math.py 182.3 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
# TODO: define math functions
18

19
import numpy as np
20

21
import paddle
22 23 24
from paddle import _C_ops, _legacy_C_ops
from paddle.common_ops_import import VarDesc, dygraph_only, dygraph_utils

25 26 27
# TODO: define math functions
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only

28 29
from ..fluid.data_feeder import (
    check_dtype,
30 31
    check_type,
    check_variable_and_dtype,
32 33
    convert_dtype,
)
34
from ..fluid.layers import utils
35 36 37 38 39 40 41 42 43 44
from ..framework import (
    LayerHelper,
    convert_np_dtype_to_dtype_,
    core,
    in_dygraph_mode,
)
from ..static import Variable
from .creation import _complex_to_real_dtype
from .layer_function_generator import generate_layer_fn, templatedoc
from .manipulation import cast
45 46
from .ops import abs  # noqa: F401
from .ops import acos  # noqa: F401
47
from .ops import acosh  # noqa: F401
48
from .ops import asin  # noqa: F401
49 50 51
from .ops import asinh  # noqa: F401
from .ops import atan  # noqa: F401
from .ops import atanh  # noqa: F401
52 53 54 55
from .ops import ceil  # noqa: F401
from .ops import ceil_  # noqa: F401
from .ops import cos  # noqa: F401
from .ops import cosh  # noqa: F401
56
from .ops import erf  # noqa: F401
57 58 59 60 61 62 63 64 65 66 67
from .ops import exp  # noqa: F401
from .ops import exp_  # noqa: F401
from .ops import expm1  # noqa: F401
from .ops import floor  # noqa: F401
from .ops import floor_  # noqa: F401
from .ops import reciprocal  # noqa: F401
from .ops import reciprocal_  # noqa: F401
from .ops import round  # noqa: F401
from .ops import round_  # noqa: F401
from .ops import rsqrt  # noqa: F401
from .ops import rsqrt_  # noqa: F401
68 69
from .ops import sin  # noqa: F401
from .ops import sinh  # noqa: F401
70 71
from .ops import sqrt  # noqa: F401
from .ops import sqrt_  # noqa: F401
72 73
from .ops import square  # noqa: F401
from .ops import tan  # noqa: F401
74

75 76
__all__ = []

77 78 79 80 81 82 83 84 85 86 87 88 89
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
def _get_reduce_axis(axis, x):
    """
    Internal function for max, min, amax and amin.
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, (tuple, range)):
            axis = list(axis)
        elif isinstance(axis, int):
            axis = [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(
                    type(axis)
                )
            )
    if axis is None:
        axis = []
    if axis == [] or len(axis) == len(x.shape):
        reduce_all = True
    else:
        reduce_all = False
    return reduce_all, axis


def _get_reduce_axis_with_tensor(axis, x):
    if isinstance(axis, Variable):
        if axis.shape[0] == len(x.shape):
            reduce_all = True
        else:
            reduce_all = False
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        if utils._contain_var(axis):
            axis = utils._convert_to_tensor_list(axis)
    return reduce_all, axis


129 130
def log(x, name=None):
    r"""
C
Chen Long 已提交
131
    Calculates the natural log of the given input Tensor, element-wise.
132 133 134

    .. math::

135
        Out = \ln(x)
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The natural log of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python

            import paddle

            x = [[2,3,4], [7,8,9]]
            x = paddle.to_tensor(x, dtype='float32')
            res = paddle.log(x)
            # [[0.693147, 1.09861, 1.38629], [1.94591, 2.07944, 2.19722]]
    """
    if in_dygraph_mode():
        return _C_ops.log(x)
158 159 160 161 162 163 164 165
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log")
        inputs = {'X': [x]}
        helper = LayerHelper('log', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
        return out
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184


def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)

    Args:
185 186 187 188 189 190
        x (Tensor): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
        scale (float|Tensor): The scale factor of the input, it should be a float number or a Tensor with shape [1] and data type as float32.
        bias (float): The bias to be put on the input.
        bias_after_scale (bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act (str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
191 192

    Returns:
C
Chen Long 已提交
193
        Tensor: Output Tensor of scale operator, with shape and data type same as input.
194 195 196

    Examples:
        .. code-block:: python
197

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
            # scale as a float32 number
            import paddle

            data = paddle.randn(shape=[2,3], dtype='float32')
            res = paddle.scale(data, scale=2.0, bias=1.0)

        .. code-block:: python

            # scale with parameter scale as a Tensor
            import paddle

            data = paddle.randn(shape=[2, 3], dtype='float32')
            factor = paddle.to_tensor([2], dtype='float32')
            res = paddle.scale(data, scale=factor, bias=1.0)

    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
216 217
        out = _C_ops.scale(x, scale, float(bias), bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out, act)
218 219
    else:
        check_variable_and_dtype(
220
            x,
221 222 223 224 225 226 227 228 229 230 231 232 233
            "x",
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int8',
                'int16',
                'int32',
                'int64',
                'uint8',
            ],
            "scale",
234
        )
235 236 237 238 239 240 241 242 243 244 245
        inputs = {'X': [x]}
        attrs = {
            'bias': float(bias),
            'bias_after_scale': bias_after_scale,
        }
        if isinstance(scale, Variable):
            inputs['ScaleTensor'] = [scale]
        else:
            attrs['scale'] = float(scale)
        helper = LayerHelper('scale', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
246

247 248 249 250
        helper.append_op(
            type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return helper.append_activation(out)
251 252 253


def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
254 255
    r"""

256 257 258 259
    stanh activation.

    .. math::

260
        out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}
261 262 263 264 265

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        scale_a (float, optional): The scale factor a of the input. Default is 0.67.
        scale_b (float, optional): The scale factor b of the output. Default is 1.7159.
266
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
267 268 269 270 271 272 273 274 275 276 277 278 279 280

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = paddle.stanh(x, scale_a=0.67, scale_b=1.72) # [1.00616539, 1.49927628, 1.65933108, 1.70390463]

    """

281
    if in_dygraph_mode():
282
        return _legacy_C_ops.stanh(x, 'scale_a', scale_a, 'scale_b', scale_b)
283 284 285 286
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'stanh'
        )
287

288 289 290 291 292 293 294 295 296
        helper = LayerHelper('stanh', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='stanh',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'scale_a': scale_a, 'scale_b': scale_b},
        )
        return out
297

298

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
def multiplex(inputs, index, name=None):
    """

    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.

    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .

    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .

    For Example:

            .. code-block:: text

                Given:

                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

                index = [[3],[0],[1],[2]]

                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]


    Args:
        inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
        index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
330
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
331

332 333 334 335 336 337 338 339
    Returns:
        Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64.

    Examples:

        .. code-block:: python

            import paddle
340

341 342 343 344
            img1 = paddle.to_tensor([[1, 2], [3, 4]], dtype=paddle.float32)
            img2 = paddle.to_tensor([[5, 6], [7, 8]], dtype=paddle.float32)
            inputs = [img1, img2]
            index = paddle.to_tensor([[1], [0]], dtype=paddle.int32)
345
            res = paddle.multiplex(inputs, index)
346
            print(res) # Tensor([[5., 6.], [3., 4.]], dtype=float32)
347 348

    """
349 350
    if in_dygraph_mode():
        return _C_ops.multiplex(inputs, index)
351 352
    else:
        helper = LayerHelper('multiplex', **locals())
353

354 355 356 357 358 359 360 361 362 363 364 365
        check_type(inputs, 'inputs', (list), 'multiplex')
        if len(inputs) < 2:
            raise ValueError(
                "inputs should be a list object with at least 2 elements."
            )
        for id, x in enumerate(inputs):
            check_variable_and_dtype(
                x,
                'input[' + str(id) + ']',
                ['float32', 'float64', 'int32', 'int64'],
                'multiplex',
            )
366
        check_variable_and_dtype(
367
            index, "index", ['int32', 'int64'], 'multiplex'
368
        )
369

370 371 372 373 374 375 376
        out = helper.create_variable_for_type_inference(inputs[0].dtype)
        helper.append_op(
            type='multiplex',
            inputs={'X': inputs, 'Ids': index},
            outputs={'Out': [out]},
        )
        return out
377

378

379 380 381 382 383 384
@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_scale`.
    """
385
    if in_dygraph_mode():
386
        return _C_ops.scale_(x, scale, float(bias), bias_after_scale)
387 388


389
def pow(x, y, name=None):
390
    """
C
Chen Long 已提交
391
    Compute the power of Tensor elements. The equation is:
S
swtkiwi 已提交
392

393
    .. math::
394
        out = x^{y}
395

396
    Note:
I
Infinity_lee 已提交
397 398 399
        ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensors
400 401


402
    Args:
403
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
404
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
405
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
406

407
    Returns:
408
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
409 410 411

    Examples:

412
        ..  code-block:: python
413 414 415

            import paddle

416 417 418 419 420 421 422 423 424 425 426 427
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            # example 1: y is a float or int
            res = paddle.pow(x, 2)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
            res = paddle.pow(x, 2.5)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1.         , 5.65685415 , 15.58845711])

