_import import dygraph_only
from paddle.common_ops_import import OpProtoHolder
from paddle.common_ops_import import templatedoc
from paddle.common_ops_import import dygraph_utils

26 27
from paddle.tensor import cast
import paddle
28
from ..fluid import layers
29
from ..fluid.framework import core, _varbase_creator, in_dygraph_mode, Variable, convert_np_dtype_to_dtype_
L
Li Fuchen 已提交
30 31
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
32
from ..fluid.layers.layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn
33
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
34 35 36

# TODO: define math functions
# yapf: disable
37 38 39 40
from ..fluid.layers import abs    # noqa: F401
from ..fluid.layers import acos    # noqa: F401
from ..fluid.layers import asin    # noqa: F401
from ..fluid.layers import ceil    # noqa: F401
41
from ..fluid.layers import ceil_    # noqa: F401
42 43 44 45 46
from ..fluid.layers import cos    # noqa: F401
from ..fluid.layers import tan    # noqa: F401
from ..fluid.layers import sinh    # noqa: F401
from ..fluid.layers import cosh    # noqa: F401
from ..fluid.layers import exp    # noqa: F401
47
from ..fluid.layers import exp_    # noqa: F401
R
ronnywang 已提交
48
from ..fluid.layers import expm1    # noqa: F401
49
from ..fluid.layers import floor    # noqa: F401
50
from ..fluid.layers import floor_    # noqa: F401
51 52
from ..fluid.layers import log    # noqa: F401
from ..fluid.layers import reciprocal    # noqa: F401
53
from ..fluid.layers import reciprocal_    # noqa: F401
54
from ..fluid.layers import round    # noqa: F401
55
from ..fluid.layers import round_    # noqa: F401
56
from ..fluid.layers import rsqrt    # noqa: F401
57
from ..fluid.layers import rsqrt_    # noqa: F401
58 59 60 61 62 63
from ..fluid.layers import scale    # noqa: F401
from ..fluid.layers import square    # noqa: F401
from ..fluid.layers import stanh    # noqa: F401
from ..fluid.layers import atan    # noqa: F401
from ..fluid.layers import erf    # noqa: F401
from ..fluid.layers import sqrt    # noqa: F401
64
from ..fluid.layers import sqrt_    # noqa: F401
65
from ..fluid.layers import sin    # noqa: F401
66
from ..fluid.layers import lgamma    # noqa: F401
67 68

from ..fluid.layers import multiplex    # noqa: F401
G
guofei 已提交
69
from ..fluid import layers
70

71 72
__all__ = []

73 74 75 76 77 78 79 80 81 82 83 84 85
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

86 87 88 89 90 91 92 93 94 95 96 97 98

@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_scale`.
    """
    _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
    return core.ops.scale_(x, 'scale',
                            float(_scale), 'bias',
                            float(bias), 'bias_after_scale', bias_after_scale)


99
def pow(x, y, name=None):
100
    """
101
    Compute the power of tensor elements. The equation is:
S
swtkiwi 已提交
102

103 104
    .. math::
        out = x^{y} 
105

106 107
    **Note**:
    ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
108 109


110 111
    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
112
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
113 114
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
115
    Returns:
116
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
117 118 119

    Examples:

120
        ..  code-block:: python
121 122 123

            import paddle

124 125 126 127 128 129 130 131 132 133 134 135
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            # example 1: y is a float or int
            res = paddle.pow(x, 2)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
            res = paddle.pow(x, 2.5)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1.         , 5.65685415 , 15.58845711])

136
            # example 2: y is a Tensor
137
            y = paddle.to_tensor([2], dtype='float32')
138
            res = paddle.pow(x, y)
139 140 141
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
142 143

    """
144
    # in dynamic graph mode
W
WuHaobo 已提交
145
    if in_dygraph_mode():
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
        if isinstance(y, (int, float)):
            return core.ops.pow(x, 'factor', y)
        elif isinstance(y, (paddle.Tensor, Variable)):
            return _elementwise_op_in_dygraph(
                x, y, axis=-1, act=None, op_name='elementwise_pow')
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype))
    # in static graph mode
    else:
        if isinstance(y, (int, float)):
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
J
joejiong 已提交
166
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
167 168 169
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (type(y)))
170 171 172



173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
    op = getattr(core.ops, op_name)
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)

    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)


def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

193 194
    out = helper.kwargs.get('out', None)

195 196 197 198 199 200 201 202 203 204 205 206
    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
207 208 209 210 211 212

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(name=name, dtype=x.dtype, persistable=False)
213 214 215 216 217 218 219 220 221 222 223

    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


Y
Yang Zhang 已提交
224
def add(x, y, name=None):
225
    """
226
    Examples:
227 228 229 230

    ..  code-block:: python

        import paddle
231 232
        x = paddle.to_tensor([2, 3, 4], 'float64')
        y = paddle.to_tensor([1, 5, 2], 'float64')
W
WuHaobo 已提交
233
        z = paddle.add(x, y)
234
        print(z)  # [3., 8., 6. ]
235 236

    """
237

238
    if in_dygraph_mode():
239
        return core.ops.elementwise_add(x, y)
240

241
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))
242 243


244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_add`.
    """
    op_type = 'elementwise_add_'
    axis = -1

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))

    out = _elementwise_op_in_dygraph(
        x, y, axis=axis, op_name=op_type)
    return out


