nn.py 126.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16
"""
P
peizhilin 已提交
17
import os
S
sneaxiy 已提交
18
import inspect
19 20 21 22 23
import warnings

import numpy as np

import paddle
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from paddle.fluid.framework import _in_legacy_dygraph
26
from ..initializer import Normal, Constant
27 28 29 30 31 32 33 34 35 36 37 38 39
from ..framework import (
    Variable,
    OpProtoHolder,
    _non_static_mode,
    dygraph_only,
    _dygraph_tracer,
    default_main_program,
    _varbase_creator,
    static_only,
    _global_flags,
    _in_legacy_dygraph,
    in_dygraph_mode,
)
40
from ..framework import _current_expected_place
41
from .. import dygraph_utils
Y
yangyaming 已提交
42
from ..param_attr import ParamAttr
43 44 45 46 47
from .layer_function_generator import (
    autodoc,
    templatedoc,
    _generate_doc_string_,
)
48
from .tensor import concat, assign, fill_constant, zeros, tensor_array_to_tensor
49
from . import utils
F
fengjiayi 已提交
50
from .. import unique_name
51
from functools import reduce
52
from .. import core
53
from ...utils import deprecated
54 55 56 57 58 59
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
60
from paddle.utils import deprecated
61
from paddle import _C_ops, _legacy_C_ops
62 63
from collections.abc import Iterable

Y
Yu Yang 已提交
64 65

__all__ = [
X
Xin Pan 已提交
66 67 68 69 70 71 72 73 74 75 76
    'fc',
    'embedding',
    'linear_chain_crf',
    'crf_decoding',
    'conv2d',
    'pool2d',
    'dropout',
    'split',
    'l2_normalize',
    'row_conv',
    'layer_norm',
D
dengkaipeng 已提交
77
    'spectral_norm',
X
Xin Pan 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90
    'one_hot',
    'autoincreased_step_counter',
    'unsqueeze',
    'lod_reset',
    'relu',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
C
chengduo 已提交
91 92
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
Y
Yu Yang 已提交
93 94
]

95
OP_NAMEMAPPING = {
96 97 98 99 100 101 102 103
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
104
    'elementwise_mod': 'remainder',
105 106
}

Y
Yu Yang 已提交
107

108 109
def _get_reduce_dim(dim, input):
    """
110
    Internal function for reduce_sum, reduce_mean, reduce_prod.
111 112 113 114 115 116 117 118 119
    It computes the attribute reduce_all value based on axis.
    """
    if dim is not None and not isinstance(dim, list):
        if isinstance(dim, (tuple, range)):
            dim = list(dim)
        elif isinstance(dim, int):
            dim = [dim]
        else:
            raise TypeError(
120
                "The type of dim must be int, list, tuple or range, but received {}".format(
121
                    type(dim)
122 123
                )
            )
124 125 126 127 128 129 130 131 132 133
    if dim is None:
        dim = []
    if dim == [] or len(dim) == len(input.shape):
        reduce_all = True
    else:
        reduce_all = False

    return reduce_all, dim


134
@dygraph_only
135 136 137
def _elementwise_op_in_dygraph(
    x, y, axis=-1, act=None, use_mkldnn=False, op_name=None
):
138 139 140 141
    def is_inplace(op_name):
        return op_name[-1] == "_"

    if op_name not in OP_NAMEMAPPING.keys() or axis != -1:
142
        op = getattr(_legacy_C_ops, op_name)
143 144 145
        out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
    else:
        if in_dygraph_mode():
146 147
            op = getattr(
                _C_ops,
148 149
                OP_NAMEMAPPING[op_name] if not is_inplace(op_name) else op_name,
            )
150 151 152
            out = op(x, y)

        if _in_legacy_dygraph():
153
            op = getattr(_legacy_C_ops, op_name)
154
            out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
155 156 157 158 159 160 161 162 163 164 165 166 167 168
    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn
    )


def fc(
    input,
    size,
    num_flatten_dims=1,
    param_attr=None,
    bias_attr=None,
    act=None,
    name=None,
):
169
    r"""
170 171
    :api_attr: Static Graph

172
    **Fully Connected Layer**
Y
Yu Yang 已提交
173

174 175 176
    This operator creates a fully connected layer in the network. It can take
    a Tensor(or LoDTensor) or a list of Tensor(or LoDTensor) as its inputs(see
    Args in detail). It creates a variable called weight for each input Tensor,
177
    which represents a fully connected weight matrix from each input unit to
178 179 180 181
    each output unit. The fully connected layer multiplies each input Tensor
    with its corresponding weight to produce an output Tensor with shape :math:`[M, size]` ,
    where M is batch size. If a list of Tensor is given, the results of
    multiple output Tensors with shape :math:`[M, size]` will be summed up. If :attr:`bias_attr`
182
    is not None, a bias variable will be created and added to the output.
183
    Finally, if :attr:`act` is not None, it will be applied to the output as well.
C
caoying03 已提交
184

185
    When the input is a single Tensor(or LoDTensor):
C
caoying03 已提交
186

187 188 189 190
    .. math::

        Out = Act({XW + b})

191
    When the input is a list of Tensor(or LoDTensor):
192 193 194

    .. math::

195
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
196 197 198

    In the above equation:

199 200 201
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
202
    * :math:`b`: The bias parameter created by this layer (if needed).
203
    * :math:`Act`: The activation function.
204
    * :math:`Out`: The output Tensor.
205 206 207

    .. code-block:: text

208 209 210 211 212 213 214 215 216 217 218 219 220 221
        Case 1:
        Given a single Tensor data_1, and num_flatten_dims = 2:
            data_1.data = [[[0.1, 0.2],
                            [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            out = fluid.layers.fc(input=data_1, size=1, num_flatten_dims=2)

        Then output is:
            out.data = [[0.83234344], [0.34936576]]
            out.shape = (1, 2, 1)

        Case 2:
        Given a list of Tensor:
222 223 224 225 226 227 228 229 230 231 232 233 234
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
235
    Args:
236 237 238
        input (Variable|list of Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` or
            a list of Tensor(or LoDTensor). The dimensions of the input Tensor is at least 2 and the data
            type should be float32 or float64.
T
tianshuo78520a 已提交
239
        size(int): The number of output units in this layer, which also means the feature size of output
240 241
            Tensor(or LoDTensor).
        num_flatten_dims (int): The fc layer can accept an input Tensor with more than
R
ranqiu 已提交
242
            two dimensions. If this happens, the multidimensional tensor will first be flattened
243 244
            into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input
            Tensor is flattened: the first :attr:`num_flatten_dims` (inclusive, index starts from 1)
R
ranqiu 已提交
245
            dimensions will be flatten to form the first dimension of the final matrix (height of
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
            the matrix), and the rest :math:`rank(X) - num\_flatten\_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, assuming that
            X is a 5-dimensional Tensor with a shape [2, 3, 4, 5, 6], and :attr:`num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1.
        param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
            default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
            sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: Tensor or LoDTensor calculated by fc layer. The data type is same with input.
261 262

    Raises:
263
        ValueError: If dimensions of the input Tensor is less than 2.
264 265 266 267

    Examples:
        .. code-block:: python

268
          import paddle.fluid as fluid
269 270
          import paddle
          paddle.enable_static()
271
          # when input is single tensor
272
          data = fluid.data(name="data", shape=[-1, 32], dtype="float32")
273
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
274 275

          # when input are multiple tensors
276 277
          data_1 = fluid.data(name="data_1", shape=[-1, 32], dtype="float32")
          data_2 = fluid.data(name="data_2", shape=[-1, 36], dtype="float32")
278
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
279
    """
C
caoying03 已提交
280
    helper = LayerHelper("fc", **locals())
281
    check_type(input, 'input', (list, tuple, Variable), 'fc')
282 283
    if isinstance(input, (list, tuple)):
        for i, input_x in enumerate(input):
284
            check_type(input_x, 'input[' + str(i) + ']', Variable, 'fc')
Y
Yu Yang 已提交
285
    dtype = helper.input_dtype()
286 287 288
    check_dtype(
        dtype, 'input', ['float16', 'uint16', 'float32', 'float64'], 'fc'
    )
Y
Yu Yang 已提交
289
    mul_results = []
290 291
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
292 293
        if num_flatten_dims == -1:
            num_flatten_dims = len(input_shape) - 1
Y
Yu Yang 已提交
294 295 296
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
297

298 299 300
        w = helper.create_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False
        )
X
Xin Pan 已提交
301
        tmp = helper.create_variable_for_type_inference(dtype)
302 303 304 305 306 307
        helper.append_op(
            type="mul",
            inputs={"X": input_var, "Y": w},
            outputs={"Out": tmp},
            attrs={"x_num_col_dims": num_flatten_dims, "y_num_col_dims": 1},
        )
308 309 310 311
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
312
    else:
X
Xin Pan 已提交
313
        pre_bias = helper.create_variable_for_type_inference(dtype)
314 315 316 317 318 319
        helper.append_op(
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": False},
        )
320 321 322 323
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
324 325


T
tangwei12 已提交
326
@deprecated(since="2.0.0", update_to="paddle.nn.functional.embedding")
327 328 329 330 331 332 333 334 335
def embedding(
    input,
    size,
    is_sparse=False,
    is_distributed=False,
    padding_idx=None,
    param_attr=None,
    dtype='float32',
):
336
    r"""
337
    :api_attr: Static Graph
338

339 340 341 342 343 344 345 346 347 348 349 350
    **WARING:** This OP will be deprecated in a future release. This OP requires the
    last dimension of Tensor shape must be equal to 1. It is recommended to use
    fluid. :ref:`api_fluid_embedding` .

    The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

    This OP requires the last dimension of Tensor shape must be equal to 1. The shape
    of output Tensor is generated by replacing the last dimension of the input Tensor shape
    with emb_size.