428
            # example 2: y is a Tensor
429
            y = paddle.to_tensor([2], dtype='float32')
430
            res = paddle.pow(x, y)
431 432 433
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
434 435

    """
436
    # in dynamic graph mode
437
    if in_dygraph_mode():
438
        if isinstance(y, (int, float)):
439
            return _C_ops.pow(x, y)
440
        elif isinstance(y, (paddle.Tensor, Variable)):
441
            return _C_ops.elementwise_pow(x, y)
442
        else:
443
            raise TypeError(
444 445
                'y must be scalar or tensor type, but received: %s ' % (y.dtype)
            )
446 447
    else:
        # in static graph mode
448
        if isinstance(y, (int, float)):
449 450 451 452 453 454
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs
455
            )
456 457 458 459 460 461
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
462
        else:
463
            raise TypeError(
464
                'y must be scalar or tensor type, but received: %s ' % (type(y))
465
            )
466 467


468
OP_NAMEMAPPING = {
469 470 471 472 473 474 475 476
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
477
    'elementwise_mod': 'remainder',
478
}
479

480

481
@dygraph_only
482 483 484
def _elementwise_op_in_dygraph(
    x, y, axis=-1, act=None, use_mkldnn=False, op_name=None
):
485
    def is_inplace(op_name):
486
        return op_name[-1] == "_"
487

488
    if op_name not in OP_NAMEMAPPING.keys() or axis != -1:
489
        op = getattr(_legacy_C_ops, op_name)
490
        out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
W
wanghuancoder 已提交
491 492
    else:
        if in_dygraph_mode():
493 494
            op = getattr(
                _C_ops,
495 496
                OP_NAMEMAPPING[op_name] if not is_inplace(op_name) else op_name,
            )
W
wanghuancoder 已提交
497
            out = op(x, y)
498 499 500
    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn
    )
501

502 503 504 505 506 507 508

def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

509 510
    out = helper.kwargs.get('out', None)

511 512 513
    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
514 515 516 517 518
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        original_op_type,
    )
519
    check_variable_and_dtype(
520 521 522 523 524
        y,
        'y',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        original_op_type,
    )
525 526 527 528

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
529 530 531 532 533

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
534 535 536 537 538 539 540 541 542 543
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False
            )

    helper.append_op(
        type=op_type,
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis, 'use_mkldnn': use_mkldnn},
    )
544 545 546
    return helper.append_activation(out)


Y
Yang Zhang 已提交
547
def add(x, y, name=None):
548
    """
549 550 551 552 553 554 555 556
    Elementwise Add Operator.
    Add two tensors element-wise
    The equation is:

    ..  math::

        Out=X+Y

557 558
    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.
559 560

    There are two cases for this operator:
561 562 563 564

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

565
    For case 2:
566 567

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
H
HongyuJia 已提交
568
    2. If $axis$ is -1 (default), $axis$=rank($X$)-rank($Y$).
569
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).
570 571 572 573

        For example:

        ..  code-block:: python
574

575 576 577 578 579 580
            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
581

582
    Args:
583 584 585
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
586 587

    Returns:
H
HongyuJia 已提交
588
        N-D Tensor. A location into which the result is stored. It's dimension equals with x.
589 590 591 592

    Examples:

        ..  code-block:: python
593

594
            import paddle
595

596 597 598 599
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.to_tensor([1, 5, 2], 'float64')
            z = paddle.add(x, y)
            print(z)  # [3., 8., 6. ]
600
    """
601

J
Jiabin Yang 已提交
602
    if in_dygraph_mode():
603
        return _C_ops.add(x, y)
J
Jiabin Yang 已提交
604
    else:
605
        return _elementwise_op(LayerHelper('elementwise_add', **locals()))
606 607


608 609 610 611 612 613 614 615 616 617 618
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_add`.
    """
    op_type = 'elementwise_add_'
    axis = -1

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
619
        raise ValueError(
620 621 622 623
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
624

625
    if in_dygraph_mode():
626
        return _C_ops.add_(x, y)
627
    else:
628
        out = _elementwise_op_in_dygraph(x, y, axis=axis, op_name=op_type)
629
        return out
630 631


632 633
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
634
    Substract two tensors element-wise. The equation is:
635 636 637 638

    .. math::
        out = x - y

639
    Note:
I
Infinity_lee 已提交
640 641 642
        ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
643 644 645 646 647 648 649 650 651 652 653 654

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
655

656 657 658 659 660 661
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[5, 6], [3, 4]])
            res = paddle.subtract(x, y)
            print(res)
662 663 664
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[-4, -4],
            #         [ 4,  4]])
665 666 667 668 669

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 0, 4])
            res = paddle.subtract(x, y)
            print(res)
670 671 672
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[ 0,  2, -1],
            #          [ 0,  2, -1]]])
673

674 675
            x = paddle.to_tensor([2, float('nan'), 5], dtype='float32')
            y = paddle.to_tensor([1, 4, float('nan')], dtype='float32')
676 677
            res = paddle.subtract(x, y)
            print(res)
678 679
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
680

681
            x = paddle.to_tensor([5, float('inf'), -float('inf')], dtype='float64')
682 683 684
            y = paddle.to_tensor([1, 4, 5], dtype='float64')
            res = paddle.subtract(x, y)
            print(res)
685 686
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 4.  ,  inf., -inf.])
687 688 689 690
    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
J
Jiabin Yang 已提交
691
    if in_dygraph_mode():
692
        return _C_ops.subtract(x, y)
J
Jiabin Yang 已提交
693
    else:
694
        return _elementwise_op(LayerHelper(op_type, **locals()))
695 696


697 698 699 700 701 702 703 704 705 706 707
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_subtract`.
    """
    axis = -1
    act = None

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
708
        raise ValueError(
709 710 711 712
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
713

714
    if in_dygraph_mode():
715
        return _C_ops.subtract_(x, y)
716
    else:
717 718 719
        out = _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_sub_'
        )
720
        return out
721 722


723
def divide(x, y, name=None):
724
    """
725
    Divide two tensors element-wise. The equation is:
726

727 728
    .. math::
        out = x / y
729

730
    Note:
I
Infinity_lee 已提交
731 732 733
        ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
734

735 736 737 738
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
739

740
    Returns:
741
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
742

743
    Examples:
744

745
        ..  code-block:: python
746

747
            import paddle
748

749 750
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
751
            z = paddle.divide(x, y)
752
            print(z)  # [2., 0.6, 2.]
753

754 755 756 757
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
J
Jiabin Yang 已提交
758
    if in_dygraph_mode():
759
        return _C_ops.divide(x, y)
J
Jiabin Yang 已提交
760
    else:
761
        return _elementwise_op(LayerHelper(op_type, **locals()))
762 763


764 765
def floor_divide(x, y, name=None):
    """
L
Lin Manhui 已提交
766
    Floor divide two tensors element-wise and rounds the quotinents to the nearest integer toward zero. The equation is:
767

768
    .. math::
L
Lin Manhui 已提交
769
        out = trunc(x / y)
770

771
    Note:
I
Infinity_lee 已提交
772 773 774 775
        ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor

L
Lin Manhui 已提交
776
        Also note that the name ``floor_divide`` can be misleading, as the quotinents are actually rounded toward zero, not toward negative infinite.
777

778 779 780 781
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
782

783 784
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
785

786
    Examples:
787

788
        ..  code-block:: python
789

790
            import paddle
791

792 793
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
794
            z = paddle.floor_divide(x, y)
795
            print(z)  # [2, 0, 2, 2]
796

797 798 799
    """
    op_type = 'elementwise_floordiv'
    axis = -1
800 801
    if in_dygraph_mode():
        return _C_ops.floor_divide(x, y)
802 803
    else:
        return _elementwise_op(LayerHelper(op_type, **locals()))
804 805


806
def remainder(x, y, name=None):
807
    r"""
808 809 810
    Mod two tensors element-wise. The equation is:

    .. math::
811

812 813
        out = x \% y

814
    Note:
I
Infinity_lee 已提交
815 816 817
        ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
818 819

    Args:
820 821
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
822 823 824
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
825
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
826 827 828 829 830 831 832

    Examples:

        ..  code-block:: python

            import paddle

833 834
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
835
            z = paddle.remainder(x, y)
W
WangXi 已提交
836
            print(z)  # [0, 3, 2, 1]
837 838 839

    """
    op_type = 'elementwise_mod'
840
    axis = -1
841 842 843

    if in_dygraph_mode():
        return _C_ops.remainder(x, y)
844 845
    else:
        return _elementwise_op(LayerHelper(op_type, **locals()))
846 847


848 849 850 851 852 853 854 855 856 857 858 859
@inplace_apis_in_dygraph_only
def remainder_(x, y, name=None):
    r"""
    Inplace version of ``remainder`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_remainder`.
    """
    op_type = 'elementwise_mod_'
    axis = -1