262 263
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
264
    Substract two tensors element-wise. The equation is:
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

    .. math::
        out = x - y

    **Note**:
    ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
283

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[5, 6], [3, 4]])
            res = paddle.subtract(x, y)
            print(res)
            #       [[-4, -4],
            #        [4, 4]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 0, 4])
            res = paddle.subtract(x, y)
            print(res)
            #       [[[ 0,  2, -1],
            #         [ 0,  2, -1]]]

            x = paddle.to_tensor([2, np.nan, 5], dtype='float32')
            y = paddle.to_tensor([1, 4, np.nan], dtype='float32')
            res = paddle.subtract(x, y)
            print(res)
            #       [ 1., nan, nan]

            x = paddle.to_tensor([5, np.inf, -np.inf], dtype='float64')
            y = paddle.to_tensor([1, 4, 5], dtype='float64')
            res = paddle.subtract(x, y)
            print(res)
            #       [   4.,  inf., -inf.]

    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))


323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_subtract`.
    """
    axis = -1
    act = None

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))

    out = _elementwise_op_in_dygraph(
        x, y, axis=axis, act=act, op_name='elementwise_sub_')
    return out


341
def divide(x, y, name=None):
342
    """
343
    Divide two tensors element-wise. The equation is:
344

345 346
    .. math::
        out = x / y
347

348 349
    **Note**:
    ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
350

351 352 353 354
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
355

356
    Returns:
357
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
358

359
    Examples:
360

361
        ..  code-block:: python
362

363
            import paddle
364

365 366
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
367
            z = paddle.divide(x, y)
368
            print(z)  # [2., 0.6, 2.]
369

370 371 372 373 374 375 376
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
377

378
    return _elementwise_op(LayerHelper(op_type, **locals()))
379 380


381 382 383
def floor_divide(x, y, name=None):
    """
    Floor divide two tensors element-wise. The equation is:
384

385 386
    .. math::
        out = x // y
387

388 389
    **Note**:
    ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
390

391 392 393 394
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
395

396 397
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
398

399
    Examples:
400

401
        ..  code-block:: python
402

403
            import paddle
404

405 406
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
407
            z = paddle.floor_divide(x, y)
408
            print(z)  # [2, 0, 2, 2]
409

410 411 412 413 414 415
    """
    op_type = 'elementwise_floordiv'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
416

417
    return _elementwise_op(LayerHelper(op_type, **locals()))
418 419


420
def remainder(x, y, name=None):
421
    r"""
422 423 424
    Mod two tensors element-wise. The equation is:

    .. math::
425

426 427 428
        out = x \% y

    **Note**:
429
    ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
430 431

    Args:
W
WangXi 已提交
432 433
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
434 435 436
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
437
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
438 439 440 441 442 443 444

    Examples:

        ..  code-block:: python

            import paddle

445 446
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
447
            z = paddle.remainder(x, y)
W
WangXi 已提交
448
            print(z)  # [0, 3, 2, 1]
449 450 451

    """
    op_type = 'elementwise_mod'
452 453 454
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
455
            x, y, axis=axis, op_name=op_type)
456 457 458 459

    return _elementwise_op(LayerHelper(op_type, **locals()))


460 461
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
462 463


464
def multiply(x, y, name=None):
465
    """
466
    multiply two tensors element-wise. The equation is:
467

468 469
    .. math::
        out = x * y
470

471 472
    **Note**:
    ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
473

474 475 476 477
    Args:
        x (Tensor): the input tensor, its data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, its data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
478

479
    Returns:
480
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
481

482 483 484 485 486 487
    Examples:

        ..  code-block:: python

            import paddle

488 489
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
490
            res = paddle.multiply(x, y)
491
            print(res) # [[5, 12], [21, 32]]
492

493
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
494 495 496
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
497 498 499 500

    """
    op_type = 'elementwise_mul'
    act = None
501
    axis = -1
502

503 504 505 506
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)

507 508 509 510 511
    if x.dtype != y.dtype:
        raise TypeError(
            'Input tensors must be same type, but received type of x: %s, type of y: %s '
            % (x.dtype, y.dtype))

512 513
    return _elementwise_op(LayerHelper(op_type, **locals()))

514
def maximum(x, y, name=None):
515
    """
W
Wei Shengyu 已提交
516
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
517

518 519
    .. math::
        out = max(x, y)
520

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
    **Note**:
    ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 4],
            #     [7, 8]]

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 2, 4],
            #     [3, 2, 4]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [ 2., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [  5.,   3., inf.]
564 565
    """
    op_type = 'elementwise_max'
566
    axis = -1
567 568 569 570 571 572
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

573
def minimum(x, y, name=None):
574
    """
W
Wei Shengyu 已提交
575
    Compare two tensors and returns a new tensor containing the element-wise minima. The equation is:
576

577 578
    .. math::
        out = min(x, y)
579

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
    **Note**:
    ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.minimum(x, y)
            print(res)
            #       [[1, 2],
            #        [5, 6]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.minimum(x, y)
            print(res)
            #       [[[1, 0, 3],
            #         [1, 0, 3]]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.minimum(x, y)
            print(res)
            #       [ 1., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float64')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float64')
            res = paddle.minimum(x, y)
            print(res)
            #       [   1., -inf.,    5.]
623 624
    """
    op_type = 'elementwise_min'
625
    axis = -1
626 627 628 629 630
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))
631