351
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[[1], [3]], [[2], [4]], [[4], [127]]]
            input.shape = [3, 2, 1]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
369

370 371 372 373
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
374

375
        Case 2:
376

377 378 379 380 381 382 383 384 385 386 387 388 389 390
        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 16]
            out.data = [[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654],
                        [0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]  # padding data
        It will pad all-zero data when ids is 0.
Y
Yu Yang 已提交
391 392

    Args:
393 394 395 396 397 398
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id information.
            The last dimension of Tensor shape must be equal to 1. The value of the input id should
            satisfy :math:`0<= id < size[0]` .
        size(tuple|list): The shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
399
            affects the performance of the backwards gradient update. It is recommended to set
400
            True because sparse update is faster. But some optimizer does not support sparse update,
401
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` ,
402 403 404 405 406
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
407
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size).
408 409 410 411 412 413
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
414
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
415
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
416
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
417 418 419
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor.
            It must be float32 or float64. Default: float32.
Y
Yu Yang 已提交
420

421
    Returns:
422
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
Y
Yu Yang 已提交
423

424 425
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
426

B
bdzhuxiaoning 已提交
427
          import paddle.fluid as fluid
428
          import numpy as np
429 430
          import paddle
          paddle.enable_static()
431

432 433
          data = fluid.data(name='x', shape=[None, 1], dtype='int64')

T
tianshuo78520a 已提交
434
          # example 1
435 436 437 438 439 440 441 442 443
          emb_1 = fluid.embedding(input=data, size=[128, 64])

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
444
          emb_2 = fluid.layers.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')
Y
Yu Yang 已提交
445 446 447
    """

    helper = LayerHelper('embedding', **locals())
448 449 450 451 452 453 454 455 456
    check_variable_and_dtype(
        input, 'input', ['int64'], 'fluid.layers.embedding'
    )
    check_dtype(
        dtype,
        'dtype',
        ['uint16', 'float16', 'float32', 'float64'],
        'fluid.layers.embedding',
    )
457 458 459 460 461 462 463 464 465

    if is_distributed:
        is_distributed = False
        warnings.warn(
            "is_distributed is go out of use, `fluid.contrib.layers.sparse_embedding` is your needed"
        )

    remote_prefetch = True if is_sparse else False

466 467 468
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False
    )
X
Xin Pan 已提交
469
    tmp = helper.create_variable_for_type_inference(dtype)
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
    padding_idx = (
        -1
        if padding_idx is None
        else padding_idx
        if padding_idx >= 0
        else (size[0] + padding_idx)
    )
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input, 'W': w},
        outputs={'Out': tmp},
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'remote_prefetch': remote_prefetch,
            'padding_idx': padding_idx,
        },
    )
Y
Yu Yang 已提交
488 489 490
    return tmp


491 492 493 494 495 496 497 498 499 500 501
def _pull_sparse(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
502
    r"""
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the fleet table id of this embedding.
        accessor_class(str): the pslib accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
548
        'is_distributed': True,
549 550
    }
    # this is only for compatible with embedding op
551 552 553 554 555 556 557 558 559
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
560 561 562 563 564
    if len(outs) == 1:
        return outs[0]
    return outs


565 566 567 568 569 570 571 572 573 574 575
def _pull_sparse_v2(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
576
    r"""
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the pslib table id of this embedding.
        accessor_class(str): the fleet accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse_v2(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
622
        'is_distributed': True,
623 624
    }
    # this is only for compatible with embedding op
625 626 627 628 629 630 631 632 633
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse_v2',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
634
    if len(outs) == 1:
Y
yaoxuefeng 已提交
635 636 637 638
        return outs[0]
    return outs


639 640 641
def _pull_gpups_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
Y
yaoxuefeng 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654
    r"""
    **Pull GpuPS Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    GpuPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int|list of int): The embedding size parameter of each input, which indicates the size of
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
655
        float32 now.
Y
yaoxuefeng 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs, whose size are indicated by size respectively.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          slots = []
          data_1 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          slots.append(data_1)
          data_2 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          slots.append(data_2)
          embs = fluid.layers.pull_gpups_sparse(input=slots, size=[11, 35])
    """
    helper = LayerHelper('pull_gpups_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
675 676 677
            "GpuPS only support float type embedding now, and your type is: "
            + dtype
        )
Y
yaoxuefeng 已提交
678 679 680 681 682 683
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
684 685 686 687 688 689 690 691 692 693 694 695 696
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size[0]], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_gpups_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
Y
yaoxuefeng 已提交
697
    if len(outs) == 1:
698 699 700 701
        return outs[0]
    return outs


702 703 704
def _pull_box_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
705
    r"""
H
hutuxian 已提交
706 707 708 709 710 711 712
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
713
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
H
hutuxian 已提交
714
            contains the IDs information.
715
        size(int): The embedding size parameter, which indicates the size of
H
hutuxian 已提交
716
            each embedding vector respectively.
717
        dtype(str): The dtype refers to the data type of output tensor. Only supports
718
        float32 now.
H
hutuxian 已提交
719 720 721 722 723 724 725 726 727 728

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
729
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])
H
hutuxian 已提交
730 731 732 733
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
734 735 736
            "BoxPS only support float type embedding now, and your type is: "
            + dtype
        )
H
hutuxian 已提交
737 738 739 740 741 742
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
743 744 745 746 747 748 749 750 751 752 753 754 755
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
H
hutuxian 已提交
756 757 758 759 760
    if len(outs) == 1:
        return outs[0]
    return outs


Y
yuyang18 已提交
761
@templatedoc()
762
def linear_chain_crf(input, label, param_attr=None, length=None):
Y
yuyang18 已提交
763
    """
764 765
    :api_attr: Static Graph

Y
yuyang18 已提交
766 767 768 769 770
    Linear Chain CRF.

    ${comment}

    Args:
771
        input(${emission_type}): ${emission_comment}
Y
yuyang18 已提交
772
        label(${label_type}): ${label_comment}
773
        Length(${length_type}): ${length_comment}
774
        param_attr(ParamAttr): The attribute of the learnable parameter for transition parameter.
Y
yuyang18 已提交
775 776

    Returns:
D
dzhwinter 已提交
777 778
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
779
        output(${log_likelihood_type}): ${log_likelihood_comment} \n
Y
yuyang18 已提交
780

J
JesseyXujin 已提交
781 782 783
    Examples:
        .. code-block:: python

784 785
            import paddle.fluid as fluid
            import numpy as np
786 787
            import paddle
            paddle.enable_static()
788 789 790 791 792

            #define net structure, using LodTensor
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
793 794
                input_data = fluid.data(name='input_data', shape=[-1,10], dtype='float32')
                label = fluid.data(name='label', shape=[-1,1], dtype='int')
795 796 797 798 799 800
                emission= fluid.layers.fc(input=input_data, size=10, act="tanh")
                crf_cost = fluid.layers.linear_chain_crf(
                    input=emission,
                    label=label,
                    param_attr=fluid.ParamAttr(
                    name='crfw',
801
                    learning_rate=0.01))
802 803 804
            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
805
            exe.run(startup_program)
806 807 808 809 810
            #define data, using LoDTensor
            a = fluid.create_lod_tensor(np.random.rand(12,10).astype('float32'), [[3,3,4,2]], place)
            b = fluid.create_lod_tensor(np.array([[1],[1],[2],[3],[1],[1],[1],[3],[1],[1],[1],[1]]),[[3,3,4,2]] , place)
            feed1 = {'input_data':a,'label':b}
            loss= exe.run(train_program,feed=feed1, fetch_list=[crf_cost])
811
            print(loss)
812 813 814 815 816

            #define net structure, using padding
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
817 818 819
                input_data2 = fluid.data(name='input_data2', shape=[-1,10,10], dtype='float32')
                label2 = fluid.data(name='label2', shape=[-1,10,1], dtype='int')
                label_length = fluid.data(name='length', shape=[-1,1], dtype='int')
820 821 822 823 824 825
                emission2= fluid.layers.fc(input=input_data2, size=10, act="tanh", num_flatten_dims=2)
                crf_cost2 = fluid.layers.linear_chain_crf(
                    input=emission2,
                    label=label2,
                    length=label_length,
                    param_attr=fluid.ParamAttr(
J
JesseyXujin 已提交
826
                     name='crfw',
827 828 829 830 831 832
                     learning_rate=0.01))

            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)
J
JesseyXujin 已提交
833

834 835 836
            #define data, using padding
            cc=np.random.rand(4,10,10).astype('float32')
            dd=np.random.rand(4,10,1).astype('int64')
837
            ll=np.array([[3],[3],[4],[2]])
838 839
            feed2 = {'input_data2':cc,'label2':dd,'length':ll}
            loss2= exe.run(train_program,feed=feed2, fetch_list=[crf_cost2])
840
            print(loss2)
841 842 843 844 845
            #[array([[ 7.8902354],
            #        [ 7.3602567],
            #        [ 10.004011],
            #        [ 5.86721  ]], dtype=float32)]

846 847 848
            #you can use find_var to get transition parameter.
            transition=np.array(fluid.global_scope().find_var('crfw').get_tensor())
            print(transition)
849

Y
yuyang18 已提交
850
    """
851 852 853
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'linear_chain_crf'
    )
854
    check_variable_and_dtype(label, 'label', ['int64'], 'linear_chain_crf')
Y
Yu Yang 已提交
855
    helper = LayerHelper('linear_chain_crf', **locals())
856
    size = input.shape[2] if length else input.shape[1]
857 858 859 860 861
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype(),
    )
X
Xin Pan 已提交
862
    alpha = helper.create_variable_for_type_inference(
863 864
        dtype=helper.input_dtype()
    )
X
Xin Pan 已提交
865
    emission_exps = helper.create_variable_for_type_inference(
866 867
        dtype=helper.input_dtype()
    )
X
Xin Pan 已提交
868
    transition_exps = helper.create_variable_for_type_inference(
869 870
        dtype=helper.input_dtype()
    )
X
Xin Pan 已提交
871
    log_likelihood = helper.create_variable_for_type_inference(
872 873
        dtype=helper.input_dtype()
    )
874 875 876
    this_inputs = {
        "Emission": [input],
        "Transition": transition,
877
        "Label": [label],
878 879
    }
    if length:
880
        this_inputs['Length'] = [length]
881 882 883 884 885 886 887 888 889 890
    helper.append_op(
        type='linear_chain_crf',
        inputs=this_inputs,
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood,
        },
    )
Y
Yu Yang 已提交
891 892 893 894

    return log_likelihood


W
wopeizl 已提交
895
@templatedoc()
896
def crf_decoding(input, param_attr, label=None, length=None):
W
wopeizl 已提交
897
    """
898
    :api_attr: Static Graph
899

W
wopeizl 已提交
900
    ${comment}
Y
yi.wu 已提交
901

W
wopeizl 已提交
902
    Args:
903
        input(Tensor): ${emission_comment}
Y
yi.wu 已提交
904

905 906
        param_attr (ParamAttr|None): To specify the weight parameter attribute.
            Default: None, which means the default weight parameter property is
907
            used. See usage for details in :ref:`api_paddle_fluid_param_attr_ParamAttr` .
Y
yuyang18 已提交
908

Y
Yibing Liu 已提交
909
        label(${label_type}, optional): ${label_comment}
910

Y
Yibing Liu 已提交
911
        length(${length_type}, optional): ${length_comment}
912

W
wopeizl 已提交
913
    Returns:
914
        Tensor: ${viterbi_path_comment}
Y
yi.wu 已提交
915

W
wopeizl 已提交
916 917
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
918

919 920
           import paddle
           paddle.enable_static()
921 922 923

           # LoDTensor-based example
           num_labels = 10
924 925 926
           feature = paddle.static.data(name='word_emb', shape=[-1, 784], dtype='float32', lod_level=1)
           label = paddle.static.data(name='label', shape=[-1, 1], dtype='int64', lod_level=1)
           emission = paddle.static.nn.fc(feature, size=num_labels)
927

928 929 930 931
           crf_cost = paddle.fluid.layers.linear_chain_crf(input=emission, label=label,
                     param_attr=paddle.ParamAttr(name="crfw"))
           crf_decode = paddle.static.nn.crf_decoding(input=emission,
                     param_attr=paddle.ParamAttr(name="crfw"))
932 933 934