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
860 861 862 863
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
864 865 866 867

    return _elementwise_op_in_dygraph(x, y, axis=axis, op_name=op_type)


868 869
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
870 871


872
def multiply(x, y, name=None):
873
    """
874
    multiply two tensors element-wise. The equation is:
875

876 877
    .. math::
        out = x * y
878

879
    Note:
I
Infinity_lee 已提交
880 881 882
        ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
883

884
    Args:
W
will-jl944 已提交
885 886
        x (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
        y (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
887
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
888

889
    Returns:
890
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
891

892 893 894 895 896 897
    Examples:

        ..  code-block:: python

            import paddle

898 899
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
900
            res = paddle.multiply(x, y)
901
            print(res) # [[5, 12], [21, 32]]
902

903
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
904 905 906
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
907 908 909 910

    """
    op_type = 'elementwise_mul'
    act = None
911
    axis = -1
912

J
Jiabin Yang 已提交
913
    if in_dygraph_mode():
914
        return _C_ops.multiply(x, y)
J
Jiabin Yang 已提交
915
    else:
916 917 918 919
        if x.dtype != y.dtype:
            raise TypeError(
                'Input tensors must be same type, but received type of x: %s, type of y: %s '
                % (x.dtype, y.dtype)
920
            )
921

922
        return _elementwise_op(LayerHelper(op_type, **locals()))
923

924

925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
@dygraph_only
def _elementwise_op_with_axis_in_dygraph(
    x, y, axis=-1, name=None, op_type="Undifined"
):
    assert (
        in_dygraph_mode()
    ), "You can only call `_elementwise_op_with_axis_in_dygraph` function within in_dygraph_mode"
    assert op_type in ["add", "subtract", "multiply", "divide"], (
        "op_name input error! _elementwise_op_with_axis is an inner function to replace elementwise_add/sub/mul/div. Input op_name=%s, Expect op_name=[add|subtract|multiply|divide]\n"
        % op_type
    )
    op = getattr(_C_ops, op_type)
    x_shape = list(x.shape)
    y_shape = list(y.shape)
    if axis == -1 or len(x_shape) == len(y_shape):
        return op(x, y)
    if len(x_shape) > len(y_shape):
        padding = len(x_shape) - len(y_shape) - axis
        y = paddle.reshape(y, [1] * axis + y_shape + [1] * padding)
    else:
        padding = len(y_shape) - len(x_shape) - axis
        x = paddle.reshape(x, [1] * axis + y_shape + [1] * padding)
    return op(x, y)


def _add_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
    if in_dygraph_mode():
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "add")
    else:
        op_type = 'elementwise_add'
        act = None
957
        return _elementwise_op(LayerHelper(op_type, **locals()))
958 959 960 961 962 963 964 965 966 967 968


def _subtract_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
    if in_dygraph_mode():
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "subtract"
        )
    else:
        op_type = 'elementwise_sub'
        act = None
969
        return _elementwise_op(LayerHelper(op_type, **locals()))
970 971 972 973 974 975 976 977 978 979 980


def _multiply_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
    if in_dygraph_mode():
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "multiply"
        )
    else:
        op_type = 'elementwise_mul'
        act = None
981
        return _elementwise_op(LayerHelper(op_type, **locals()))
982 983 984 985 986 987 988 989 990


def _divide_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
    if in_dygraph_mode():
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "divide")
    else:
        op_type = 'elementwise_div'
        act = None
991
        return _elementwise_op(LayerHelper(op_type, **locals()))
992 993


994
def maximum(x, y, name=None):
995
    """
W
Wei Shengyu 已提交
996
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
997

998 999
    .. math::
        out = max(x, y)
1000

1001
    Note:
I
Infinity_lee 已提交
1002 1003 1004
        ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to  `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.maximum(x, y)
            print(res)
1024 1025 1026
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 4],
            #         [7, 8]])
1027 1028 1029 1030 1031

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.maximum(x, y)
            print(res)
1032 1033 1034
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 2, 4],
            #         [3, 2, 4]])
1035 1036

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1037
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
1038 1039
            res = paddle.maximum(x, y)
            print(res)
1040 1041
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2. , nan, nan])
1042

1043 1044
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
1045 1046
            res = paddle.maximum(x, y)
            print(res)
1047 1048
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [5.  , 3.  , inf.])
1049 1050
    """
    op_type = 'elementwise_max'
1051
    axis = -1
1052
    act = None
1053 1054
    if in_dygraph_mode():
        return _C_ops.maximum(x, y)
1055 1056
    else:
        return _elementwise_op(LayerHelper(op_type, **locals()))
1057

1058

1059
def minimum(x, y, name=None):
1060
    """
C
Chen Long 已提交
1061
    Compare two tensors and return a new tensor containing the element-wise minima. The equation is:
1062

1063 1064
    .. math::
        out = min(x, y)
1065

1066
    Note:
I
Infinity_lee 已提交
1067 1068 1069
        ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1070 1071 1072 1073 1074 1075 1076

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
C
Chen Long 已提交
1077
        Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.minimum(x, y)
            print(res)
1089 1090 1091
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 2],
            #         [5, 6]])
1092 1093 1094 1095 1096

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.minimum(x, y)
            print(res)
1097 1098 1099
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[1, 0, 3],
            #          [1, 0, 3]]])
1100 1101

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1102
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
1103 1104
            res = paddle.minimum(x, y)
            print(res)
1105 1106
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
1107

1108 1109
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
1110 1111
            res = paddle.minimum(x, y)
            print(res)
1112 1113
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 1.  , -inf.,  5.  ])
1114 1115
    """
    op_type = 'elementwise_min'
1116
    axis = -1
1117
    act = None
1118 1119
    if in_dygraph_mode():
        return _C_ops.minimum(x, y)
1120 1121
    else:
        return _elementwise_op(LayerHelper(op_type, **locals()))
1122

1123

L
LJQ❤️ 已提交
1124 1125 1126 1127 1128 1129 1130 1131 1132
def fmax(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the maximum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmax(x, y)

1133
    Note:
I
Infinity_lee 已提交
1134 1135 1136
        ``paddle.fmax`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1137 1138

    Args:
1139 1140
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmax(x, y)
            print(res)
1156 1157 1158
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 4],
            #         [7, 8]])
L
LJQ❤️ 已提交
1159 1160 1161 1162 1163

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmax(x, y)
            print(res)
1164 1165 1166
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 2, 4],
            #         [3, 2, 4]])
L
LJQ❤️ 已提交
1167 1168

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1169
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
L
LJQ❤️ 已提交
1170 1171
            res = paddle.fmax(x, y)
            print(res)
1172 1173
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2., 3., 5.])
L
LJQ❤️ 已提交
1174

1175 1176
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
L
LJQ❤️ 已提交
1177 1178
            res = paddle.fmax(x, y)
            print(res)
1179 1180
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [5.  , 3.  , inf.])
L
LJQ❤️ 已提交
1181 1182 1183 1184
    """
    op_type = 'elementwise_fmax'
    axis = -1
    act = None
1185
    if in_dygraph_mode():
1186
        return _C_ops.fmax(x, y)
1187 1188
    else:
        return _elementwise_op(LayerHelper(op_type, **locals()))
L
LJQ❤️ 已提交
1189

1190

L
LJQ❤️ 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199
def fmin(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the minimum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmin(x, y)

1200
    Note:
I
Infinity_lee 已提交
1201 1202 1203
        ``paddle.fmin`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1204 1205

    Args:
1206 1207
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmin(x, y)
            print(res)
1223 1224 1225
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 2],
            #         [5, 6]])
L
LJQ❤️ 已提交
1226 1227 1228 1229 1230

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmin(x, y)
            print(res)
1231 1232 1233
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[1, 0, 3],
            #          [1, 0, 3]]])
L
LJQ❤️ 已提交
1234 1235

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1236
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
L
LJQ❤️ 已提交
1237 1238
            res = paddle.fmin(x, y)
            print(res)
1239 1240
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1., 3., 5.])
L
LJQ❤️ 已提交
1241

1242 1243
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
L
LJQ❤️ 已提交
1244 1245
            res = paddle.fmin(x, y)
            print(res)
1246 1247
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 1.  , -inf.,  5.  ])
L
LJQ❤️ 已提交
1248 1249 1250 1251
    """
    op_type = 'elementwise_fmin'
    axis = -1
    act = None
1252
    if in_dygraph_mode():
1253
        return _C_ops.fmin(x, y)
1254 1255
    else:
        return _elementwise_op(LayerHelper(op_type, **locals()))
L
LJQ❤️ 已提交
1256

Y
Yang Zhang 已提交
1257

1258
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
1259 1260 1261 1262
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
1263
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
1264 1265
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
1266
            Tensor with a single element, otherwise must be in the
1267 1268 1269 1270 1271 1272 1273
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
1274
            value is False.
1275
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1276 1277

    Returns:
1278
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
1279
        if `x.dtype='bool'`, `x.dtype='int32'`, it's data type is `'int64'`,
1280
        otherwise it's data type is the same as `x`.
1281 1282 1283 1284 1285