632 633
for func in [
        add,
634
        multiply
635
]:
636
    proto_dict = {'add': 'elementwise_add', 'multiply': 'elementwise_mul'}
637 638
    op_proto = OpProtoHolder.instance().get_op_proto(proto_dict[func.__name__])

Y
Yang Zhang 已提交
639 640 641 642 643 644 645
    additional_args_lines = [
        "name (string, optional): Name of the output. \
        Default is None. It's used to print debug info for developers. Details: \
        :ref:`api_guide_Name` "
    ]

    func.__doc__ = _generate_doc_string_(
646 647
        op_proto,
        additional_args_lines=additional_args_lines,
648
        skip_attrs_set={"x_data_format", "y_data_format", "axis",
649
            "use_quantizer", "mkldnn_data_type", "Scale_x", "Scale_y", "Scale_out"
650
        }) + """\n""" + str(func.__doc__)
651

Y
Yang Zhang 已提交
652

653
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
654 655 656 657
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
658 659 660
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
661
            Tensor with a single element, otherwise must be in the
662 663 664 665 666 667 668
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
669
            value is False.
670
        name (str, optional): The default value is None. Normally there is no need for
671 672 673
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
674 675
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
        it's data type is the same as `x`.
676 677

    Raises:
678 679
        ValueError: If the data type of `x` is float64, :attr:`dtype` can not be float32 or int32.
        ValueError: If the data type of `x` is int64, :attr:`dtype` can not be int32.
680
        TypeError: The type of :attr:`axis` must be int, list or tuple.
681

682 683 684 685
    Examples:
        .. code-block:: python

            import paddle
686

687
            # x is a Tensor with following elements:
688 689 690
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
691 692
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
693
            out1 = paddle.sum(x)  # [3.5]
694 695 696
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
697

698
            # y is a Tensor with shape [2, 2, 2] and elements as below:
699 700 701
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
702 703
            y = paddle.to_tensor([[[1, 2], [3, 4]], 
                                  [[5, 6], [7, 8]]])
704 705
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
706
    """
707 708 709 710 711 712 713 714 715 716 717
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

718
    attrs = {
719 720 721
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
722 723 724 725
    }
    dtype_flag = False
    if dtype is not None:
        if dtype in ['float64', 'int64']:
726 727
            if (convert_dtype(x.dtype) == "float32" and dtype == "float64") or \
               (convert_dtype(x.dtype) == "int32" and dtype == "int64"):
728
                attrs.update({
729
                    'in_dtype': x.dtype,
730 731 732 733 734
                    'out_dtype': convert_np_dtype_to_dtype_(dtype)
                })
                dtype_flag = True

    if in_dygraph_mode():
735
        axis = axis if axis != None and axis != [] else [0]
736
        if dtype_flag:
737 738 739
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag, 'in_dtype',
                                       x.dtype, 'out_dtype',
740 741
                                       convert_np_dtype_to_dtype_(dtype))
        else:
742 743
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
744
    check_variable_and_dtype(
745
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'sum')
746 747 748 749 750 751 752 753 754 755 756

    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'sum')
        x_dtype = convert_dtype(x.dtype)

        if (x_dtype == "float64" and dtype in ["float32", "int32"]) or \
                (x_dtype == "int64" and dtype == "int32"):
            raise ValueError("The input(x)'s dtype is {} but the attr(dtype) of sum is {}, "
                             "which may cause data type overflows. Please reset attr(dtype) of sum."
                             .format(x_dtype, dtype))

757 758
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'sum')

759 760 761 762 763
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_(dtype))
    else:
764
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
765 766
    helper.append_op(
        type='reduce_sum',
767
        inputs={'X': x},
768 769 770
        outputs={'Out': out},
        attrs=attrs)
    return out
771

772

773
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
774
def add_n(inputs, name=None):
775
    """
S
Steffy-zxf 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
    This OP is used to sum one or more Tensor of the input.
    
    For example:

    .. code-block:: text
    
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
       
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
811 812

    Args:
813
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
814
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
815 816 817 818
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
S
Steffy-zxf 已提交
819
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
820 821 822 823 824 825

    Examples:
        .. code-block:: python

            import paddle

S
Steffy-zxf 已提交
826 827 828 829 830
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
            # [[8., 10., 12.], 
            #  [14., 16., 18.]]
831
    """
S
Steffy-zxf 已提交
832 833 834 835
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
        return core.ops.sum(inputs, 'use_mkldnn', False)
836

S
Steffy-zxf 已提交
837 838
    helper = LayerHelper('add_n', **locals())
    check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
839 840 841 842
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
S
Steffy-zxf 已提交
843
                   ['float32', 'float64', 'int32', 'int64'], 'add_n')
844 845
    else:
        check_variable_and_dtype(inputs, "inputs", \
S
Steffy-zxf 已提交
846
                ['float32', 'float64', 'int32', 'int64'], 'add_n')
847 848


849 850 851 852 853 854 855 856 857 858 859
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})

    return out


860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
    
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: The output Tensor of trunc.
    