           # Common tensor example
           num_labels, max_len = 10, 20
935 936 937 938
           feature = paddle.static.data(name='word_emb_pad', shape=[-1, max_len, 784], dtype='float32')
           label = paddle.static.data(name='label_pad', shape=[-1, max_len, 1], dtype='int64')
           length = paddle.static.data(name='length', shape=[-1, 1], dtype='int64')
           emission = paddle.static.nn.fc(feature, size=num_labels,
939
                                      num_flatten_dims=2)
940

941 942 943 944
           crf_cost = paddle.fluid.layers.linear_chain_crf(input=emission, label=label, length=length,
                     param_attr=paddle.ParamAttr(name="crfw_pad"))
           crf_decode = paddle.static.nn.crf_decoding(input=emission, length=length,
                     param_attr=paddle.ParamAttr(name="crfw_pad"))
W
wopeizl 已提交
945
    """
946 947 948
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'crf_decoding'
    )
W
wopeizl 已提交
949 950 951
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
952 953
        dtype=core.VarDesc.VarType.INT64
    )
954 955 956
    inputs = {"Emission": [input], "Transition": transition, "Label": label}
    if length:
        inputs['Length'] = length
957 958 959 960 961
    helper.append_op(
        type='crf_decoding',
        inputs=inputs,
        outputs={"ViterbiPath": [viterbi_path]},
    )
Y
Yu Yang 已提交
962

W
wopeizl 已提交
963
    return viterbi_path
Y
Yu Yang 已提交
964 965


966
@deprecated(since="2.0.0", update_to="paddle.nn.functional.dropout")
967 968 969 970 971 972 973 974
def dropout(
    x,
    dropout_prob,
    is_test=None,
    seed=None,
    name=None,
    dropout_implementation="downgrade_in_infer",
):
975
    """
976

977 978 979 980
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
981
    training. The dropout operator randomly sets (according to the given dropout
982 983 984
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
985 986
    dropout op can be removed from the program to make the program more efficient.

987
    Args:
L
lvmengsi 已提交
988
        x (Variable): The input tensor variable. The data type is float16 or float32 or float64.
989
        dropout_prob (float): Probability of setting units to zero.
990
        is_test (bool): A flag indicating whether it is in test phrase or not.
991
                        Default None, in dynamic graph, it use global tracer mode; in static graph, it means False.
992 993 994
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
L
lvmengsi 已提交
995
                    units will be dropped. DO NOT use a fixed seed in training.Default: None.
996 997
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
998 999
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1000
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1001 1002

                                           - train: out = input * mask
C
ceci3 已提交
1003
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1004 1005 1006

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1007
                                        2. upscale_in_train, upscale the outcome at training time
1008

H
haowang101779990 已提交
1009 1010
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1011

H
haowang101779990 已提交
1012 1013
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1014

M
minqiyang 已提交
1015

1016
    Returns:
L
lvmengsi 已提交
1017
        A Variable holding Tensor representing the dropout, has same shape and data type with `x`.
1018 1019

    Examples:
1020

1021 1022
        .. code-block:: python

1023
            import paddle
1024
            import paddle.fluid as fluid
1025

1026
            paddle.enable_static()
L
lvmengsi 已提交
1027
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
T
tianshuo78520a 已提交
1028
            dropped = fluid.layers.dropout(x, dropout_prob=0.5)
1029
    """
1030 1031
    if not isinstance(dropout_prob, (float, int, Variable)):
        raise TypeError(
1032 1033
            "dropout_prob argument should be a number(int|float) or Variable"
        )
1034
    # fast return for p == 0
1035
    if isinstance(dropout_prob, (int, float)) and dropout_prob == 0:
1036
        return x
1037

J
Jiabin Yang 已提交
1038
    if _non_static_mode():
1039 1040 1041
        if (
            seed is None or seed == 0
        ) and default_main_program().random_seed != 0:
1042
            seed = default_main_program().random_seed
1043 1044
        if is_test is None:
            is_test = not _dygraph_tracer()._train_mode
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
        out, mask = _legacy_C_ops.dropout(
            x,
            'dropout_prob',
            dropout_prob,
            'is_test',
            is_test,
            'fix_seed',
            seed is not None,
            'seed',
            seed if seed is not None else 0,
            'dropout_implementation',
            dropout_implementation,
        )
1058
        return out
1059

W
wanghuancoder 已提交
1060 1061 1062
    def get_attrs(prog, dropout_prob, is_test, seed):
        if (seed is None or seed == 0) and prog.random_seed != 0:
            seed = prog.random_seed
1063 1064
        if isinstance(dropout_prob, Variable) and not dropout_prob.shape != [1]:
            raise TypeError(
1065 1066 1067 1068
                "Required dropout_prob.shape == [1] if type(dropout_prob) is Variable, but received dropout_prob.shape = {}".format(
                    dropout_prob.shape
                )
            )
W
wanghuancoder 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077
        attrs = {
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
        }
        return attrs

F
fengjiayi 已提交
1078
    helper = LayerHelper('dropout', **locals())
1079 1080 1081
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'dropout'
    )
1082

X
Xin Pan 已提交
1083 1084
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
1085 1086
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
    )
C
chengduo 已提交
1087

1088
    attrs = get_attrs(helper.main_program, dropout_prob, is_test, seed)
C
chengduo 已提交
1089

1090 1091 1092 1093 1094 1095
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out], 'Mask': [mask]},
        attrs=attrs,
    )
1096 1097 1098
    return out


1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
def conv2d(
    input,
    num_filters,
    filter_size,
    stride=1,
    padding=0,
    dilation=1,
    groups=None,
    param_attr=None,
    bias_attr=None,
    use_cudnn=True,
    act=None,
    name=None,
    data_format="NCHW",
):
1114
    r"""
1115 1116
    :api_attr: Static Graph

C
chengduoZH 已提交
1117
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1118
    and strides, paddings, dilations, groups parameters. Input and
L
liym27 已提交
1119
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
1120
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1121 1122 1123 1124 1125 1126
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
1127
    for more details.
1128 1129 1130
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1131

1132
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1133

C
chengduoZH 已提交
1134 1135
    .. math::

C
refine  
chengduoZH 已提交
1136
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1137

T
tensor-tang 已提交
1138
    Where:
C
chengduoZH 已提交
1139

L
liym27 已提交
1140
    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
1141 1142 1143 1144
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1145
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1146 1147 1148

    Example:

1149 1150
        - Input:

W
weixing02 已提交
1151
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1152

W
weixing02 已提交
1153
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1154

1155
        - Output:
T
tensor-tang 已提交
1156

W
weixing02 已提交
1157
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1158

C
chengduoZH 已提交
1159
        Where
1160 1161

        .. math::
C
chengduoZH 已提交
1162

W
weixing02 已提交
1163 1164
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1165 1166

    Args:
1167
        input (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type
L
lvmengsi 已提交
1168
            of input is float16 or float32 or float64.
T
tensor-tang 已提交
1169
        num_filters(int): The number of filter. It is as same as the output
1170
            image channel.
1171 1172
        filter_size (int|tuple): The filter size. If filter_size
            is a tuple, it must contain two integers, (filter_size_height,
L
lvmengsi 已提交
1173 1174
            filter_size_width). Otherwise, filter_size_height = filter_size_width =\
            filter_size.
1175 1176
        stride (int|tuple): The stride size. It means the stride in convolution.
            If stride is a tuple, it must contain two integers, (stride_height, stride_width).
L
lvmengsi 已提交
1177 1178
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
T
tianshuo78520a 已提交
1179
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
L
liym27 已提交
1180 1181
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
1182 1183
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0],
L
lvmengsi 已提交
1184
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
liym27 已提交
1185 1186 1187
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
1188
        dilation (int|tuple): The dilation size. It means the spacing between the kernel
1189 1190
            points. If dilation is a tuple, it must contain two integers, (dilation_height,
            dilation_width). Otherwise, dilation_height = dilation_width = dilation.
L
lvmengsi 已提交
1191
            Default: dilation = 1.
1192 1193 1194 1195
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1196 1197 1198 1199 1200
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1201
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1202 1203 1204 1205 1206
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1207 1208
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1209 1210
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1211 1212
        name(str|None): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
L
lvmengsi 已提交
1213
           None by default.
1214
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1215
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
L
liym27 已提交
1216 1217
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
1218 1219

    Returns:
1220 1221 1222
        A Tensor representing the conv2d, whose data type is the
        same with input. If act is None, the tensor storing the convolution
        result, and if act is not None, the tensor storing convolution
L
lvmengsi 已提交
1223
        and non-linearity activation result.
C
refine  
chengduoZH 已提交
1224

1225 1226 1227 1228 1229
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
1230
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0
1231 1232 1233 1234 1235 1236 1237
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
1238 1239 1240
    Examples:
        .. code-block:: python

1241 1242
          import paddle
          paddle.enable_static()
1243

1244 1245 1246
          data = paddle.static.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
          conv2d = paddle.static.nn.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
          print(conv2d.shape) # [-1, 2, 30, 30]
Y
Yu Yang 已提交
1247 1248
    """

1249 1250 1251
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'conv2d'
    )
1252
    if len(input.shape) != 4:
1253 1254 1255 1256
        raise ValueError(
            "Input size should be 4, "
            "but received {}".format(len(input.shape))
        )
1257
    num_channels = input.shape[1]
L
liym27 已提交
1258
    if not isinstance(use_cudnn, bool):
1259 1260 1261 1262
        raise ValueError(
            "Attr(use_cudnn) should be True or False. Received "
            "Attr(use_cudnn): %s. " % str(use_cudnn)
        )
L
liym27 已提交
1263 1264 1265 1266

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1267 1268
            "Attr(data_format): %s." % str(data_format)
        )
L
liym27 已提交
1269

1270
    channel_last = data_format == "NHWC"
L
liym27 已提交
1271 1272 1273 1274
    num_channels = input.shape[3] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
1275 1276
            "Received: %s." % (str(input.shape), str(num_channels))
        )
C
chengduo 已提交
1277
    assert param_attr is not False, "param_attr should not be False here."
L
liym27 已提交
1278

1279 1280 1281
    if groups is None:
        num_filter_channels = num_channels
    elif groups <= 0:
1282 1283
        raise ValueError(
            "the groups of input must be greater than 0, "
1284 1285
            "but received the groups of input is {}".format(groups)
        )
1286 1287 1288 1289 1290
    else:
        if num_channels % groups != 0:
            raise ValueError(
                "the channel of input must be divisible by groups,"
                "received: the channel of input is {}, the shape of input is {}"
1291 1292
                ", the groups is {}".format(num_channels, input.shape, groups)
            )
1293 1294
        num_filter_channels = num_channels // groups

1295
    l_type = 'conv2d'
1296 1297 1298 1299 1300
    if (
        num_channels == groups
        and num_filters % num_channels == 0
        and not use_cudnn
    ):
1301
        l_type = 'depthwise_conv2d'
1302