    Examples:
        .. code-block:: python

            import paddle
1286

1287
            # x is a Tensor with following elements:
1288 1289 1290
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
1291 1292
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1293
            out1 = paddle.sum(x)  # [3.5]
1294 1295 1296
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
1297

1298
            # y is a Tensor with shape [2, 2, 2] and elements as below:
1299 1300 1301
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
1302
            y = paddle.to_tensor([[[1, 2], [3, 4]],
1303
                                  [[5, 6], [7, 8]]])
1304 1305
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
1306

1307 1308 1309 1310 1311 1312 1313 1314 1315
            # x is a Tensor with following elements:
            #    [[True, True, True, True]
            #     [False, False, False, False]]
            # Each example is followed by the corresponding output tensor.
            x = paddle.to_tensor([[True, True, True, True],
                                  [False, False, False, False]])
            out7 = paddle.sum(x)  # [4]
            out8 = paddle.sum(x, axis=0)  # [1, 1, 1, 1]
            out9 = paddle.sum(x, axis=1)  # [4, 0]
1316
    """
1317

1318 1319 1320 1321
    dtype_flag = False
    if dtype is not None:
        dtype_flag = True
        dtype = convert_np_dtype_to_dtype_(dtype)
F
From00 已提交
1322 1323

    if in_dygraph_mode():
1324
        return _C_ops.sum(x, axis, dtype, keepdim)
1325 1326 1327
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
F
From00 已提交
1328

1329
        if dtype_flag:
1330
            attrs.update({'in_dtype': x.dtype, 'out_dtype': dtype})
W
wanghuancoder 已提交
1331

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'sum',
        )
1348

1349 1350 1351
        check_type(
            axis, 'axis', (int, list, tuple, type(None), Variable), 'sum'
        )
1352

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
        helper = LayerHelper('sum', **locals())
        if dtype_flag:
            out = helper.create_variable_for_type_inference(dtype=dtype)
        else:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_sum',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
1365

1366

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
def nan_to_num(x, nan=0.0, posinf=None, neginf=None, name=None):
    """
    Replaces NaN, positive infinity, and negative infinity values in input tensor.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        nan (float, optional): the value to replace NaNs with. Default is 0.
        posinf (float, optional): if a Number, the value to replace positive infinity values with. If None, positive infinity values are replaced with the greatest finite value representable by input’s dtype. Default is None.
        neginf (float, optional): if a Number, the value to replace negative infinity values with. If None, negative infinity values are replaced with the lowest finite value representable by input’s dtype. Default is None.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of nan_to_num operation input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([float('nan'), 0.3, float('+inf'), float('-inf')], dtype='float32')
            out1 = paddle.nan_to_num(x)  # [0, 0.3, 3.4028235e+38, -3.4028235e+38]
            out2 = paddle.nan_to_num(x, nan=1)  # [1, 0.3, 3.4028235e+38, -3.4028235e+38]
            out3 = paddle.nan_to_num(x, posinf=5)  # [0, 0.3, 5, -3.4028235e+38]
            out4 = paddle.nan_to_num(x, nan=10, neginf=-99)  # [10, 0.3, 3.4028235e+38, -99]
    """
    # NOTE(tiancaishaonvjituizi): it seems that paddle handles the dtype of python float number
    # incorrectly, so we have to explicitly contruct tensors here
    posinf_value = paddle.full_like(x, float("+inf"))
    neginf_value = paddle.full_like(x, float("-inf"))
    nan = paddle.full_like(x, nan)
    assert x.dtype in [paddle.float32, paddle.float64]
    is_float32 = x.dtype == paddle.float32
    if posinf is None:
        posinf = (
            np.finfo(np.float32).max if is_float32 else np.finfo(np.float64).max
        )
    posinf = paddle.full_like(x, posinf)
    if neginf is None:
        neginf = (
            np.finfo(np.float32).min if is_float32 else np.finfo(np.float64).min
        )
    neginf = paddle.full_like(x, neginf)
    x = paddle.where(paddle.isnan(x), nan, x)
    x = paddle.where(x == posinf_value, posinf, x)
    x = paddle.where(x == neginf_value, neginf, x)
    return x


W
wangguanqun 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
def nansum(x, axis=None, dtype=None, keepdim=False, name=None):
    """
    Computes the sum of tensor elements over the given axis, treating Not a Numbers (NaNs) as zero.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the nansum is performed. If
            :attr:`None`, nansum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
1432
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
wangguanqun 已提交
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445

    Returns:
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,

    Examples:
        .. code-block:: python

            import paddle

            # x is a Tensor with following elements:
            #    [[nan, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, -nan, 0.7]]
            # Each example is followed by the corresponding output tensor.
1446 1447
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                            [0.1, 0.2, float('-nan'), 0.7]],dtype="float32")
W
wangguanqun 已提交
1448 1449 1450 1451 1452 1453 1454 1455 1456
            out1 = paddle.nansum(x)  # [2.7]
            out2 = paddle.nansum(x, axis=0)  # [0.1, 0.5, 0.5, 1.6]
            out3 = paddle.nansum(x, axis=-1)  # [1.7, 1.0]
            out4 = paddle.nansum(x, axis=1, keepdim=True)  # [[1.7], [1.0]]

            # y is a Tensor with shape [2, 2, 2] and elements as below:
            #      [[[1, nan], [3, 4]],
            #      [[5, 6], [-nan, 8]]]
            # Each example is followed by the corresponding output tensor.
1457
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
W
wangguanqun 已提交
1458 1459 1460 1461
                            [[5, 6], [float('-nan'), 8]]])
            out5 = paddle.nansum(y, axis=[1, 2]) # [8, 19]
            out6 = paddle.nansum(y, axis=[0, 1]) # [9, 18]
    """
1462 1463 1464
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'nansum'
    )
W
wangguanqun 已提交
1465 1466 1467 1468 1469 1470 1471
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'nansum')

    zero_tensor = paddle.zeros_like(x)
    tmp_tensor = paddle.where(isnan(x), zero_tensor, x)
    return sum(tmp_tensor, axis, dtype, keepdim, name)


1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
def nanmean(x, axis=None, keepdim=False, name=None):
    r"""
    Compute the arithmetic mean along the specified axis, ignoring NaNs.

    Args:
        x (Tensor): The input Tensor with data type uint16, float16, float32, float64.
        axis (int|list|tuple, optional):The axis along which to perform nanmean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), nanmean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, nanmean is
            calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of arithmetic mean along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:

        .. code-block:: python
            :name: code-example1

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                                  [0.1, 0.2, float('-nan'), 0.7]])
            out1 = paddle.nanmean(x)
            # [0.44999996]
            out2 = paddle.nanmean(x, axis=0)
            # [0.1, 0.25, 0.5, 0.79999995]
            out3 = paddle.nanmean(x, axis=0, keepdim=True)
            # [[0.1, 0.25, 0.5, 0.79999995]]
            out4 = paddle.nanmean(x, axis=1)
            # [0.56666666 0.33333334]
            out5 = paddle.nanmean(x, axis=1, keepdim=True)
            # [[0.56666666]
            #  [0.33333334]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
                                   [[5, 6], [float('-nan'), 8]]])
            out6 = paddle.nanmean(y, axis=[1, 2])
            # [2.66666675, 6.33333349]
            out7 = paddle.nanmean(y, axis=[0, 1])
            # [3., 6.]
    """
    if isinstance(axis, int):
        axis = [axis]
1529 1530 1531
    check_variable_and_dtype(
        x, 'x/input', ['uint16', 'float16', 'float32', 'float64'], 'nanmean'
    )
1532 1533 1534
    if axis is not None:
        check_type(axis, 'axis/dim', (int, list, tuple), 'nanmean')

1535 1536 1537
    cnt = paddle.sum(~paddle.isnan(x), axis=axis, keepdim=keepdim)
    return paddle.divide(
        paddle.nansum(x, axis=axis, keepdim=keepdim, name=name),
1538 1539
        cnt.astype(x.dtype),
    )
1540 1541


1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
def count_nonzero(x, axis=None, keepdim=False, name=None):
    r"""
    Counts the number of non-zero values in the tensor x along the specified axis.

    Args:
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of count operation on the specified axis of input Tensor `x`, it's data type is `'int64'`.