    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand([2,2],'float32')
            print(input)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0.02331470, 0.42374918],
            #         [0.79647720, 0.74970269]])

            output = paddle.trunc(input)
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0., 0.],
            #         [0., 0.]]))
    '''
    if in_dygraph_mode():
        return core.ops.trunc(input)
    else:
        inputs = {"X": input}
        attrs = {}

        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(input, 'X', ['int32', 'int64', 'float32', 'float64'], 'trunc')
        out = helper.create_variable_for_type_inference(dtype=input.dtype)

        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": out})
        return out



W
WuHaobo 已提交
904
def mm(input, mat2, name=None):
905
    """
S
swtkiwi 已提交
906

907 908 909 910 911 912 913 914 915 916
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

917 918
    This op does not support broadcasting. See paddle.matmul.

919
    Args:
920
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
921
        mat2 (Tensor): The input tensor which is a Tensor.
922 923 924 925
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
N
Noel 已提交
926
        Tensor: The product Tensor.
927 928 929 930 931

    Examples:
        .. code-block:: python

            import paddle
932 933 934 935 936 937 938 939
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
940

941 942
    """
    if in_dygraph_mode():
W
WuHaobo 已提交
943
        out = _varbase_creator(dtype=input.dtype)
944 945
        core.ops.matmul(input, mat2, out)
        return out
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
983
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
984 985 986 987
    helper.append_op(
        type='matmul', inputs={'X': input,
                               'Y': mat2}, outputs={'Out': out})
    return out
988

989

Y
yaoxuefeng 已提交
990
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
    """
    **addmm**

    This operator is used to perform matrix multiplication for input $x$ and $y$.
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
1004 1005 1006
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
1007
        beta (float): Coefficient of $input$.
Y
yaoxuefeng 已提交
1008
        alpha (float): Coefficient of $x*y$.
1009 1010 1011
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.

    Returns:
Y
yaoxuefeng 已提交
1012
        Tensor: The output Tensor of addmm op.
1013 1014 1015

    Examples:
        ..  code-block:: python
Y
yaoxuefeng 已提交
1016
            
1017 1018
            import paddle

Y
yaoxuefeng 已提交
1019 1020 1021
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
1022

Y
yaoxuefeng 已提交
1023
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
1024

N
Noel 已提交
1025
            print(out)
1026 1027 1028
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
    if not len(input_shape) == len(x_shape) == len(y_shape) == 2:
        raise ValueError("The dimention of input, x, y should be 2 but receive input's shape: {}, x's shape: {}, y's shape: {}".format(input_shape, x_shape, y_shape))
    if input_shape[0] != x_shape[0]:
        if input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
        if input_shape[1] != y_shape[1] and input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
    if input_shape[1] != y_shape[1]:
        if input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
        if input_shape[0] != x_shape[0] and input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
    if x_shape[1] != y_shape[0]:
        raise ValueError("The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(x_shape, y_shape))



1049 1050 1051 1052
    if in_dygraph_mode():
        out = core.ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
        return out

1053 1054 1055 1056
    inputs = {'Input': input, "X": x, "Y": y}
    attrs = {'Alpha': alpha, 'Beta': beta}

    helper = LayerHelper("addmm", **locals())
Y
yaoxuefeng 已提交
1057
    check_variable_and_dtype(input, 'Input', ['float32', 'float64'], 'addmm')
1058 1059 1060 1061 1062 1063 1064
    check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
    check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out})
    return out
1065 1066


1067
def logsumexp(x, axis=None, keepdim=False, name=None):
1068
    r"""
1069
    This OP calculates the log of the sum of exponentials of ``x`` along ``axis`` .
1070

1071
    .. math::
1072
       logsumexp(x) = \\log\\sum exp(x)
1073

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1092

1093
    Returns:
1094 1095
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
1096

1097
    Examples:
1098

1099
    .. code-block:: python
1100

1101 1102
        import paddle

1103
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
1104 1105
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
1106 1107

    """
1108 1109 1110 1111 1112 1113 1114
    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]
1115

1116
    if in_dygraph_mode():
1117
        return core.ops.logsumexp(x, 'axis', axis, 'keepdim', keepdim, 'reduce_all', reduce_all)
1118

1119 1120 1121
    check_variable_and_dtype(x, 'x',
                             ['float32', 'float64'],
                             'logsumexp')
1122

1123
    helper = LayerHelper('logsumexp', **locals())
1124
    attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all':reduce_all}
1125 1126 1127 1128
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs)
    return out
1129

S
swtkiwi 已提交
1130

1131 1132
def inverse(x, name=None):
    """
1133 1134 1135 1136 1137
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
1138
        x (Tensor): The input tensor. The last two
1139 1140 1141 1142 1143 1144 1145 1146
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information,
            please refer to :ref:`api_guide_Name`

    Returns:
1147
        Tensor: A Tensor holds the inverse of x. The shape and data type
1148
                        is the same as x.
1149 1150 1151 1152 1153

    Examples:
        .. code-block:: python

            import paddle
1154 1155

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
1156 1157
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
1158 1159 1160

    """
    if in_dygraph_mode():
1161
        return core.ops.inverse(x)
1162

1163 1164
    def _check_input(x):
        check_variable_and_dtype(x, 'x',
1165
                                 ['float32', 'float64'], 'inverse')
1166
        if len(x.shape) < 2:
1167 1168 1169
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
1170 1171
                "x's shape: %s." % (len(x.shape), x.shape))
    _check_input(x)
1172
    helper = LayerHelper('inverse', **locals())
1173
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1174
    helper.append_op(
1175
        type='inverse', inputs={'Input': [x] }, outputs={'Output': [out]})
1176 1177 1178
    return out