1303 1304 1305 1306 1307
    if (
        num_channels == groups
        and num_filters % num_channels == 0
        and core.is_compiled_with_rocm()
    ):
1308 1309
        l_type = 'depthwise_conv2d'

1310 1311
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
    if core.is_compiled_with_npu():
1312
        if num_channels == groups and num_channels == num_filters:
1313 1314 1315 1316
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

1317 1318 1319
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

C
chengduoZH 已提交
1320 1321
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
1322
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1323

L
liym27 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
    # padding
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
1336 1337
                        "is not supported." % str(padding)
                    )
L
liym27 已提交
1338 1339 1340 1341 1342 1343
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
1344 1345
                        "is not supported." % str(padding)
                    )
L
liym27 已提交
1346 1347 1348
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1349 1350 1351
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]

L
liym27 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
1362 1363 1364
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'."
                % str(padding)
            )
L
liym27 已提交
1365 1366
        if padding == "VALID":
            padding_algorithm = "VALID"
1367
            padding = [0, 0]
L
liym27 已提交
1368 1369
        elif padding == "SAME":
            padding_algorithm = "SAME"
1370
            padding = [0, 0]
L
liym27 已提交
1371 1372

    padding = _update_padding(padding, data_format)
Y
Yu Yang 已提交
1373

M
minqiyang 已提交
1374
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1375 1376

    def _get_default_param_initializer():
C
chengduo 已提交
1377
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
1378 1379 1380 1381
        if filter_elem_num <= 0:
            raise ValueError(
                "Invalid filter number, excepted number is larger than 0, but"
                " received {}, please check the input shape and "
1382 1383 1384
                "filter size.".format(filter_elem_num)
            )
        std = (2.0 / filter_elem_num) ** 0.5
Y
Yu Yang 已提交
1385 1386 1387 1388 1389 1390
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
1391 1392
        default_initializer=_get_default_param_initializer(),
    )
Y
Yu Yang 已提交
1393

X
Xin Pan 已提交
1394
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1395

1396 1397 1398 1399 1400 1401
    if (
        core.is_compiled_with_cuda()
        and paddle.fluid.get_flags("FLAGS_conv2d_disable_cudnn")[
            "FLAGS_conv2d_disable_cudnn"
        ]
    ):
1402 1403
        use_cudnn = False

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
        },
    )
Y
Yu Yang 已提交
1423

1424 1425 1426 1427
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
Y
Yu Yang 已提交
1428 1429 1430 1431

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1432
@templatedoc()
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
def pool2d(
    input,
    pool_size=-1,
    pool_type="max",
    pool_stride=1,
    pool_padding=0,
    global_pooling=False,
    use_cudnn=True,
    ceil_mode=False,
    name=None,
    exclusive=True,
    data_format="NCHW",
):
Y
Yu Yang 已提交
1446
    """
1447

F
fengjiayi 已提交
1448
    ${comment}
1449 1450

    Args:
K
Kaipeng Deng 已提交
1451 1452 1453 1454 1455
        input (Variable): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
J
JiabinYang 已提交
1456
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
1457 1458
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
1459
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
1460 1461 1462
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
1463 1464 1465 1466 1467 1468 1469
        pool_padding (string|int|list|tuple): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`,
            `pool_padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
J
JiabinYang 已提交
1470
            Otherwise, the pool padding size will be a square of an int.
1471 1472 1473
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
1474 1475 1476
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1477
        exclusive (bool): Whether to exclude padding points in average pooling
1478
                          mode, default is `true`.
1479
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
1480 1481
                The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_height, input_width]`.
F
fengjiayi 已提交
1482

1483
    Returns:
K
Kaipeng Deng 已提交
1484
        Variable: The output tensor of pooling result. The data type is same as input tensor.
F
fengjiayi 已提交
1485 1486

    Raises:
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

F
fengjiayi 已提交
1499 1500 1501 1502 1503

    Examples:

        .. code-block:: python

1504
          import paddle.fluid as fluid
1505 1506 1507
          import paddle

          paddle.enable_static()
1508

K
Kaipeng Deng 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')

          # max pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551

          # Attr(pool_padding) is a list with 4 elements, Attr(data_format) is "NCHW".
          out_1 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0],
            data_format = "NCHW")

          # Attr(pool_padding) is a string, Attr(data_format) is "NCHW".
          out_2 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            data_format = "NCHW")
Y
Yu Yang 已提交
1552 1553 1554
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
1555
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
1556 1557
            str(pool_type),
        )
C
chengduoZH 已提交
1558

C
chengduoZH 已提交
1559 1560
    if global_pooling is False and pool_size == -1:
        raise ValueError(
1561
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
1562 1563
            "and be a valid value. Received pool_size: %s." % str(pool_size)
        )
1564 1565

    if not isinstance(use_cudnn, bool):
1566 1567 1568 1569
        raise TypeError(
            "Attr(use_cudnn) should be True or False. Received "
            "Attr(use_cudnn): %s." % str(use_cudnn)
        )
1570 1571 1572 1573

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1574 1575
            "Attr(data_format): %s." % str(data_format)
        )
C
chengduoZH 已提交
1576

C
chengduoZH 已提交
1577 1578 1579
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
1591 1592
                        "is not supported." % str(padding)
                    )
1593 1594 1595 1596 1597 1598
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
1599 1600
                        "is not supported." % str(padding)
                    )
1601 1602 1603
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1604

1605 1606
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
1618 1619
                % str(pool_padding)
            )
1620 1621
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
1622
            pool_padding = [0, 0]
1623
            if ceil_mode is not False:
1624 1625
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode) must be False. "
1626 1627
                    "Received ceil_mode: True."
                )
1628 1629
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
1630
            pool_padding = [0, 0]
1631 1632

    pool_padding = update_padding(pool_padding, data_format)
1633
    if in_dygraph_mode():
1634
        input = input._use_gpudnn(use_cudnn)
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
        return _C_ops.pool2d(
            input,
            pool_size,
            pool_stride,
            pool_padding,
            ceil_mode,
            exclusive,
            data_format,
            pool_type,
            global_pooling,
            False,
            padding_algorithm,
        )
1648 1649
    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
1650
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1651
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1652

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
    helper.append_op(
        type=op_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": exclusive,
            "data_format": data_format,
        },
    )
1671 1672 1673 1674

    return pool_out


Y
yuyang18 已提交
1675
@templatedoc()
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
def layer_norm(
    input,
    scale=True,
    shift=True,
    begin_norm_axis=1,
    epsilon=1e-05,
    param_attr=None,
    bias_attr=None,
    act=None,
    name=None,
):
1687
    r"""
1688 1689
    :api_attr: Static Graph

1690 1691 1692 1693
    **Layer Normalization Layer**

    The API implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
G
guosheng 已提交
1694 1695 1696

    The formula is as follows:

Y
yuyang18 已提交
1697
    ..  math::
G
guosheng 已提交
1698

1699
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
G
guosheng 已提交
1700

1701
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
Y
yuyang18 已提交
1702

1703
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
Y
yuyang18 已提交
1704

1705 1706 1707 1708 1709
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
1710

G
guosheng 已提交
1711
    Args:
1712
        input(Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64.
1713 1714 1715 1716 1717
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
            normalization. Default: True.
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
            normalization. Default: True.
        begin_norm_axis(int, optional): The normalization will be performed along
G
guosheng 已提交
1718
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
1719 1720 1721 1722
            Default: 1.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
1723 1724
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
1725
            a default :code:`ParamAttr` would be added as scale. The
1726 1727
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
1728 1729
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
1730
            a default :code:`ParamAttr` would be added as bias. The
1731
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
1732
        act(str, optional): Activation to be applied to the output of layer normalization.
1733 1734
                  Default: None.
        name(str): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
1735 1736

    Returns:
1737
        Tensor: ``Tensor``  indicating the normalized result, the data type is the same as  ``input`` , and the return dimension is the same as  ``input`` .
G
guosheng 已提交
1738 1739 1740

    Examples:

1741 1742
        .. code-block:: python

1743 1744
            import paddle
            paddle.enable_static()
1745 1746 1747
            x = paddle.static.data(name='x', shape=[8, 32, 32], dtype='float32')
            output = paddle.static.nn.layer_norm(input=x, begin_norm_axis=1)
            print(output.shape)  # [8, 32, 32]
G
guosheng 已提交
1748
    """
1749 1750 1751
    assert (
        _non_static_mode() is not True
    ), "please use LayerNorm instead of layer_norm in dygraph mode!"
G
guosheng 已提交
1752
    helper = LayerHelper('layer_norm', **locals())
1753 1754 1755
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'layer_norm'
    )
G
guosheng 已提交
1756 1757 1758 1759 1760 1761 1762
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
1763 1764 1765 1766 1767 1768 1769 1770 1771
        assert (
            param_attr is not False
        ), "param_attr should not be False when using scale."
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0),
        )
G
guosheng 已提交
1772
        inputs['Scale'] = scale
1773 1774
    else:
        if param_attr:
T
tianshuo78520a 已提交
1775
            warnings.warn("param_attr is only available with scale is True.")
G
guosheng 已提交
1776
    if shift:
1777 1778 1779 1780 1781 1782
        assert (
            bias_attr is not False
        ), "bias_attr should not be False when using shift."
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True
        )
G
guosheng 已提交
1783
        inputs['Bias'] = bias
1784 1785
    else:
        if bias_attr:
T
tianshuo78520a 已提交
1786
            warnings.warn("bias_attr is only available with shift is True.")
G
guosheng 已提交
1787 1788

    # create output
1789 1790 1791 1792 1793 1794
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
X
Xin Pan 已提交
1795
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1796

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon, "begin_norm_axis": begin_norm_axis},
    )
G
guosheng 已提交
1807 1808 1809 1810

    return helper.append_activation(layer_norm_out)


D
dengkaipeng 已提交
1811
@templatedoc()
1812
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
1813
    r"""
1814 1815
    :api_attr: Static Graph

D
dengkaipeng 已提交
1816 1817
    **Spectral Normalization Layer**

K
Kaipeng Deng 已提交
1818
    This operation calculates the spectral normalization value of weight parameters of
1819
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
K
Kaipeng Deng 已提交
1820 1821
    Parameters. Output tensor will be in same shape with input tensor.
    Calculations are showed as follows.
1822

D
dengkaipeng 已提交
1823 1824 1825
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
1826
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
1827 1828

    Step 2:
T
tianshuo78520a 已提交
1829
    :attr:`power_iters` should be a positive integer, do following
K
Kaipeng Deng 已提交
1830 1831
    calculations with U and V for :attr:`power_iters` rounds. Calculations
    as follows:
D
dengkaipeng 已提交
1832

1833
    .. math::
D
dengkaipeng 已提交
1834 1835 1836 1837 1838 1839

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
1840
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
1841 1842 1843 1844

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
1845

D
dengkaipeng 已提交
1846
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
1847

1848

D
dengkaipeng 已提交
1849 1850 1851
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
C
Chen Long 已提交
1852
        weight(Tensor): ${weight_comment}
D
dengkaipeng 已提交
1853 1854 1855
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
K
Kaipeng Deng 已提交
1856 1857 1858
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
1859 1860