    Examples:

        .. code-block:: python

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]])
            out1 = paddle.count_nonzero(x)
            # [3]
            out2 = paddle.count_nonzero(x, axis=0)
            # [0, 1, 2]
            out3 = paddle.count_nonzero(x, axis=0, keepdim=True)
            # [[0, 1, 2]]
            out4 = paddle.count_nonzero(x, axis=1)
            # [2, 1, 0]
            out5 = paddle.count_nonzero(x, axis=1, keepdim=True)
            #[[2],
            # [1],
            # [0]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]],
                                  [[0., 2.5, 2.6], [0., 0., 2.4], [2.1, 2.2, 2.3]]])
            out6 = paddle.count_nonzero(y, axis=[1, 2])
            # [3, 6]
            out7 = paddle.count_nonzero(y, axis=[0, 1])
            # [1, 3, 5]
    """

    if axis is not None:
        if isinstance(axis, int):
            axis = [axis]
        dims = len(x.shape)
        for i in range(len(axis)):
1596 1597 1598
            if not isinstance(axis[i], int) or not (
                axis[i] < dims and axis[i] >= -dims
            ):
1599 1600 1601 1602 1603 1604 1605 1606 1607
                raise ValueError(
                    "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                )

    bool_tensor = paddle.cast(x, 'bool')
    int_tensor = paddle.cast(bool_tensor, 'int64')
    return paddle.sum(int_tensor, axis=axis, keepdim=keepdim, name=name)


1608
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
1609
def add_n(inputs, name=None):
1610
    """
1611
    Sum one or more Tensor of the input.
1612

S
Steffy-zxf 已提交
1613 1614 1615
    For example:

    .. code-block:: text
1616

S
Steffy-zxf 已提交
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
1630

S
Steffy-zxf 已提交
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
1646 1647

    Args:
1648
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
1649
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
1650
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1651 1652

    Returns:
S
Steffy-zxf 已提交
1653
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
1654 1655 1656

    Examples:
        .. code-block:: python
1657

1658 1659
            import paddle

S
Steffy-zxf 已提交
1660 1661 1662
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
1663
            # [[8., 10., 12.],
S
Steffy-zxf 已提交
1664
            #  [14., 16., 18.]]
1665
    """
1666 1667 1668
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
1669
        return _C_ops.add_n(inputs)
1670
    else:
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
        helper = LayerHelper('add_n', **locals())
        check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
        if isinstance(inputs, list) or isinstance(inputs, tuple):
            if len(inputs) > 0:
                for input in inputs:
                    check_variable_and_dtype(
                        input,
                        "inputs",
                        ['float16', 'float32', 'float64', 'int32', 'int64'],
                        'add_n',
                    )
        else:
            check_variable_and_dtype(
                inputs,
                "inputs",
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'add_n',
            )
1689

1690 1691 1692 1693 1694 1695 1696 1697 1698
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('inputs')
        )
        helper.append_op(
            type='sum',
            inputs={'X': inputs},
            outputs={'Out': out},
            attrs={'use_mkldnn': False},
        )
1699

1700
        return out
1701 1702


1703 1704 1705
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
1706

1707 1708 1709
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1710

1711 1712
    Returns:
        Tensor: The output Tensor of trunc.
1713

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand([2,2],'float32')
            print(input)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0.02331470, 0.42374918],
            #         [0.79647720, 0.74970269]])

            output = paddle.trunc(input)
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0., 0.],
            #         [0., 0.]]))
    '''
J
Jiabin Yang 已提交
1731
    if in_dygraph_mode():
1732
        return _C_ops.trunc(input)
1733
    else:
1734 1735
        inputs = {"X": input}
        attrs = {}
1736

1737 1738 1739 1740 1741
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            input, 'X', ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
1742

1743 1744 1745 1746
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
1747 1748


W
WuHaobo 已提交
1749
def mm(input, mat2, name=None):
1750
    """
S
swtkiwi 已提交
1751

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
1763
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
1764
        mat2 (Tensor): The input tensor which is a Tensor.
1765
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1766 1767

    Returns:
N
Noel 已提交
1768
        Tensor: The product Tensor.
1769

W
wawltor 已提交
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
    ::

        * example 1:

        input: [B, ..., M, K], mat2: [B, ..., K, N]
        out: [B, ..., M, N]

        * example 2:

        input: [B, M, K], mat2: [B, K, N]
        out: [B, M, N]

        * example 3:

        input: [B, M, K], mat2: [K, N]
        out: [B, M, N]

        * example 4:

        input: [M, K], mat2: [K, N]
        out: [M, N]

        * example 5:

        input: [B, M, K], mat2: [K]
        out: [B, M]

        * example 6:

        input: [K], mat2: [K]
        out: [1]

1802 1803 1804 1805
    Examples:
        .. code-block:: python

            import paddle
1806 1807 1808 1809 1810 1811 1812 1813
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
1814

1815
    """
1816
    if in_dygraph_mode():
1817
        return _C_ops.matmul(input, mat2, False, False)
1818
    else:
1819

1820 1821 1822 1823 1824
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float16', 'float32', 'float64'], 'mm'
1825
                )
1826 1827 1828 1829 1830 1831
            x_shape = list(x.shape)
            y_shape = list(y.shape)
            if len(x_shape) == 1:
                x_shape = [1] + x_shape
            if len(y_shape) == 1:
                y_shape = y_shape + [1]
1832

1833 1834 1835
            # check the inner 2 dimensions
            if x_shape[-1] != y_shape[-2]:
                if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
1836
                    raise ValueError(
1837 1838 1839 1840
                        "After performing an optional transpose, Input X's width should be "
                        "equal to Y's width for multiplication "
                        "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                        % (x_shape, y_shape)
1841
                    )
1842

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
            if len(y_shape) > 2 and len(x_shape) > 2:
                for i, dim_x in enumerate(x_shape[:-2]):
                    # don't check neg shape
                    if dim_x < 0 or y_shape[i] < 0:
                        continue
                    if dim_x != y_shape[i]:
                        raise ValueError(
                            "When the matrix is larger than 2 dimensions, the higher "
                            "dimensional values of the two matrices need to be equal. "
                            "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                            "Y's shape: %s.\n" % (i, i, x_shape, y_shape)
                        )

        __check_input(input, mat2)

        helper = LayerHelper('mm', **locals())
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='matmul_v2',
            inputs={'X': input, 'Y': mat2},
            outputs={'Out': out},
        )
        return out
1866

1867

Y
yaoxuefeng 已提交
1868
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
1869 1870 1871
    """
    **addmm**

1872
    Perform matrix multiplication for input $x$ and $y$.
1873 1874 1875 1876 1877 1878 1879 1880 1881
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
1882 1883 1884
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
1885 1886
        beta (float, optional): Coefficient of $input$, default is 1.
        alpha (float, optional): Coefficient of $x*y$, default is 1.
1887
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1888 1889

    Returns:
1890
        Tensor: The output Tensor of addmm.
1891 1892 1893

    Examples:
        ..  code-block:: python
1894

1895 1896
            import paddle

Y
yaoxuefeng 已提交
1897 1898 1899
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
1900

Y
yaoxuefeng 已提交
1901
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
1902

N
Noel 已提交
1903
            print(out)
1904 1905 1906
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
1907 1908 1909
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
1910
    if not len(x_shape) == len(y_shape) == 2:
1911
        raise ValueError(
1912 1913 1914 1915
            "The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
Y
yaoxuefeng 已提交
1916
    if x_shape[1] != y_shape[0]:
1917
        raise ValueError(
1918 1919 1920 1921
            "The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(
                x_shape, y_shape
            )
        )
1922 1923 1924
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
1925
                raise ValueError(
1926 1927 1928 1929
                    "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(
                        input_shape[0]
                    )
                )
1930
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
1931
                raise ValueError(
1932 1933 1934 1935
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
1936 1937
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
1938
                raise ValueError(
1939 1940 1941 1942
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
1943 1944
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
1945
            raise ValueError(
1946 1947 1948 1949
                "The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]".format(
                    input_shape, x_shape[0], y_shape[1]
                )
            )
1950
    else:
1951
        raise ValueError(
1952 1953 1954 1955
            "The dimention of input should be 2 or 1 but receive input's shape: {}".format(
                input_shape
            )
        )
Y
yaoxuefeng 已提交
1956

J
Jiabin Yang 已提交
1957
    if in_dygraph_mode():
1958
        return _C_ops.addmm(input, x, y, beta, alpha)
J
Jiabin Yang 已提交
1959
    else:
1960 1961
        inputs = {'Input': input, "X": x, "Y": y}
        attrs = {'Alpha': alpha, 'Beta': beta}
1962

1963 1964 1965 1966 1967 1968 1969
        helper = LayerHelper("addmm", **locals())
        check_variable_and_dtype(
            input, 'Input', ['float32', 'float64'], 'addmm'
        )
        check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
        check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1970

1971 1972 1973 1974
        helper.append_op(
            type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
1975

1976

S
seemingwang 已提交
1977 1978 1979 1980 1981 1982 1983
def renorm(x, p, axis, max_norm):
    """
    **renorm**

    This operator is used to calculate the p-norm along the axis,
    suppose the input-shape on axis dimension has the value of T, then
    the tensor is split into T parts, the p-norm should be calculated for each
1984
    part, if the p-norm for part i is larger than max-norm, then each element
S
seemingwang 已提交
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
    in part i should be re-normalized at the same scale so that part-i' p-norm equals
    max-norm exactly, otherwise part-i stays unchanged.

    Args:
        x (Tensor): The input Tensor
        p (float): The power of the norm operation.
        axis (int): the dimension to slice the tensor.
        max-norm (float): the maximal norm limit.