1179
def max(x, axis=None, keepdim=False, name=None):
1180
    """
S
swtkiwi 已提交
1181

1182
    Computes the maximum of tensor elements over the given axis.
1183 1184

    Args:
1185
        x(Tensor): A tensor, the data type is float32,
1186
            float64, int32, int64.
1187
        axis(int|list|tuple, optional): The axis along which the maximum is computed.
1188
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
1189
            `x` and return a Tensor with a single element,
1190 1191 1192
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1193
            output Tensor. The result tensor will have one fewer dimension
1194
            than the `x` unless :attr:`keepdim` is true, default
1195
            value is False.
1196
        name(str, optional): The default value is None.  Normally there is no need for
1197 1198 1199
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
1200
        Tensor, results of maximum on the specified axis of input tensor,
1201
        it's data type is the same as `x`.
1202 1203 1204

    Examples:
        .. code-block:: python
1205

1206
            import paddle
1207

N
Noel 已提交
1208
            # data_x is a Tensor with shape [2, 4]
1209
            # the axis is a int element
1210 1211 1212

            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1213
            result1 = paddle.max(x)
N
Noel 已提交
1214
            print(result1)
1215 1216
            #[0.9]
            result2 = paddle.max(x, axis=0)
W
Wei Shengyu 已提交
1217
            print(result2)
1218 1219
            #[0.2 0.3 0.6 0.9]
            result3 = paddle.max(x, axis=-1)
N
Noel 已提交
1220
            print(result3)
1221 1222
            #[0.9 0.7]
            result4 = paddle.max(x, axis=1, keepdim=True)
N
Noel 已提交
1223
            print(result4)
1224 1225 1226
            #[[0.9]
            # [0.7]]

N
Noel 已提交
1227
            # data_y is a Tensor with shape [2, 2, 2]
1228
            # the axis is list 
1229 1230 1231

            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1232
            result5 = paddle.max(y, axis=[1, 2])
N
Noel 已提交
1233
            print(result5)
1234 1235
            #[4. 8.]
            result6 = paddle.max(y, axis=[0, 1])
N
Noel 已提交
1236
            print(result6)
1237
            #[7. 8.]
1238 1239
    """

1240
    if axis is not None and not isinstance(axis, list):
1241 1242 1243 1244 1245 1246 1247 1248
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))

1249 1250 1251 1252 1253
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    if in_dygraph_mode():
        return core.ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
                                   'reduce_all', reduce_all)
1254

1255
    helper = LayerHelper('max', **locals())
1256
    check_variable_and_dtype(
1257
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max')
1258

1259
    out = helper.create_variable_for_type_inference(
1260
            dtype=x.dtype)
1261 1262
    helper.append_op(
        type='reduce_max',
1263
        inputs={'X': x},
1264 1265
        outputs={'Out': out},
        attrs={
1266 1267
            'dim': axis,
            'keep_dim': keepdim,
1268 1269 1270 1271
            'reduce_all': reduce_all
        })
    return out

1272
def min(x, axis=None, keepdim=False, name=None):
1273
    """
S
swtkiwi 已提交
1274

1275
    Computes the minimum of tensor elements over the given axis
1276

1277
    Args:
1278
        x(Tensor): A tensor, the data type is float32, float64, int32, int64.
1279
        axis(int|list|tuple, optional): The axis along which the minimum is computed.
1280
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
1281
            `x` and return a Tensor with a single element,
1282 1283 1284
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1285
            output Tensor. The result tensor will have one fewer dimension
1286
            than the `x` unless :attr:`keepdim` is true, default
1287
            value is False.
W
WuHaobo 已提交
1288
        name(str, optional): The default value is None.  Normally there is no need for 
1289
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1290

1291
    Returns:
1292
        Tensor, results of minimum on the specified axis of input tensor,
1293
        it's data type is the same as input's Tensor.
1294

1295 1296 1297
    Examples:
        .. code-block:: python

1298
            import paddle
1299

1300
            # x is a tensor with shape [2, 4]
1301
            # the axis is a int element
1302 1303
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1304
            result1 = paddle.min(x)
N
Noel 已提交
1305
            print(result1)
1306 1307
            #[0.1]
            result2 = paddle.min(x, axis=0)
N
Noel 已提交
1308
            print(result2)
1309 1310
            #[0.1 0.2 0.5 0.7]
            result3 = paddle.min(x, axis=-1)
W
Wei Shengyu 已提交
1311
            print(result3)
1312 1313
            #[0.2 0.1]
            result4 = paddle.min(x, axis=1, keepdim=True)
N
Noel 已提交
1314
            print(result4)
1315 1316 1317
            #[[0.2]
            # [0.1]]

N
Noel 已提交
1318
            # y is a Tensor with shape [2, 2, 2]
1319
            # the axis is list 
1320 1321
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1322
            result5 = paddle.min(y, axis=[1, 2])
W
Wei Shengyu 已提交
1323
            print(result5)
1324 1325
            #[1. 5.]
            result6 = paddle.min(y, axis=[0, 1])
N
Noel 已提交
1326
            print(result6)
1327 1328
            #[1. 2.]
    """
1329