    Returns:
C
Chen Long 已提交
1861
        Tensor: A tensor of weight parameters after spectral normalization.
K
Kaipeng Deng 已提交
1862
                  The data type and shape is same as input tensor.
D
dengkaipeng 已提交
1863 1864

    Examples:
K
Kaipeng Deng 已提交
1865
       .. code-block:: python
D
dengkaipeng 已提交
1866

1867
            import paddle
K
Kaipeng Deng 已提交
1868

1869
            paddle.enable_static()
C
Chen Long 已提交
1870
            weight = paddle.static.data(name='weight', shape=[2, 8, 32, 32], dtype='float32')
1871
            x = paddle.static.nn.spectral_norm(weight=weight, dim=1, power_iters=2)
C
Chen Long 已提交
1872
            print(x.shape) # [2, 8, 32, 32]
D
dengkaipeng 已提交
1873 1874
    """
    helper = LayerHelper('spectral_norm', **locals())
1875 1876 1877
    check_variable_and_dtype(
        weight, 'weight', ['float32', 'float64'], 'spectral_norm'
    )
1878 1879 1880
    check_type(dim, 'dim', int, 'spectral_norm')
    check_type(power_iters, 'power_iters', int, 'spectral_norm')
    check_type(eps, 'eps', float, 'spectral_norm')
1881
    dtype = weight.dtype
D
dengkaipeng 已提交
1882 1883

    # create intput and parameters
1884
    input_shape = weight.shape
1885
    assert weight.numel() > 0, "Any dimension of input cannot be equal to 0."
1886 1887 1888 1889 1890
    assert dim < len(input_shape), (
        "The input `dim` should be less than the "
        "rank of `weight`, but received dim="
        "{}".format(dim)
    )
1891 1892 1893
    h = input_shape[dim]
    w = np.prod(input_shape) // h

1894 1895 1896 1897 1898 1899
    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0.0, 1.0),
    )
1900
    u.stop_gradient = True
1901 1902 1903 1904 1905 1906
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0.0, 1.0),
    )
1907
    v.stop_gradient = True
D
dengkaipeng 已提交
1908

1909 1910 1911 1912 1913 1914 1915
    if in_dygraph_mode():
        return _C_ops.spectral_norm(weight, u, v, dim, power_iters, eps)

    inputs = {'Weight': weight}
    inputs['U'] = u
    inputs['V'] = v

D
dengkaipeng 已提交
1916
    # create output
1917
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
1918

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
    helper.append_op(
        type="spectral_norm",
        inputs=inputs,
        outputs={
            "Out": out,
        },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        },
    )
D
Dun 已提交
1931

1932
    return out
D
Dun 已提交
1933 1934


C
caoying03 已提交
1935
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
1936
    """
1937

Y
yangyaming 已提交
1938
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
1939 1940

    Args:
1941 1942 1943
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
1944 1945
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
1946 1947
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
1948
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
1949
            output Tensor. The result tensor will have one fewer dimension
1950 1951 1952 1953
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
1954 1955

    Returns:
1956 1957
        Variable: Tensor, results of summation operation on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
F
fengjiayi 已提交
1958

1959 1960
    Raises:
        TypeError, if out data type is different with the input data type.
1961

G
guosheng 已提交
1962 1963 1964
    Examples:
        .. code-block:: python

1965
            import paddle.fluid as fluid
1966 1967
            import paddle
            paddle.enable_static()
G
guosheng 已提交
1968 1969 1970
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
1971
            # Each example is followed by the corresponding output tensor.
1972
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
1973 1974 1975 1976
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
1977

1978
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
1979 1980
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
1981
            # Each example is followed by the corresponding output tensor.
1982
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
1983 1984
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
1985

G
guosheng 已提交
1986
    """
1987 1988
    reduce_all, dim = _get_reduce_dim(dim, input)

1989
    if in_dygraph_mode():
1990
        return _C_ops.sum(input, dim, None, keep_dim)
1991
    elif _in_legacy_dygraph():
1992 1993 1994
        return _legacy_C_ops.reduce_sum(
            input, 'dim', dim, 'keep_dim', keep_dim, 'reduce_all', reduce_all
        )
1995
    attrs = {'dim': dim, 'keep_dim': keep_dim, 'reduce_all': reduce_all}
1996
    check_variable_and_dtype(
1997 1998 1999 2000 2001
        input,
        'input',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'reduce_sum',
    )
2002
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
2003
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
2004 2005 2006 2007 2008 2009
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs=attrs,
    )
G
guosheng 已提交
2010
    return out
G
guosheng 已提交
2011 2012


C
caoying03 已提交
2013
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
2014
    """
2015
    Split the input tensor into multiple sub-Tensors.
G
guosheng 已提交
2016 2017

    Args:
2018
        input (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
2019
        num_or_sections (int|list|tuple): If ``num_or_sections`` is int, then the ``num_or_sections``
2020
            indicates the number of equal sized sub-Tensors that the ``input``
2021
            will be divided into. If ``num_or_sections`` is a list or tuple, the length of it
2022 2023 2024 2025 2026
            indicates the number of sub-Tensors and the elements in it indicate the sizes of sub-Tensors'
            dimension orderly. The length of the list mustn't be larger than the ``input`` 's size of specified dim.
        dim (int|Tensor, optional): The dimension along which to split, it can be a scalar with type ``int`` or
            a ``Tensor`` with shape [1] and data type ``int32`` or ``int64``. If :math:`dim < 0`,
            the dimension to split along is :math:`rank(input) + dim`. Default is -1.
2027
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
2028
            For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
2029 2030

    Returns:
2031
        list(Tensor): The list of segmented Tensors.
G
guosheng 已提交
2032

2033
    Example:
G
guosheng 已提交
2034 2035
        .. code-block:: python

2036 2037
            import paddle.fluid as fluid

2038
            # input is a Tensor which shape is [3, 9, 5]
2039
            input = fluid.data(
2040 2041
                 name="input", shape=[3, 9, 5], dtype="float32")

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
            out0, out1, out2 = fluid.layers.split(input, num_or_sections=3, dim=1)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            out0, out1, out2 = fluid.layers.split(input, num_or_sections=[2, 3, 4], dim=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]

            out0, out1, out2 = fluid.layers.split(input, num_or_sections=[2, 3, -1], dim=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]
2056

2057 2058 2059 2060 2061 2062
            # dim is negative, the real dim is (rank(input) + axis) which real
            # value is 1.
            out0, out1, out2 = fluid.layers.split(input, num_or_sections=3, dim=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
2063

G
guosheng 已提交
2064
    """
J
Jiabin Yang 已提交
2065
    if _non_static_mode():
2066 2067 2068
        num = None
        attrs = ()

S
songyouwei 已提交
2069 2070
        if isinstance(dim, Variable):
            dim = dim.numpy()
2071
            dim = dim.item(0)
W
wangzhen38 已提交
2072
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
S
songyouwei 已提交
2073
        dim = (len(input.shape) + dim) if dim < 0 else dim
2074
        attrs += ('axis', dim)
2075 2076 2077

        if isinstance(num_or_sections, int):
            num = num_or_sections
2078
            attrs += ('num', num_or_sections)
L
Leo Chen 已提交
2079
        elif isinstance(num_or_sections, (list, tuple)):
2080
            num = len(num_or_sections)
L
Leo Chen 已提交
2081
            if utils._contain_var(num_or_sections):
2082 2083
                for index, item in enumerate(num_or_sections):
                    if isinstance(item, Variable):
2084 2085 2086
                        num_or_sections[index] = num_or_sections[index].numpy()[
                            0
                        ]
2087
                attrs += ('sections', list(num_or_sections))
L
Leo Chen 已提交
2088
            else:
2089
                attrs += ('sections', list(num_or_sections))
2090 2091
        else:
            raise TypeError(
2092
                "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but "
2093 2094
                "received %s." % (type(num_or_sections))
            )
2095
        if in_dygraph_mode():
C
Charles-hit 已提交
2096 2097 2098 2099
            if isinstance(num_or_sections, int):
                return _C_ops.split_with_num(input, num_or_sections, dim)
            else:
                return _C_ops.split(input, num_or_sections, dim)
2100 2101
        elif _in_legacy_dygraph():
            out = [_varbase_creator() for n in range(num)]
2102
            _legacy_C_ops.split(input, out, *attrs)
2103
            return out
L
Leo Chen 已提交
2104

2105
    check_variable_and_dtype(
2106 2107 2108 2109 2110
        input,
        'input',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'split',
    )
2111 2112 2113 2114
    check_type(num_or_sections, 'num_or_sections', (list, int, tuple), 'split')
    check_type(dim, 'dim', (int, Variable), 'split')
    if isinstance(dim, Variable):
        check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split')
2115

G
guosheng 已提交
2116
    helper = LayerHelper('split', **locals())
2117

G
guosheng 已提交
2118
    input_shape = input.shape
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
2130
                assert isinstance(dim_size, int)
2131 2132 2133
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
2134 2135 2136
                        "be -1. But received num_or_section[%d] is also -1."
                        % idx
                    )
2137 2138
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
2139 2140 2141
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out
                )
2142 2143 2144 2145 2146 2147 2148
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
W
wangzhen38 已提交
2149
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
2150 2151 2152
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

G
guosheng 已提交
2153 2154
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
2155
        if isinstance(dim, int) and input_shape[dim] > 0:
2156 2157 2158 2159 2160 2161
            assert input_shape[dim] % num_or_sections == 0, (
                "The input's size along the split dimension "
                "must be evenly divisible by Attr(num_or_sections). "
                "But %d is not evenly divisible by %d. "
                % (num_or_sections, input_shape[dim])
            )
G
guosheng 已提交
2162 2163
        num = num_or_sections
    else:
2164
        if isinstance(dim, int) and input_shape[dim] > 0:
2165 2166 2167
            assert (
                len(num_or_sections) <= input_shape[dim]
            ), 'len(num_or_sections) must not be more than input.shape[dim].'
G
guosheng 已提交
2168
        num = len(num_or_sections)
2169
        attrs['sections'] = list(
2170 2171 2172 2173 2174
            map(
                lambda ele: -1 if isinstance(ele, Variable) else ele,
                num_or_sections,
            )
        )
L
Leo Chen 已提交
2175
        if utils._contain_var(num_or_sections):
2176
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
2177 2178
                num_or_sections
            )
2179

G
guosheng 已提交
2180
    outs = [
X
Xin Pan 已提交
2181
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
2182 2183
        for i in range(num)
    ]
2184 2185 2186
    helper.append_op(
        type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs
    )
G
guosheng 已提交
2187
    return outs
C
caoying03 已提交
2188 2189 2190


def l2_normalize(x, axis, epsilon=1e-12, name=None):
2191
    r"""
2192

R
ruri 已提交
2193
    This op normalizes `x` along dimension `axis` using an L2
C
caoying03 已提交
2194 2195
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