    Returns:
        Tensor: the renorm Tensor.

    Examples:
        ..  code-block:: python
1999

S
seemingwang 已提交
2000 2001 2002 2003
            import paddle
            input = [[[2.0,2,-2],[3,0.3,3]],[[2,-8,2],[3.1,3.7,3]]]
            x = paddle.to_tensor(input,dtype='float32')
            y = paddle.renorm(x, 1.0, 2, 2.05)
2004
            print(y)
S
seemingwang 已提交
2005 2006 2007 2008
    #        [[[ 0.40594056,  0.29285714, -0.41000000],
    #          [ 0.60891086,  0.04392857,  0.61500001]],
    #         [[ 0.40594056, -1.17142856,  0.41000000],
    #          [ 0.62920785,  0.54178572,  0.61500001]]])
2009

S
seemingwang 已提交
2010 2011 2012 2013
    """
    input_shape = x.shape
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'renorm')
    if not axis < len(input_shape):
2014 2015
        raise ValueError(
            "the axis:{} should be less then the shape's size {}:{}".format(
2016 2017 2018
                axis, len(input_shape), input_shape
            )
        )
2019
    if not axis >= 0:
S
seemingwang 已提交
2020
        if not axis >= -1 * len(input_shape):
2021
            raise ValueError(
2022 2023 2024 2025
                "the axis:{} should not be less than -1 * length of input_shape:{}".format(
                    axis, -1 * len(input_shape)
                )
            )
S
seemingwang 已提交
2026
        axis = axis + len(input_shape)
S
seemingwang 已提交
2027
    if in_dygraph_mode():
2028
        out = _C_ops.renorm(x, p, axis, max_norm)
S
seemingwang 已提交
2029
        return out
2030 2031 2032
    else:
        inputs = {'X': x}
        attrs = {'p': p, 'axis': axis, 'max_norm': max_norm}
S
seemingwang 已提交
2033

2034 2035
        helper = LayerHelper("renorm", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
seemingwang 已提交
2036

2037 2038 2039 2040
        helper.append_op(
            type="renorm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
S
seemingwang 已提交
2041

2042

Z
zhiboniu 已提交
2043 2044 2045 2046
def inner(x, y, name=None):
    """

    Inner product of two input Tensor.
2047

Z
zhiboniu 已提交
2048 2049 2050 2051 2052
    Ordinary inner product for 1-D Tensors, in higher dimensions a sum product over the last axes.

    Args:
        x (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match y's.
        y (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match x's.
2053
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075

    Returns:
        Tensor: The inner-product Tensor, the output shape is x.shape[:-1] + y.shape[:-1].

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 7).reshape((2, 3)).astype('float32')
            y = paddle.arange(1, 10).reshape((3, 3)).astype('float32')
            out = paddle.inner(x, y)
            print(out)
            #        ([[14, 32, 50],
            #         [32, 77, 122]])


    """
    if x.size == 1 or y.size == 1:
        return multiply(x, y)
    else:
        xshape = x.shape
        yshape = y.shape
2076 2077
        dstshape = list(xshape[:-1]) + list(yshape[:-1])
        if len(dstshape) == 0:
Z
zhiboniu 已提交
2078 2079 2080 2081
            dstshape = [1]
        nx = x.reshape((-1, xshape[-1]))
        ny = y.reshape((-1, yshape[-1]))

2082
        if in_dygraph_mode():
2083
            return _C_ops.matmul(nx, ny.T, False, False).reshape(dstshape)
2084
        else:
Z
zhiboniu 已提交
2085

2086 2087 2088 2089 2090
            def __check_input(x, y):
                var_names = {'x': x, 'y': y}
                for name, val in var_names.items():
                    check_variable_and_dtype(
                        val, name, ['float16', 'float32', 'float64'], 'inner'
2091
                    )
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
                x_shape = list(xshape)
                y_shape = list(yshape)

                # check the inner 2 dimensions
                if x_shape[-1] != y_shape[-1]:
                    if not ((x_shape[-1] == -1) or (y_shape[-1] == -1)):
                        raise ValueError(
                            "After performing an optional transpose, Input X's last dim should be "
                            "equal to Y's last dim for multiplication "
                            "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                            % (x_shape, y_shape)
                        )

            __check_input(nx, ny)

            helper = LayerHelper('inner', **locals())
            out = helper.create_variable_for_type_inference(dtype=nx.dtype)
            helper.append_op(
                type='matmul_v2',
                inputs={'X': nx, 'Y': ny.T},
                outputs={'Out': out},
            )
            return out.reshape(dstshape)
Z
zhiboniu 已提交
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124


def outer(x, y, name=None):
    """

    Outer product of two Tensors.

    Input is flattened if not already 1-dimensional.

    Args:
2125 2126
        x (Tensor): An N-D Tensor or a Scalar Tensor.
        y (Tensor): An N-D Tensor or a Scalar Tensor.
2127
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148

    Returns:
        Tensor: The outer-product Tensor.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 4).astype('float32')
            y = paddle.arange(1, 6).astype('float32')
            out = paddle.outer(x, y)
            print(out)
            #        ([[1, 2, 3, 4, 5],
            #         [2, 4, 6, 8, 10],
            #         [3, 6, 9, 12, 15]])


    """
    nx = x.reshape((-1, 1))
    ny = y.reshape((1, -1))

2149
    if in_dygraph_mode():
2150
        return _C_ops.matmul(nx, ny, False, False)
2151
    else:
Z
zhiboniu 已提交
2152

2153 2154 2155 2156 2157 2158
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float16', 'float32', 'float64'], 'inner'
                )
Z
zhiboniu 已提交
2159

2160
        __check_input(nx, ny)
Z
zhiboniu 已提交
2161

2162 2163 2164 2165 2166 2167
        helper = LayerHelper('outer', **locals())
        out = helper.create_variable_for_type_inference(dtype=nx.dtype)
        helper.append_op(
            type='matmul_v2', inputs={'X': nx, 'Y': ny}, outputs={'Out': out}
        )
        return out
Z
zhiboniu 已提交
2168 2169


2170
def logsumexp(x, axis=None, keepdim=False, name=None):
2171
    r"""
2172
    Calculates the log of the sum of exponentials of ``x`` along ``axis`` .
2173

2174
    .. math::
2175
       logsumexp(x) = \log\sum exp(x)
2176

2177
    Args:
2178
        x (Tensor): The input Tensor with data type float32 or float64, which
S
Shang Zhizhou 已提交
2179
            have no more than 4 dimensions.
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2196

2197
    Returns:
2198 2199
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
2200

2201
    Examples:
2202

2203
    .. code-block:: python
2204

2205 2206
        import paddle

2207
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
2208 2209
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
2210 2211

    """
2212
    reduce_all, axis = _get_reduce_axis(axis, x)
2213

2214
    if in_dygraph_mode():
2215
        return _C_ops.logsumexp(x, axis, keepdim, reduce_all)
2216 2217 2218 2219 2220 2221 2222 2223
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'logsumexp')

        helper = LayerHelper('logsumexp', **locals())
        attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all': reduce_all}
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
2224
        )
2225
        return out
2226

S
swtkiwi 已提交
2227

2228 2229
def inverse(x, name=None):
    """
2230 2231 2232 2233 2234
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
2235
        x (Tensor): The input tensor. The last two
2236 2237 2238
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
2239
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2240 2241

    Returns:
2242
        Tensor: A Tensor holds the inverse of x. The shape and data type
2243
                        is the same as x.
2244 2245 2246 2247 2248

    Examples:
        .. code-block:: python

            import paddle
2249 2250

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
2251 2252
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
2253 2254

    """
2255
    if in_dygraph_mode():
W
wanghuancoder 已提交
2256
        return _C_ops.inverse(x)
2257
    else:
2258

2259 2260 2261 2262 2263 2264 2265 2266
        def _check_input(x):
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'inverse')
            if len(x.shape) < 2:
                raise ValueError(
                    "The input of inverse is expected to be a Tensor whose number "
                    "of dimensions is no less than 2. But reviced: %d, "
                    "x's shape: %s." % (len(x.shape), x.shape)
                )
2267

2268 2269 2270 2271 2272 2273 2274
        _check_input(x)
        helper = LayerHelper('inverse', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='inverse', inputs={'Input': [x]}, outputs={'Output': [out]}
        )
        return out
2275

2276

2277
def max(x, axis=None, keepdim=False, name=None):
2278
    """
S
swtkiwi 已提交
2279

2280
    Computes the maximum of tensor elements over the given axis.
2281

T
Tao Luo 已提交
2282 2283
    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2284
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2285 2286 2287
        while max propagates gradient to all of them.