1330
    if axis is not None and not isinstance(axis, list):
1331 1332 1333 1334 1335 1336 1337
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))
1338 1339
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
1340
    if in_dygraph_mode():
1341
        return core.ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
1342
                                   'reduce_all', reduce_all)
1343 1344 1345 1346 1347 1348

    helper = LayerHelper('min', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min')

    out = helper.create_variable_for_type_inference(
1349
            dtype=x.dtype)
1350 1351
    helper.append_op(
        type='reduce_min',
1352
        inputs={'X': x},
1353 1354
        outputs={'Out': out},
        attrs={
1355 1356
            'dim': axis,
            'keep_dim': keepdim,
1357 1358 1359 1360 1361
            'reduce_all': reduce_all
        })
    return out


W
WuHaobo 已提交
1362
def log1p(x, name=None):
1363
    r"""
1364
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
1365

1366 1367
    .. math::
        Out = \\ln(x+1)
S
Steffy-zxf 已提交
1368

1369
    Args:
S
Steffy-zxf 已提交
1370
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
1371 1372 1373
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
S
Steffy-zxf 已提交
1374
        Tensor, the natural log of the input Tensor computed element-wise.
1375

1376 1377
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
1378

1379
            import paddle
S
Steffy-zxf 已提交
1380 1381 1382 1383

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
1384 1385 1386 1387 1388 1389 1390 1391 1392
    """

    if in_dygraph_mode():
        return core.ops.log1p(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
1393
    out = helper.create_variable_for_type_inference(dtype)
1394 1395
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
1396

J
joejiong 已提交
1397
def log2(x, name=None):
1398
    r"""
J
joejiong 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

        Out = \\log_2x

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
    if in_dygraph_mode():
        return core.ops.log2(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log2")
    inputs = {'X': [x]}
    helper = LayerHelper('log2', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
    return out
W
WuHaobo 已提交
1445

J
joejiong 已提交
1446 1447

def log10(x, name=None):
1448
    r"""
J
joejiong 已提交
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

        Out = \\log_10_x

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
    if in_dygraph_mode():
        return core.ops.log10(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log10")
    inputs = {'X': [x]}
    helper = LayerHelper('log10', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
    return out


Y
Yang Zhang 已提交
1497
def clip(x, min=None, max=None, name=None):
1498
    """
Y
Yang Zhang 已提交
1499
    This operator clip all elements in input into the range [ min, max ] and return
1500 1501 1502 1503
    a resulting tensor as the following equation:

    .. math::

1504
        Out = MIN(MAX(x, min), max)
1505 1506

    Args:
1507 1508
        x (Tensor): An N-D Tensor with data type float32, float64, int32 or int64.
        min (float|int|Tensor): The lower bound with type ``float`` , ``int`` or a ``Tensor``
1509
            with shape [1] and type ``int32``, ``float32``, ``float64``.
1510
        max (float|int|Tensor): The upper bound with type ``float``, ``int`` or a ``Tensor``
1511 1512 1513 1514 1515 1516
            with shape [1] and type ``int32``, ``float32``, ``float64``.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
Y
Yang Zhang 已提交
1517
        Tensor: A Tensor with the same data type and data shape as input.
1518 1519 1520 1521 1522

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
1523

1524
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
1525 1526
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
1527
            print(out1)
Y
Yang Zhang 已提交
1528 1529
            # [[3.5, 3.5]
            # [4.5, 5.0]]
1530
            print(out2)
Y
Yang Zhang 已提交
1531 1532
            # [[2.5, 3.5]
            # [[4.5, 6.4]
1533 1534
    """

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
1545

W
WuHaobo 已提交
1546
    if in_dygraph_mode():
1547 1548 1549 1550
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
1551 1552
        min = min_ if min is None else min
        max = max_ if max is None else max
Y
Yang Zhang 已提交
1553
        return core.ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
1554

1555
    if min is not None:
Y
Yang Zhang 已提交
1556
        check_type(min, 'min', (float, int, Variable), 'clip')
1557 1558
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1559
                        'clip', '(When the type of min in clip is Variable.)')
1560
    if max is not None:
Y
Yang Zhang 已提交
1561
        check_type(max, 'max', (float, int, Variable), 'clip')
1562 1563
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1564
                        'clip', '(When the type of max in clip is Variable.)')
1565

1566
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], 'clip')
Y
Yang Zhang 已提交
1567 1568

    inputs = {'X': x}
1569
    attrs = {'min': min_, 'max': max_}
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
1583
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
1584
    output = helper.create_variable_for_type_inference(
Y
Yang Zhang 已提交
1585
        dtype=helper.input_dtype('x'))
1586 1587 1588 1589
    helper.append_op(
        type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs)

    return output
F
Feiyu Chan 已提交
1590

W
WuHaobo 已提交
1591

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_clip`.
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
        min = min.numpy().item(0)
    if isinstance(max, Variable):
        max = max.numpy().item(0)
    min = fmin if min is None else min
    max = fmax if max is None else max
    return core.ops.clip_(x, "min", min, "max", max)



1610
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
1611
    """
1612
    **trace**
S
swtkiwi 已提交
1613

1614
    This OP computes the sum along diagonals of the input tensor x.
1615 1616

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
1617

1618
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
1619
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
1620
    of the input tensor x.
L
Li Fuchen 已提交
1621

1622
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
1623 1624 1625 1626

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
1627
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
1628

L
Li Fuchen 已提交
1629
    Args:
1630
        x(Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
1631 1632 1633
        offset(int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1(int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2(int, optional): The second axis with respect to take diagonal. Default: 1.
L
Li Fuchen 已提交
1634 1635 1636
        name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
1637
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
1638 1639 1640 1641 1642