2196
    .. math::
2197 2198

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
2199 2200 2201 2202 2203

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
2204
        x(Variable|list): The input tensor could be N-D tensor, and the input data type could be float16, float32 or float64.
2205
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
2206 2207
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
2208
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
2209
            the default value is 1e-12.
2210
    name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
2211

C
caoying03 已提交
2212
    Returns:
R
ruri 已提交
2213
        Variable: The output has the same shape and data type with `x`.
C
caoying03 已提交
2214 2215

    Examples:
2216

2217 2218
    .. code-block:: python
        :name: code-example1
2219

2220
        import paddle
2221

2222 2223
        X = paddle.randn(shape=[3, 5], dtype='float64')
        out = paddle.fluid.layers.l2_normalize(X, axis=-1)
G
Guoxia Wang 已提交
2224
        print(out)
R
ruri 已提交
2225

2226 2227 2228
        # [[ 0.21558504  0.56360189  0.47466096  0.46269539 -0.44326736]
        #  [-0.70602414 -0.52745777  0.37771788 -0.2804768  -0.04449922]
        #  [-0.33972208 -0.43014923  0.31772556  0.76617881 -0.10761525]]
2229

C
caoying03 已提交
2230
    """
F
fengjiayi 已提交
2231 2232
    if len(x.shape) == 1:
        axis = 0
J
Jiabin Yang 已提交
2233
    if _non_static_mode():
2234 2235 2236
        if in_dygraph_mode():
            out, _ = _C_ops.norm(x, 1 if axis is None else axis, epsilon, False)
        elif _in_legacy_dygraph():
2237 2238 2239
            _, out = _legacy_C_ops.norm(
                x, 'axis', 1 if axis is None else axis, 'epsilon', epsilon
            )
2240 2241 2242
        return out

    check_variable_and_dtype(x, "X", ("float16", "float32", "float64"), "norm")
C
caoying03 已提交
2243

2244
    helper = LayerHelper("l2_normalize", **locals())
X
Xin Pan 已提交
2245 2246
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
2247 2248 2249 2250 2251 2252 2253 2254 2255
    helper.append_op(
        type="norm",
        inputs={"X": x},
        outputs={"Out": out, "Norm": norm},
        attrs={
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
        },
    )
C
caoying03 已提交
2256
    return out
2257 2258


Y
yuyang18 已提交
2259
@templatedoc()
2260
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
2261
    """
2262 2263
    :api_attr: Static Graph

Y
yuyang18 已提交
2264
    ${comment}
2265 2266

    Args:
Y
yuyang18 已提交
2267
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
2268 2269
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
2270 2271 2272 2273 2274
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
2275
        ${out_comment}.
2276 2277

    Examples:
B
Bai Yifan 已提交
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289

      .. code-block:: python

        # for LodTensor inputs
        import paddle
        paddle.enable_static()
        x = paddle.static.data(name='x', shape=[9, 16],
                               dtype='float32', lod_level=1)
        out = paddle.static.nn.row_conv(input=x, future_context_size=2)
        # for Tensor inputs
        x = paddle.static.data(name='x', shape=[9, 4, 16], dtype='float32')
        out = paddle.static.nn.row_conv(input=x, future_context_size=2)
2290 2291
    """
    helper = LayerHelper('row_conv', **locals())
2292
    check_variable_and_dtype(input, 'input', ['float32'], 'row_conv')
2293
    dtype = helper.input_dtype()
2294
    filter_shape = [future_context_size + 1, input.shape[-1]]
2295 2296 2297
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype
    )
X
Xin Pan 已提交
2298
    out = helper.create_variable_for_type_inference(dtype)
2299 2300 2301 2302 2303
    helper.append_op(
        type='row_conv',
        inputs={'X': [input], 'Filter': [filter_param]},
        outputs={'Out': [out]},
    )
Y
yangyaming 已提交
2304
    return helper.append_activation(out)
2305 2306


2307
@deprecated(since='2.0.0', update_to='paddle.nn.functional.one_hot')
2308
def one_hot(input, depth, allow_out_of_range=False):
2309
    """
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347

    **WARING:** This OP requires the last dimension of Tensor shape must be equal to 1.
    This OP will be deprecated in a future release. It is recommended to use fluid. :ref:`api_fluid_one_hot` .

    The operator converts each id in the input to an one-hot vector with a
    :attr:`depth` length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor or LoDTensor is generated by adding :attr:`depth` dimension
    behind the last dimension of the input shape.

    .. code-block:: text

        Example 1 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [3], [0]]
            depth = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2 (allow_out_of_range=True):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = True

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
2348
                        [0., 1., 0., 0.],
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
                        [0., 0., 0., 0.], # This id is 5, which goes beyond depth, so set it all-zeros data.
                        [1., 0., 0., 0.]]

        Example 3 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = False

        output: Throw an exception for Illegal value
2361
            The second dimension in X is 5, which is greater than depth.
2362 2363
            Allow_out_of_range =False means that does not allow the word id to exceed depth,
            so it throws an exception.
2364 2365

    Args:
2366 2367 2368
        input(Variable): Tensor or LoDTensor with shape :math:`[N_1, N_2, ..., N_k, 1]` ,
            which contains at least one dimension and the last dimension must be 1.
            The data type is int32 or int64.
2369
        depth(scalar): An integer defining the :attr:`depth` of the one hot dimension. If input
2370
            is word id, depth is generally the dictionary size.
2371
        allow_out_of_range(bool): A bool value indicating whether the input
2372 2373 2374 2375
            indices could be out of range :math:`[0, depth)` . When input indices are
            out of range, exceptions :code:`Illegal value` is raised if :attr:`allow_out_of_range`
            is False, or zero-filling representations is created if it is set True.
            Default: False.
2376 2377

    Returns:
2378
        Variable: The one-hot representations of input. A Tensor or LoDTensor with type float32.
2379 2380

    Examples:
C
caoying03 已提交
2381
        .. code-block:: python
2382

2383
            import paddle
2384
            import paddle.fluid as fluid
2385 2386
            paddle.enable_static()

2387 2388 2389
            # Correspond to the first example above, where label.shape is [4, 1] and one_hot_label.shape is [4, 4].
            label = fluid.data(name="label", shape=[4, 1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=4)
2390
    """
J
Jiabin Yang 已提交
2391
    if _non_static_mode():
S
songyouwei 已提交
2392 2393 2394
        if isinstance(depth, Variable):
            depth = depth.numpy()
            assert depth.shape == (
2395 2396
                1,
            ), "depth of type Variable should have shape [1]"
2397
            depth = depth.item(0)
2398 2399 2400
        out = _legacy_C_ops.one_hot(
            input, 'depth', depth, 'allow_out_of_range', allow_out_of_range
        )
2401 2402
        out.stop_gradient = True
        return out
2403

2404
    helper = LayerHelper("one_hot", **locals())
2405
    check_variable_and_dtype(input, 'input', ['int32', 'int64'], 'one_hot')
2406
    check_type(depth, 'depth', (int, Variable), 'one_hot')
X
Xin Pan 已提交
2407
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
2408

2409 2410
    if not isinstance(depth, Variable):
        # user attribute
2411
        inputs = {'X': input}
Y
Yi Liu 已提交
2412
        attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range}
2413
    else:
2414 2415 2416
        depth.stop_gradient = True
        inputs = {'X': input, 'depth_tensor': depth}
        attrs = {'allow_out_of_range': allow_out_of_range}
2417 2418 2419
    helper.append_op(
        type="one_hot", inputs=inputs, attrs=attrs, outputs={'Out': one_hot_out}
    )
2420
    one_hot_out.stop_gradient = True
2421
    return one_hot_out
Y
Yu Yang 已提交
2422 2423


Y
Yu Yang 已提交
2424
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
2425
    """
2426 2427
    :api_attr: Static Graph

2428 2429
    Create an auto-increase variable. which will be automatically increased
    by 1 in every iteration. By default, the first return of this counter is 1,
Y
Yibing Liu 已提交
2430
    and the step size is 1.
Y
Yu Yang 已提交
2431 2432

    Args:
Y
Yibing Liu 已提交
2433 2434 2435
        counter_name(str, optional): The counter name. Default '@STEP_COUNTER@'.
        begin(int, optional): The first return value of this counter. Default 1.
        step(int, optional): The step size. Default 1.
Y
Yu Yang 已提交
2436

2437
    Returns:
Y
Yibing Liu 已提交
2438
        Variable: The auto-increased Variable with data type int64.
Y
yi.wu 已提交
2439 2440 2441 2442

    Examples:
        .. code-block:: python

2443
           import paddle.fluid as fluid
2444 2445
           import paddle
           paddle.enable_static()
Y
yi.wu 已提交
2446
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
2447
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
2448 2449
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
2450 2451
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
2452
    counter, is_new_var = helper.create_or_get_global_variable(
H
hong 已提交
2453 2454 2455 2456
        name=counter_name,
        dtype='int64',
        shape=[1],
        persistable=True,
2457 2458
        belong_to_optimizer=True,
    )
Y
Yu Yang 已提交
2459
    if is_new_var:
2460 2461 2462
        helper.set_variable_initializer(
            counter, initializer=Constant(value=begin - 1, force_cpu=True)
        )
W
Wu Yi 已提交
2463
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
2464 2465
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
2466
            outputs={'Out': [counter]},
2467 2468
            attrs={'step': float(step)},
        )
Y
Yu Yang 已提交
2469 2470 2471
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
2472 2473


2474
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
2475
    """
2476
    Insert single-dimensional entries to the shape of a Tensor. Takes one
M
minqiyang 已提交
2477 2478
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
2479

M
minqiyang 已提交
2480
    For example:
H
haowang101779990 已提交
2481 2482 2483

    .. code-block:: text

M
minqiyang 已提交
2484
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
2485
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
2486

Y
Yibing Liu 已提交
2487
    Args:
2488
        input (Variable): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
2489
        axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
2490
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
2491 2492

    Returns:
2493
        Variable: Unsqueezed Tensor, with the same data type as input.
Y
Yibing Liu 已提交
2494 2495 2496 2497

    Examples:
        .. code-block:: python

2498 2499 2500
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
2501

Y
Yibing Liu 已提交
2502
    """
J
Jiabin Yang 已提交
2503
    if _non_static_mode():
L
Leo Chen 已提交
2504 2505 2506
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
2507
            axes = axes.numpy().tolist()
L
Leo Chen 已提交
2508 2509 2510 2511 2512
        elif isinstance(axes, (list, tuple)):
            axes = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in axes
            ]
2513
        if _in_legacy_dygraph():
2514
            out, _ = _legacy_C_ops.unsqueeze2(input, 'axes', axes)
2515
            return out
2516
        return _C_ops.unsqueeze(input, axes)
2517 2518

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
    check_variable_and_dtype(
        input,
        'input',
        [
            'float16',
            'float32',
            'float64',
            'bool',
            'int8',
            'int16',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'unsqueeze',
    )
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
L
Leo Chen 已提交
2546
        if utils._contain_var(axes):
2547
            inputs["AxesTensorList"] = utils._convert_to_tensor_list(axes)
2548 2549 2550
        else:
            attrs["axes"] = axes