2288
    Args:
2289 2290
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
2291
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
2292
            `x` and return a Tensor with a single element,
2293 2294
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2295
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2296
            output Tensor. The result tensor will have one fewer dimension
2297
            than the `x` unless :attr:`keepdim` is true, default
2298
            value is False.
2299
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2300 2301

    Returns:
2302
        Tensor, results of maximum on the specified axis of input tensor,
2303
        it's data type is the same as `x`.
2304 2305 2306

    Examples:
        .. code-block:: python
2307

2308
            import paddle
2309

N
Noel 已提交
2310
            # data_x is a Tensor with shape [2, 4]
2311
            # the axis is a int element
2312
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2313
                                  [0.1, 0.2, 0.6, 0.7]],
2314
                                 dtype='float64', stop_gradient=False)
2315
            result1 = paddle.max(x)
2316
            result1.backward()
2317
            print(result1, x.grad)
2318 2319 2320
            #[0.9], [[0., 0., 0., 1.], [0., 0., 0., 0.]]

            x.clear_grad()
2321
            result2 = paddle.max(x, axis=0)
2322
            result2.backward()
2323
            print(result2, x.grad)
2324 2325 2326
            #[0.2, 0.3, 0.6, 0.9], [[1., 1., 0., 1.], [0., 0., 1., 0.]]

            x.clear_grad()
2327
            result3 = paddle.max(x, axis=-1)
2328
            result3.backward()
2329
            print(result3, x.grad)
2330 2331 2332
            #[0.9, 0.7], [[0., 0., 0., 1.], [0., 0., 0., 1.]]

            x.clear_grad()
2333
            result4 = paddle.max(x, axis=1, keepdim=True)
2334
            result4.backward()
2335
            print(result4, x.grad)
2336
            #[[0.9], [0.7]], [[0., 0., 0., 1.], [0., 0., 0., 1.]]
2337

N
Noel 已提交
2338
            # data_y is a Tensor with shape [2, 2, 2]
2339
            # the axis is list
2340
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2341 2342
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2343
            result5 = paddle.max(y, axis=[1, 2])
2344
            result5.backward()
2345
            print(result5, y.grad)
2346 2347 2348
            #[4., 8.], [[[0., 0.], [0., 1.]], [[0., 0.], [0., 1.]]]

            y.clear_grad()
2349
            result6 = paddle.max(y, axis=[0, 1])
2350
            result6.backward()
2351
            print(result6, y.grad)
2352
            #[7., 8.], [[[0., 0.], [0., 0.]], [[0., 0.], [1., 1.]]]
2353 2354
    """

2355
    if in_dygraph_mode():
2356
        return _C_ops.max(x, axis, keepdim)
2357 2358 2359 2360 2361
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('max', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max'
2362
        )
2363 2364
        if not isinstance(axis, Variable) and utils._contain_var(axis):
            axis = utils._convert_to_tensor_list(axis)
2365

2366 2367 2368 2369 2370 2371 2372 2373
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_max',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2374

2375

2376
def min(x, axis=None, keepdim=False, name=None):
2377
    """
S
swtkiwi 已提交
2378

2379
    Computes the minimum of tensor elements over the given axis
2380

T
Tao Luo 已提交
2381 2382
    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2383
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2384 2385
        while min propagates gradient to all of them.

2386
    Args:
2387 2388
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
2389
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
2390
            `x` and return a Tensor with a single element,
2391 2392
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2393
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2394
            output Tensor. The result tensor will have one fewer dimension
2395
            than the `x` unless :attr:`keepdim` is true, default
2396
            value is False.
2397
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2398

2399
    Returns:
2400
        Tensor, results of minimum on the specified axis of input tensor,
2401
        it's data type is the same as input's Tensor.
2402

2403 2404 2405
    Examples:
        .. code-block:: python

2406
            import paddle
2407

2408
            # data_x is a Tensor with shape [2, 4]
2409
            # the axis is a int element
2410
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2411
                                  [0.1, 0.2, 0.6, 0.7]],
2412
                                 dtype='float64', stop_gradient=False)
2413
            result1 = paddle.min(x)
2414
            result1.backward()
2415
            print(result1, x.grad)
2416 2417 2418
            #[0.1], [[0., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2419
            result2 = paddle.min(x, axis=0)
2420
            result2.backward()
2421
            print(result2, x.grad)
2422 2423 2424
            #[0.1, 0.2, 0.5, 0.7], [[0., 0., 1., 0.], [1., 1., 0., 1.]]

            x.clear_grad()
2425
            result3 = paddle.min(x, axis=-1)
2426
            result3.backward()
2427
            print(result3, x.grad)
2428 2429 2430
            #[0.2, 0.1], [[1., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2431
            result4 = paddle.min(x, axis=1, keepdim=True)
2432
            result4.backward()
2433
            print(result4, x.grad)
2434
            #[[0.2], [0.1]], [[1., 0., 0., 0.], [1., 0., 0., 0.]]
2435

2436
            # data_y is a Tensor with shape [2, 2, 2]
2437
            # the axis is list
2438
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2439 2440
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2441
            result5 = paddle.min(y, axis=[1, 2])
2442
            result5.backward()
2443
            print(result5, y.grad)
2444 2445 2446
            #[1., 5.], [[[1., 0.], [0., 0.]], [[1., 0.], [0., 0.]]]

            y.clear_grad()
2447
            result6 = paddle.min(y, axis=[0, 1])
2448
            result6.backward()
2449
            print(result6, y.grad)
2450
            #[1., 2.], [[[1., 1.], [0., 0.]], [[0., 0.], [0., 0.]]]
2451
    """
2452

2453
    if in_dygraph_mode():
2454
        return _C_ops.min(x, axis, keepdim)
2455 2456 2457 2458 2459
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('min', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min'
2460
        )
2461

2462 2463 2464 2465 2466 2467 2468 2469
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_min',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2470

2471

T
Tao Luo 已提交
2472 2473 2474 2475 2476 2477
def amax(x, axis=None, keepdim=False, name=None):
    """
    Computes the maximum of tensor elements over the given axis.

    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2478
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2479 2480 2481
        while max propagates gradient to all of them.

    Args:
2482
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2483
            the dimension is no more than 4.
2484
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
T
Tao Luo 已提交
2485 2486 2487 2488
            If :attr:`None`, compute the maximum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2489
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2490 2491 2492
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2493
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506

    Returns:
        Tensor, results of maximum on the specified axis of input tensor,
        it's data type is the same as `x`.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple maximum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.1, 0.9, 0.9, 0.9],
2507
                                  [0.9, 0.9, 0.6, 0.7]],
T
Tao Luo 已提交
2508
                                 dtype='float64', stop_gradient=False)
2509 2510
            # There are 5 maximum elements:
            # 1) amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2511
            #    thus the corresponding gradients are 1/5=0.2;
2512
            # 2) while max propagates gradient to all of them,
T
Tao Luo 已提交
2513
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2514 2515
            result1 = paddle.amax(x)
            result1.backward()
2516
            print(result1, x.grad)
T
Tao Luo 已提交
2517 2518
            #[0.9], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2519 2520 2521
            x.clear_grad()
            result1_max = paddle.max(x)
            result1_max.backward()
2522
            print(result1_max, x.grad)
T
Tao Luo 已提交
2523 2524 2525 2526
            #[0.9], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2527 2528 2529
            x.clear_grad()
            result2 = paddle.amax(x, axis=0)
            result2.backward()
2530
            print(result2, x.grad)
T
Tao Luo 已提交
2531 2532 2533 2534 2535
            #[0.9, 0.9, 0.9, 0.9], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amax(x, axis=-1)
            result3.backward()
2536
            print(result3, x.grad)
T
Tao Luo 已提交
2537 2538 2539 2540 2541
            #[0.9, 0.9], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amax(x, axis=1, keepdim=True)
            result4.backward()
2542
            print(result4, x.grad)
T
Tao Luo 已提交
2543 2544 2545
            #[[0.9], [0.9]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
2546
            # the axis is list
T
Tao Luo 已提交
2547 2548 2549 2550 2551
            y = paddle.to_tensor([[[0.1, 0.9], [0.9, 0.9]],
                                  [[0.9, 0.9], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amax(y, axis=[1, 2])
            result5.backward()
2552
            print(result5, y.grad)
T
Tao Luo 已提交
2553 2554 2555 2556 2557
            #[0.9., 0.9], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amax(y, axis=[0, 1])
            result6.backward()
2558
            print(result6, y.grad)
T
Tao Luo 已提交
2559 2560
            #[0.9., 0.9], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """
2561
    if in_dygraph_mode():
2562
        return _C_ops.amax(x, axis, keepdim)
2563

2564 2565 2566 2567 2568
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amax', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amax'
2569
        )
T
Tao Luo 已提交
2570

2571 2572 2573 2574 2575 2576 2577 2578
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amax',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
2579

2580

T
Tao Luo 已提交
2581 2582 2583 2584 2585 2586 2587
def amin(x, axis=None, keepdim=False, name=None):
    """

    Computes the minimum of tensor elements over the given axis

    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2588
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2589 2590 2591
        while min propagates gradient to all of them.