    Examples:
        .. code-block:: python

            import paddle
1643

1644 1645 1646
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
1647 1648 1649
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
1650
    """
1651 1652
    inputs = {'Input': [x]}
    attrs = {'offset': offset, 'axis1': axis1, 'axis2': axis2}
L
Li Fuchen 已提交
1653 1654

    def __check_input(input, offset, dim1, dim2):
1655
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
1656 1657 1658
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

1659
        input_shape = list(x.shape)
L
Li Fuchen 已提交
1660
        assert len(input_shape) >= 2,                     \
1661 1662
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
1663 1664
                len(input_shape)

1665 1666
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
1667

1668 1669 1670
        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
1671

1672 1673 1674
        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
1675 1676


1677 1678 1679
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
1680

1681 1682 1683
    if in_dygraph_mode():
        return core.ops.trace(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)

L
Li Fuchen 已提交
1684
    if not in_dygraph_mode():
1685
        __check_input(input, offset, axis1, axis2)
L
Li Fuchen 已提交
1686 1687
    helper = LayerHelper('trace', **locals())

1688
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
1689 1690 1691

    helper.append_op(
        type='trace',
1692
        inputs={'Input': [x]},
L
Li Fuchen 已提交
1693
        attrs={'offset': offset,
1694 1695
               'axis1': axis1,
               'axis2': axis2},
L
Li Fuchen 已提交
1696 1697 1698
        outputs={'Out': [out]})
    return out

F
Feiyu Chan 已提交
1699
@templatedoc(op_type="kron")
W
WuHaobo 已提交
1700
def kron(x, y, name=None):
S
swtkiwi 已提交
1701 1702 1703
    """

${comment}
F
Feiyu Chan 已提交
1704 1705

    Args:
N
Noel 已提交
1706
        x (Tensor): the fist operand of kron op, data type: float16, float32,
F
Feiyu Chan 已提交
1707
            float64, int32 or int64.
N
Noel 已提交
1708
        y (Tensor): the second operand of kron op, data type: float16,
1709
            float32, float64, int32 or int64. Its data type should be the same
F
Feiyu Chan 已提交
1710
            with x.
1711 1712
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
F
Feiyu Chan 已提交
1713 1714 1715
            refer to :ref:`api_guide_Name`.

    Returns:
N
Noel 已提交
1716
        Tensor: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
1717 1718 1719

    Examples:
        .. code-block:: python
1720

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
1732 1733 1734 1735 1736 1737 1738 1739
    """
    if in_dygraph_mode():
        return core.ops.kron(x, y)

    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

W
WuHaobo 已提交
1740
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
1741 1742
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
1743 1744 1745 1746


def cumsum(x, axis=None, dtype=None, name=None):
    """
1747 1748 1749 1750
    The cumulative sum of the elements along a given axis. 
    
    **Note**:
    The first element of the result is the same of the first element of the input. 
1751 1752

    Args:
1753
        x (Tensor): The input tensor needed to be cumsumed.
1754 1755 1756 1757 1758
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1759
        Tensor, the result of cumsum operator. 
1760 1761 1762 1763 1764

    Examples:
        .. code-block:: python
            
            import paddle
1765 1766 1767
            
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
            
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
            # VarType.FP64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = layers.cast(x, dtype)

    if in_dygraph_mode():
        if axis is None:
            return core.ops.cumsum(x, 'flatten', flatten)
        else:
            return core.ops.cumsum(x, 'axis', axis, 'flatten', flatten)

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
1807

J
Jack Zhou 已提交
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
1824

1825
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1826
            out = paddle.tensor.isfinite(x)
N
Noel 已提交
1827
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
    """
    if in_dygraph_mode():
        return core.ops.isfinite_v2(x)
    helper = LayerHelper("isfinite_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite')
    out = helper.create_variable_for_type_inference('bool')
    helper.append_op(type="isfinite_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
1853
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1854
            out = paddle.tensor.isinf(x)
N
Noel 已提交
1855
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
    """
    if in_dygraph_mode():
        return core.ops.isinf_v2(x)
    helper = LayerHelper("isinf_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
1881
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1882
            out = paddle.tensor.isnan(x)
N
Noel 已提交
1883
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
    """
    if in_dygraph_mode():
        return core.ops.isnan_v2(x)
    helper = LayerHelper("isnan_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
    return out


G
guofei 已提交
1894 1895 1896 1897 1898
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
1899
        x(Tensor): The input tensor, its data type should be float32, float64, int32, int64.
G
guofei 已提交
1900 1901 1902 1903 1904 1905 1906 1907 1908
        axis(int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`, 
            multiply all elements of `x` and return a Tensor with a single element, 
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`, 
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
        dtype(str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64, 
            int32, int64. If specified, the input tensor is casted to dtype before operator performed. 
            This is very useful for avoiding data type overflows. The default value is None, the dtype 
            of output is the same as input Tensor `x`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result 
1909
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
G
guofei 已提交
1910 1911 1912 1913 1914 1915 1916 1917 1918
        name(string, optional): The default value is None. Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor, result of product on the specified dim of input tensor.