X
Xin Pan 已提交
2551 2552
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
2553 2554 2555 2556 2557 2558
    helper.append_op(
        type="unsqueeze2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
Y
Yibing Liu 已提交
2559

2560 2561
    return out

2562

Y
yangyaming 已提交
2563
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
2564
    """
Y
Yibing Liu 已提交
2565
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
2566 2567 2568 2569
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
2570
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
2571 2572 2573 2574 2575 2576

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
2577
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
2578 2579 2580
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

2581
            target_lod: [4, 2]
Y
yangyaming 已提交
2582 2583

            then we get a 1-level LoDTensor:
2584
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
2585 2586 2587 2588 2589 2590
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
2591
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
2592 2593 2594 2595
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
2596
                y.data = [[2, 4]]
Y
yangyaming 已提交
2597 2598 2599
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
2600
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
2601 2602 2603 2604 2605 2606
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
2607
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
2608 2609 2610 2611
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
2612
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
2613 2614 2615 2616
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
2617
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
2618 2619 2620 2621
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
2622
        x (Variable): Input variable which could be a Tensor or LoDTensor.
2623
                      The data type should be int32, int64, float32 or float64.
2624 2625
        y (Variable, optional): If provided, output's LoD would be derived from :attr:`y`.
                                If y's lod level>0, the data type can be any type.
2626 2627
                                If y's lod level=0, the data type should be int32.
        target_lod (list|tuple, optional): One level LoD which should be considered
Y
Yibing Liu 已提交
2628
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
2629 2630

    Returns:
Y
Yibing Liu 已提交
2631
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
2632 2633

    Raises:
Y
Yibing Liu 已提交
2634
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
2635 2636 2637 2638

    Examples:
        .. code-block:: python

2639
            import paddle.fluid as fluid
2640 2641 2642
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
2643
    """
2644 2645 2646
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'lod_reset'
    )
Y
yangyaming 已提交
2647
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
2648
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
2649
    if y is not None:
2650
        check_type(y, 'y', (Variable), 'lod_reset')
2651 2652 2653 2654
        # TODO: check y.lod_level = 0 dtype
        helper.append_op(
            type="lod_reset", inputs={'X': x, 'Y': y}, outputs={'Out': out}
        )
Y
yangyaming 已提交
2655
    elif target_lod is not None:
2656 2657 2658 2659 2660 2661
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out},
        )
Y
yangyaming 已提交
2662
    else:
2663 2664 2665 2666
        raise ValueError("y and target_lod should not be both none.")
    return out


2667
@deprecated(since="2.0.0", update_to="paddle.nn.functional.relu")
2668
def relu(x, name=None):
W
wanghaoshuang 已提交
2669
    """
Z
zhupengyang 已提交
2670
    ${comment}
W
wanghaoshuang 已提交
2671 2672

    Args:
Z
zhupengyang 已提交
2673 2674 2675 2676
        x(Variable): ${x_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
W
wanghaoshuang 已提交
2677 2678

    Returns:
Z
zhupengyang 已提交
2679
        Variable: ${out_comment}
W
wanghaoshuang 已提交
2680 2681 2682 2683 2684

    Examples:

        .. code-block:: python

2685
            import paddle.fluid as fluid
Z
zhupengyang 已提交
2686 2687 2688 2689 2690 2691 2692
            import numpy as np
            in1 = np.array([[-1,0],[1,2.6]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu(x1)
                print(out1.numpy())
                # [[0.  0. ]
2693
                #  [1.  2.6]]"""
2694 2695

    if in_dygraph_mode():
W
wanghuancoder 已提交
2696
        return _C_ops.relu(x)
2697 2698
    if _in_legacy_dygraph():
        return _legacy_C_ops.relu(x)
2699

2700 2701
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')

2702
    inputs = {'X': [x]}
W
wanghaoshuang 已提交
2703
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
2704
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
2705
    out = helper.create_variable_for_type_inference(dtype)
2706 2707 2708
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out}
    )
W
wanghaoshuang 已提交
2709
    return out
2710 2711


G
fix  
gongweibao 已提交
2712 2713 2714
from paddle.fluid.framework import convert_np_dtype_to_dtype_


S
sneaxiy 已提交
2715 2716 2717 2718
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
X
Xin Pan 已提交
2719

S
sneaxiy 已提交
2720 2721
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
2722
    check_variable_and_dtype(
2723 2724 2725 2726 2727
        x,
        'x',
        ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
        op_type,
    )
2728
    check_variable_and_dtype(
2729 2730 2731 2732 2733
        y,
        'y',
        ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
        op_type,
    )
2734

S
sneaxiy 已提交
2735 2736
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
2737
    name = helper.kwargs.get('name', None)
2738
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
2739

2740 2741 2742 2743 2744 2745
    helper.append_op(
        type=op_type,
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis, 'use_mkldnn': use_mkldnn},
    )
S
sneaxiy 已提交
2746 2747 2748
    return helper.append_activation(out)


X
Xin Pan 已提交
2749
def elementwise_add(x, y, axis=-1, act=None, name=None):
2750
    """
2751

2752
    Examples:
2753

2754
        .. code-block:: python
2755

2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_add(x, y)
            # z = x + y
2769

2770 2771 2772 2773
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
2774

2775
            print(z_value) # [3., 8., 6.]
2776 2777


2778
        .. code-block:: python
2779

2780 2781 2782
            import paddle.fluid as fluid
            import numpy as np
            import paddle
2783

2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_add(x, y, axis=1)
            # z = x + y
2794

2795 2796
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
2797

2798 2799
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
2800

2801
            print(z_value) # z.shape=[2,3,4,5]
2802 2803


2804
        ..  code-block:: python
2805

2806 2807 2808
            import paddle.fluid as fluid
            import numpy as np
            import paddle
2809

2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_add(x, y, axis=3)
            # z = x + y
2820

2821 2822
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
2823

2824 2825 2826
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
2827 2828

    """
J
Jiabin Yang 已提交
2829
    if _non_static_mode():
2830
        return _elementwise_op_in_dygraph(
2831 2832 2833 2834 2835
            x,
            y,
            axis=axis,
            act=act,
            op_name='elementwise_add',
2836 2837
            use_mkldnn=_global_flags()["FLAGS_use_mkldnn"],
        )
2838

S
sneaxiy 已提交
2839 2840 2841
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


2842
@deprecated(since="2.0.0", update_to="paddle.divide")
X
Xin Pan 已提交
2843
def elementwise_div(x, y, axis=-1, act=None, name=None):
2844
    """
2845

2846
    Examples:
2847

2848
        .. code-block:: python
2849

2850 2851 2852
            import paddle.fluid as fluid
            import numpy as np
            import paddle
2853

2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_div(x, y)
            # z = x / y
2864

2865 2866 2867 2868
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
2869

2870
            print(z_value) # [2., 0.6, 2.]
2871 2872


2873
        .. code-block:: python
2874

2875 2876 2877
            import paddle.fluid as fluid
            import numpy as np
            import paddle
2878

2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_div(x, y, axis=1)
            # z = x / y
2889

2890 2891
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
2892

2893 2894
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
2895

2896
            print(z_value) # z.shape=[2,3,4,5]
2897 2898


2899
        ..  code-block:: python
2900

2901 2902 2903
            import paddle.fluid as fluid
            import numpy as np
            import paddle
2904

2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_div(x, y, axis=3)
            # z = x / y
2915

2916 2917
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
2918

2919 2920 2921
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
2922 2923

    """
J
Jiabin Yang 已提交
2924
    if _non_static_mode():
2925 2926 2927
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_div'
        )
2928

S
sneaxiy 已提交
2929 2930 2931
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
2932
def elementwise_sub(x, y, axis=-1, act=None, name=None):
2933
    """
2934

2935
    Examples:
2936

2937
        .. code-block:: python
2938

2939 2940 2941
            import paddle.fluid as fluid
            import numpy as np
            import paddle
2942

2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_sub(x, y)
            # z = x - y
2953

2954 2955 2956 2957
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
2958

2959
            print(z_value) # [1., -2., 2.]
2960 2961


2962
        .. code-block:: python
2963

2964 2965 2966
            import paddle.fluid as fluid
            import numpy as np
            import paddle
2967

2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_sub(x, y, axis=1)
            # z = x - y
2978

2979 2980
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
2981

2982 2983
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
2984

2985
            print(z_value) # z.shape=[2,3,4,5]
2986 2987


2988
        ..  code-block:: python
2989

2990 2991 2992
            import paddle.fluid as fluid
            import numpy as np
            import paddle
2993

2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_sub(x, y, axis=3)
            # z = x - y
3004

3005 3006
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
3007

3008 3009 3010
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
3011 3012

    """
J
Jiabin Yang 已提交
3013
    if _non_static_mode():
3014 3015 3016
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_sub'
        )
3017

S
sneaxiy 已提交
3018 3019 3020
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


3021
@deprecated(since="2.0.0", update_to="paddle.multiply")
X
Xin Pan 已提交
3022
def elementwise_mul(x, y, axis=-1, act=None, name=None):
3023
    """
3024

3025
    Examples:
3026

3027
        .. code-block:: python
3028

3029 3030 3031
            import paddle.fluid as fluid
            import numpy as np
            import paddle
3032

3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_mul(x, y)
            # z = x * y
3043

3044 3045 3046 3047
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
3048

3049
            print(z_value) # [2., 15., 8.]
3050 3051


3052
        .. code-block:: python
3053

3054 3055 3056
            import paddle.fluid as fluid
            import numpy as np
            import paddle
3057

3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_mul(x, y, axis=1)
            # z = x * y
3068

3069 3070
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
3071

3072 3073
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
3074

3075
            print(z_value) # z.shape=[2,3,4,5]
3076 3077


3078
        ..  code-block:: python
3079

3080 3081 3082
            import paddle.fluid as fluid
            import numpy as np
            import paddle
3083

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_mul(x, y, axis=3)
            # z = x * y
3094

3095 3096
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
3097

3098 3099 3100
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
3101

3102
    """
J
Jiabin Yang 已提交
3103
    if _non_static_mode():
3104 3105 3106
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_mul'
        )
3107

S
sneaxiy 已提交
3108 3109 3110 3111
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


for func in [
3112 3113 3114 3115
    elementwise_add,
    elementwise_div,
    elementwise_sub,
    elementwise_mul,
3116 3117
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
3118 3119

    # insert the c++ doc string on top of python doc string
3120 3121 3122 3123 3124
    func.__doc__ = (
        _generate_doc_string_(
            op_proto,
            additional_args_lines=[
                "axis (int32, optional): If X.dimension != Y.dimension, \
3125 3126
            Y.dimension must be a subsequence of x.dimension. \
            And axis is the start dimension index for broadcasting Y onto X. ",
3127
                "act (string, optional): Activation applied to the output. \
3128
            Default is None. Details: :ref:`api_guide_activations_en` ",
3129
                "name (string, optional): Name of the output. \
3130
            Default is None. It's used to print debug info for developers. Details: \
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
            :ref:`api_guide_Name` ",
            ],
            skip_attrs_set={
                "x_data_format",
                "y_data_format",
                "axis",
                "use_quantizer",
                "mkldnn_data_type",
                "Scale_x",
                "Scale_y",
                "Scale_out",
            },
        )
        + """\n"""
        + str(func.__doc__)
    )
3147