    Raises:
        ValueError: The :attr:`dtype` must be float32, float64, int32 or int64.
        TypeError: The type of :attr:`axis` must be int, list or tuple.
J
Jack Zhou 已提交
1919
    
G
guofei 已提交
1920 1921 1922 1923 1924 1925
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
1926 1927
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
            out1 = paddle.prod(x)
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
1944 1945
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod')
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
            x = layers.cast(x, dtype)

    return layers.reduce_prod(input=x, dim=axis, keep_dim=keepdim, name=name)
W
WangXi 已提交
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977


def sign(x, name=None):
    """
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): The default value is None. Normally there is no need for user to
            set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

1978
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
    if in_dygraph_mode():
        return core.ops.sign(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sign')
    helper = LayerHelper("sign", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out


def tanh(x, name=None):
1995
    r"""
W
WangXi 已提交
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
    Tanh Activation Operator.

    .. math::
        out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

2014
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
2015
            out = paddle.tanh(x)
N
Noel 已提交
2016
            print(out)
W
WangXi 已提交
2017 2018 2019 2020 2021 2022
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
    if in_dygraph_mode():
        return core.ops.tanh(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanh')
S
ShenLiang 已提交
2023
    check_type(x, 'x', (Variable), 'tanh')
W
WangXi 已提交
2024 2025 2026 2027
    helper = LayerHelper('tanh', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
    return out
S
Steffy-zxf 已提交
2028

2029
@inplace_apis_in_dygraph_only
2030 2031 2032 2033 2034
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
2035
    return core.ops.tanh_(x)
2036 2037


S
Steffy-zxf 已提交
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
def increment(x, value=1.0, name=None):
    """
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
        value(float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
    if in_dygraph_mode():
        return core.ops.increment(x, 'step', value)

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
    helper = LayerHelper("increment", **locals())
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
        outputs={'Out': [x]},
        attrs={'step': float(value)})
    return x
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082


def all(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical and`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
2083
            Tensor with a single element, otherwise must be in the
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
N
Noel 已提交
2106
            # x is a bool Tensor with following elements:
2107 2108
            #    [[True, False]
            #     [True, True]]
S
syyxsxx 已提交
2109
            x = paddle.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
2110
            print(x)
S
syyxsxx 已提交
2111
            x = paddle.cast(x, 'bool')
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
            
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
            
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
            
            # keep_dim=False, out3 should be [False, True], out.shape should be (2,)
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
            
            # keep_dim=True, out4 should be [[False], [True]], out.shape should be (2,1)
S
syyxsxx 已提交
2126 2127
            out4 = paddle.all(x, axis=1, keepdim=True)
            out4 = paddle.cast(out4, 'int32')  # [[False], [True]]
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    dtype_flag = False


    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
        return core.ops.reduce_all(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
    check_variable_and_dtype(x, 'x', ['bool'], 'all')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')

    helper = LayerHelper('all', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_all',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out


def any(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical or`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
2177
            Tensor with a single element, otherwise must be in the
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
N
Noel 已提交
2200
            # x is a bool Tensor with following elements:
2201 2202
            #    [[True, False]
            #     [False, False]]
S
syyxsxx 已提交
2203
            x = paddle.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
2204
            print(x)
S
syyxsxx 已提交
2205
            x = paddle.cast(x, 'bool')
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
            
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
            
            # out2 should be [True, False]
            out2 = paddle.any(x, axis=0)  # [True, False]
            print(out2)
            
            # keep_dim=False, out3 should be [True, False], out.shape should be (2,)
            out3 = paddle.any(x, axis=-1)  # [True, False]
            print(out3)
            
            # keep_dim=True, result should be [[True], [False]], out.shape should be (2,1)
S
syyxsxx 已提交
2220 2221
            out4 = paddle.any(x, axis=1, keepdim=True)
            out4 = paddle.cast(out4, 'int32')  # [[True], [False]]
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    dtype_flag = False


    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
        return core.ops.reduce_any(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
    check_variable_and_dtype(x, 'x', ['bool'], 'any')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')

    helper = LayerHelper('any', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_any',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out
L
Leo Chen 已提交
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287

def broadcast_shape(x_shape, y_shape):
    """
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape, please refer to :ref:`user_guide_broadcasting` for more details.

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
        

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
            
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328

def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
        x (Tensor): The input tensor which hold the complex numbers. 
            Optional data types are: complex64, complex128, float32, float64, int32 or int64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        out (Tensor): The conjugate of input. The shape and data type is the same with input.
            If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.

    Examples:
        .. code-block:: python

          import paddle
          data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1+1j), (2+2j), (3+3j)],
          #        [(4+4j), (5+5j), (6+6j)]])

          conj_data=paddle.conj(data)
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1-1j), (2-2j), (3-3j)],
          #        [(4-4j), (5-5j), (6-6j)]])

    """
    if in_dygraph_mode():
        return core.ops.conj(x)

    check_variable_and_dtype(x, "x", ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'], 'conj')

    helper = LayerHelper('conj', **locals())
    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())

    helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
    return out
2329

Z
zyfncg 已提交
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            res = paddle.digamma(data)
            print(res)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[-0.57721591,  0.03648996],
            #        [ nan       ,  5.32286835]])
    """

    if in_dygraph_mode():
        return core.ops.digamma(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'digamma')
    helper = LayerHelper('digamma', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
    return out

2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.neg(x)
            print(out)
            # [0.4 0.2 -0.1 -0.3]
    """

    return layers.scale(x, scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name)