3148 3149 3150
    doc_list = func.__doc__.splitlines()

    for idx, val in enumerate(doc_list):
3151 3152 3153 3154 3155
        if (
            val.startswith("Warning: ")
            and val.endswith(" instead.")
            and "and will be removed in future versions." in val
        ):
3156 3157 3158 3159
            doc_list.insert(0, doc_list.pop(idx))
            func.__doc__ = "\n" + "\n".join(i for i in doc_list)
            break

3160
for func in []:
S
sneaxiy 已提交
3161 3162 3163 3164
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
3165
            "act (basestring|None): Activation applied to the output.",
3166 3167 3168 3169 3170 3171
            "name (basestring|None): Name of the output.",
        ],
    )
    func.__doc__ = (
        func.__doc__
        + """
3172 3173 3174

Examples:
  .. code-block:: python
3175

3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
    """
        % (
            func.__name__,
            func.__name__,
            func.__name__,
            func.__name__,
            func.__name__,
            func.__name__,
        )
    )
M
minqiyang 已提交
3216 3217


3218
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
J
Jiabin Yang 已提交
3219
    if _non_static_mode():
3220
        op = getattr(_legacy_C_ops, op_name)
3221 3222 3223 3224
        if binary_op:
            return op(x, y)
        else:
            return op(x)
3225
    check_variable_and_dtype(
3226 3227
        x,
        "x",
3228
        ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
3229 3230
        op_name,
    )
3231
    if y is not None:
3232
        check_variable_and_dtype(
3233 3234
            y,
            "y",
3235
            ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
3236 3237
            op_name,
        )
3238
    if out is not None:
3239
        check_type(out, "out", Variable, op_name)
3240

M
minqiyang 已提交
3241 3242
    helper = LayerHelper(op_name, **locals())

3243 3244 3245
    if binary_op and x.dtype != y.dtype:
        raise ValueError(
            "(InvalidArgument) The DataType of %s Op's Variable must be consistent, but received %s and %s."
3246 3247
            % (op_name, x.dtype, y.dtype)
        )
M
minqiyang 已提交
3248 3249

    if out is None:
3250
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
3251 3252

    if binary_op:
3253 3254 3255
        helper.append_op(
            type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
M
minqiyang 已提交
3256 3257 3258 3259 3260 3261
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


3262 3263 3264
@templatedoc()
def clip(x, min, max, name=None):
    """
3265
        :old_api: paddle.fluid.layers.clip
3266

3267 3268 3269 3270
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
S
SunGaofeng 已提交
3271 3272
        min(float): ${min_comment}
        max(float): ${max_comment}
3273 3274
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
S
SunGaofeng 已提交
3275
                             For more information, please refer to :ref:`api_guide_Name`
3276 3277

    Returns:
S
SunGaofeng 已提交
3278 3279 3280 3281
        ${out_comment}

    Return Type:
        ${out_type}
3282 3283 3284 3285

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
3286
            import paddle.fluid as fluid
S
SunGaofeng 已提交
3287
            input = fluid.data(
3288 3289
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
3290 3291 3292
    """

    helper = LayerHelper("clip", **locals())
3293
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'clip')
3294 3295

    if name is None:
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
        name = unique_name.generate_with_ignorable_key(
            ".".join([helper.name, 'tmp'])
        )

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False
    )

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min, "max": max},
        outputs={"Out": out},
    )
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
3322 3323 3324
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.
3325 3326

    Returns:
3327
        Tensor:
W
wangguanzhong 已提交
3328

3329
        out(${out_type}): ${out_comment}
3330

W
wangguanzhong 已提交
3331

3332 3333 3334
    Examples:
        .. code-block:: python

3335
            import paddle
3336
            import paddle.fluid as fluid
3337

3338 3339 3340
            input = paddle.to_tensor([[2.0, 2.0], [2.0, 2.0]], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
            # [[0.5, 0.5], [0.5, 0.5]]
3341 3342
    """

L
lyq 已提交
3343
    if in_dygraph_mode():
3344
        return _C_ops.clip_by_norm(x, max_norm)
J
Jiabin Yang 已提交
3345
    if _non_static_mode():
3346
        return _legacy_C_ops.clip_by_norm(x, 'max_norm', max_norm)
3347

3348
    helper = LayerHelper("clip_by_norm", **locals())
3349
    check_variable_and_dtype(x, 'X', ['float32', 'float16'], 'clip_by_norm')
3350
    check_type(max_norm, 'max_norm', (float), 'clip_by_norm')
3351 3352

    if name is None:
3353 3354 3355
        name = unique_name.generate_with_ignorable_key(
            ".".join([helper.name, 'tmp'])
        )
S
sneaxiy 已提交
3356

3357 3358 3359
    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False
    )
3360

3361 3362 3363 3364 3365 3366
    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out},
    )
3367 3368

    return out
X
Xin Pan 已提交
3369 3370


3371
@deprecated(since="2.0.0", update_to="paddle.mean")
X
Xin Pan 已提交
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
3383 3384 3385 3386

    Examples:
        .. code-block:: python

3387
            import paddle
3388
            import paddle.fluid as fluid
3389 3390
            paddle.enable_static()

3391 3392
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
3393
            mean = paddle.mean(input)
X
Xin Pan 已提交
3394
    """
3395

3396
    if _in_legacy_dygraph():
3397
        return _legacy_C_ops.mean(x)
3398
    if in_dygraph_mode():
3399
        return _C_ops.mean_all(x)
X
Xin Pan 已提交
3400 3401

    helper = LayerHelper("mean", **locals())
3402
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mean')
3403
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
3404

3405 3406 3407
    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out}
    )
X
Xin Pan 已提交
3408 3409 3410 3411

    return out


C
chengduo 已提交
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
3423 3424 3425 3426

    Examples:
        .. code-block:: python

3427
            import paddle.fluid as fluid
3428 3429 3430 3431 3432
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
3433
    """
3434 3435 3436
    if in_dygraph_mode():
        return _C_ops.merge_selected_rows(x)

3437
    if _non_static_mode():
3438
        return _legacy_C_ops.merge_selected_rows(x)
C
chengduo 已提交
3439 3440 3441

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
3442 3443 3444 3445 3446 3447
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out},
    )
C
chengduo 已提交
3448 3449 3450
    return out


X
Xin Pan 已提交
3451 3452
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
L
liu zhengxi 已提交
3453 3454 3455 3456 3457 3458 3459 3460
    Mul Operator.
    This operator is used to perform matrix multiplication for input $x$ and $y$.
    The equation is:

    ..  math::
        Out = x * y

    Both the input $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $x$.
X
Xin Pan 已提交
3461 3462

    Args:
L
liu zhengxi 已提交
3463 3464
        x (Variable): The first input Tensor/LoDTensor of mul_op.
        y (Variable): The second input Tensor/LoDTensor of mul_op.
3465 3466 3467
        x_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $x$ is a tensor with more than two dimensions, $x$ will be flattened into a two-dimensional matrix first. The flattening rule is: the first `num_col_dims` will be flattened to form the first dimension of the final matrix (the height of the matrix), and the rest `rank(x) - num_col_dims` dimensions are flattened to form the second dimension of the final matrix (the width of the matrix). As a result, height of the flattened matrix is equal to the product of $x$'s first `x_num_col_dims` dimensions' sizes, and width of the flattened matrix is equal to the product of $x$'s last `rank(x) - num_col_dims` dimensions' size. For example, suppose $x$ is a 6-dimensional tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3. Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default is 1.
        y_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $y$ is a tensor with more than two dimensions, $y$ will be flattened into a two-dimensional matrix first. The attribute `y_num_col_dims` determines how $y$ is flattened. See comments of `x_num_col_dims` for more details. Default is 1.
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.
X
Xin Pan 已提交
3468 3469

    Returns:
L
liu zhengxi 已提交
3470
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of mul op.
3471 3472

    Examples:
L
liu zhengxi 已提交
3473
        ..  code-block:: python
3474

3475
            import paddle.fluid as fluid
3476 3477
            import paddle
            paddle.enable_static()
3478 3479 3480 3481 3482
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
3483

3484

X
Xin Pan 已提交
3485
    """
J
Jiabin Yang 已提交
3486
    if _non_static_mode():
3487 3488 3489 3490 3491 3492 3493 3494
        return _legacy_C_ops.mul(
            x,
            y,
            'x_num_col_dims',
            x_num_col_dims,
            'y_num_col_dims',
            y_num_col_dims,
        )
X
Xin Pan 已提交
3495

3496 3497
    inputs = {"X": [x], "Y": [y]}
    attrs = {"x_num_col_dims": x_num_col_dims, "y_num_col_dims": y_num_col_dims}
X
Xin Pan 已提交
3498
    helper = LayerHelper("mul", **locals())
3499 3500
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mul')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64'], 'mul')
3501
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
3502

3503 3504 3505
    helper.append_op(
        type="mul", inputs={"X": x, "Y": y}, attrs=attrs, outputs={"Out": out}
    )
X
Xin Pan 已提交
3506 3507 3508
    return out


C
chengduo 已提交
3509 3510 3511
@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
3512 3513 3514 3515 3516 3517 3518 3519 3520
    This operator gets tensor data from input with SelectedRows type, and outputs a LoDTensor.

    .. code-block:: text

        input x is SelectedRows:
           x.rows = [0, 5, 5, 4, 19]
           x.height = 20
           x.value = [[1, 1] [2, 2] [2, 2] [3, 3] [6, 6]]

3521
        Output is LoDTensor:
3522 3523 3524 3525 3526 3527
           out.shape = [5, 2]
           out.data = [[1, 1],
                       [2, 2],
                       [2, 2],
                       [3, 3],
                       [6, 6]]
C
chengduo 已提交
3528 3529

    Args:
3530 3531 3532
        x(SelectedRows): Input with SelectedRows type. The data type is float32, float64, int32 or int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
C
chengduo 已提交
3533 3534

    Returns:
3535
        Variable: LoDTensor transformed from SelectedRows. The data type is same with input.
B
bdzhuxiaoning 已提交
3536 3537 3538

    Examples:
        .. code-block:: python
3539

B
bdzhuxiaoning 已提交
3540 3541 3542 3543
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
3544 3545
    """

3546 3547 3548 3549 3550
    check_type(x, 'x', Variable, 'get_tensor_from_selected_rows')
    if x.type != core.VarDesc.VarType.SELECTED_ROWS:
        raise TypeError(
            "The type of 'x' in get_tensor_from_selected_rows must be SELECTED_ROWS."
        )
C
chengduo 已提交
3551 3552
    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
3553 3554 3555 3556 3557 3558
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={},
    )
C
chengduo 已提交
3559
    return out