    Args:
2592
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2593
            the dimension is no more than 4.
2594
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
T
Tao Luo 已提交
2595 2596 2597 2598
            If :attr:`None`, compute the minimum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2599
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2600 2601 2602
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2603
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616

    Returns:
        Tensor, results of minimum on the specified axis of input tensor,
        it's data type is the same as input's Tensor.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple minimum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.2, 0.1, 0.1, 0.1],
2617
                                  [0.1, 0.1, 0.6, 0.7]],
T
Tao Luo 已提交
2618
                                 dtype='float64', stop_gradient=False)
2619 2620
            # There are 5 minimum elements:
            # 1) amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2621
            #    thus the corresponding gradients are 1/5=0.2;
2622
            # 2) while min propagates gradient to all of them,
T
Tao Luo 已提交
2623
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2624 2625
            result1 = paddle.amin(x)
            result1.backward()
2626
            print(result1, x.grad)
T
Tao Luo 已提交
2627 2628
            #[0.1], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2629 2630 2631
            x.clear_grad()
            result1_min = paddle.min(x)
            result1_min.backward()
2632
            print(result1_min, x.grad)
T
Tao Luo 已提交
2633 2634 2635 2636
            #[0.1], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2637 2638 2639
            x.clear_grad()
            result2 = paddle.amin(x, axis=0)
            result2.backward()
2640
            print(result2, x.grad)
T
Tao Luo 已提交
2641 2642 2643 2644 2645
            #[0.1, 0.1, 0.1, 0.1], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amin(x, axis=-1)
            result3.backward()
2646
            print(result3, x.grad)
T
Tao Luo 已提交
2647 2648 2649 2650 2651
            #[0.1, 0.1], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amin(x, axis=1, keepdim=True)
            result4.backward()
2652
            print(result4, x.grad)
T
Tao Luo 已提交
2653 2654 2655
            #[[0.1], [0.1]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
2656
            # the axis is list
T
Tao Luo 已提交
2657 2658 2659 2660 2661
            y = paddle.to_tensor([[[0.2, 0.1], [0.1, 0.1]],
                                  [[0.1, 0.1], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amin(y, axis=[1, 2])
            result5.backward()
2662
            print(result5, y.grad)
T
Tao Luo 已提交
2663 2664 2665 2666 2667
            #[0.1., 0.1], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amin(y, axis=[0, 1])
            result6.backward()
2668
            print(result6, y.grad)
T
Tao Luo 已提交
2669 2670
            #[0.1., 0.1], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """
2671
    if in_dygraph_mode():
2672
        return _C_ops.amin(x, axis, keepdim)
2673

2674 2675 2676 2677 2678
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amin', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amin'
2679
        )
T
Tao Luo 已提交
2680

2681 2682 2683 2684 2685 2686 2687 2688
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amin',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
2689

2690

W
WuHaobo 已提交
2691
def log1p(x, name=None):
2692
    r"""
2693
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
2694

2695
    .. math::
2696
        Out = \ln(x+1)
S
Steffy-zxf 已提交
2697

2698
    Args:
S
Steffy-zxf 已提交
2699
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
2700
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2701

2702
    Returns:
S
Steffy-zxf 已提交
2703
        Tensor, the natural log of the input Tensor computed element-wise.
2704

2705 2706
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
2707

2708
            import paddle
S
Steffy-zxf 已提交
2709 2710 2711 2712

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
2713 2714
    """

2715
    if in_dygraph_mode():
W
wanghuancoder 已提交
2716
        return _C_ops.log1p(x)
2717 2718 2719 2720 2721 2722 2723 2724
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
        inputs = {'X': [x]}
        helper = LayerHelper('log1p', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
        return out
B
Bai Yifan 已提交
2725

2726

J
joejiong 已提交
2727
def log2(x, name=None):
2728
    r"""
J
joejiong 已提交
2729 2730 2731 2732
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

2733
        Out = \log_2x
J
joejiong 已提交
2734 2735 2736

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2737
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2738 2739 2740 2741 2742 2743 2744 2745


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
2746

J
joejiong 已提交
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
2765
    if in_dygraph_mode():
W
wanghuancoder 已提交
2766
        return _C_ops.log2(x)
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], "log2"
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log2', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
        return out
W
WuHaobo 已提交
2777

J
joejiong 已提交
2778 2779

def log10(x, name=None):
2780
    r"""
J
joejiong 已提交
2781 2782 2783 2784
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

2785
        Out = \log_10_x
J
joejiong 已提交
2786 2787 2788

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2789
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2790 2791 2792 2793 2794 2795 2796 2797


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
2798

J
joejiong 已提交
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
2817
    if in_dygraph_mode():
W
wanghuancoder 已提交
2818
        return _C_ops.log10(x)
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], "log10"
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log10', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
        return out
J
joejiong 已提交
2829 2830


Y
Yang Zhang 已提交
2831
def clip(x, min=None, max=None, name=None):
2832
    """
Y
Yang Zhang 已提交
2833
    This operator clip all elements in input into the range [ min, max ] and return
2834 2835 2836 2837
    a resulting tensor as the following equation:

    .. math::

2838
        Out = MIN(MAX(x, min), max)
2839 2840

    Args:
2841
        x (Tensor): An N-D Tensor with data type float32, float64, int32 or int64.
2842
        min (float|int|Tensor, optional): The lower bound with type ``float`` , ``int`` or a ``Tensor``
2843
            with shape [1] and type ``int32``, ``float32``, ``float64``.
2844
        max (float|int|Tensor, optional): The upper bound with type ``float``, ``int`` or a ``Tensor``
2845
            with shape [1] and type ``int32``, ``float32``, ``float64``.
2846
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2847 2848

    Returns:
Y
Yang Zhang 已提交
2849
        Tensor: A Tensor with the same data type and data shape as input.
2850 2851 2852 2853 2854

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
2855

2856
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
2857 2858
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
2859
            print(out1)
Y
Yang Zhang 已提交
2860 2861
            # [[3.5, 3.5]
            # [4.5, 5.0]]
2862
            print(out2)
Y
Yang Zhang 已提交
2863 2864
            # [[2.5, 3.5]
            # [[4.5, 6.4]
2865 2866
    """

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
2877

C
chentianyu03 已提交
2878 2879 2880 2881 2882 2883 2884
    if in_dygraph_mode():
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
        min = min_ if min is None else min
        max = max_ if max is None else max
2885
        return _C_ops.clip(x, min, max)
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
    else:
        if min is not None:
            check_type(min, 'min', (float, int, Variable), 'clip')
            if isinstance(min, Variable):
                check_dtype(
                    min.dtype,
                    'min',
                    ['float32', 'float64', 'int32'],
                    'clip',
                    '(When the type of min in clip is Variable.)',
                )
        if max is not None:
            check_type(max, 'max', (float, int, Variable), 'clip')
            if isinstance(max, Variable):
                check_dtype(
                    max.dtype,
                    'max',
                    ['float32', 'float64', 'int32'],
                    'clip',
                    '(When the type of max in clip is Variable.)',
                )
C
chentianyu03 已提交
2907

2908 2909 2910
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'clip'
        )
Y
Yang Zhang 已提交
2911

2912 2913
        inputs = {'X': x}
        attrs = {'min': min_, 'max': max_}
2914

2915 2916 2917 2918 2919
        if isinstance(min, Variable):
            min.stop_gradient = True
            inputs['Min'] = min
        elif min is not None:
            attrs['min'] = min
2920

2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
        if isinstance(max, Variable):
            max.stop_gradient = True
            inputs['Max'] = max
        elif max is not None:
            attrs['max'] = max

        helper = LayerHelper('clip', **locals())
        output = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('x')
        )
        helper.append_op(
            type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs
        )
2934

2935
        return output
F
Feiyu Chan 已提交
2936

W
WuHaobo 已提交
2937

2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_clip`.
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
        min = min.numpy().item(0)
    if isinstance(max, Variable):
        max = max.numpy().item(0)
    min = fmin if min is None else min
    max = fmax if max is None else max
C
chentianyu03 已提交
2952 2953

    if in_dygraph_mode():
2954
        return _C_ops.clip_(x, min, max)
C
chentianyu03 已提交
2955

2956

2957
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
2958
    """
S
swtkiwi 已提交
2959

2960
    Computes the sum along diagonals of the input tensor x.
2961 2962

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
2963

2964
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
2965
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
2966
    of the input tensor x.
L
Li Fuchen 已提交
2967

2968
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
2969 2970 2971 2972

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
2973
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
2974

L
Li Fuchen 已提交
2975
    Args:
2976 2977 2978 2979 2980
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
L
Li Fuchen 已提交
2981 2982

    Returns:
2983
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
2984 2985 2986 2987 2988

    Examples:
        .. code-block:: python

            import paddle
2989

2990 2991 2992
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
2993 2994 2995
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
2996
    """
2997

Z
zyfncg 已提交
2998
    def __check_input(x, offset, axis1, axis2):
2999 3000 3001 3002 3003 3004
        check_dtype(
            x.dtype,
            'Input',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'trace',
        )
L
Li Fuchen 已提交
3005

3006
        input_shape = list(x.shape)
3007 3008 3009 3010
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "But received Input x's dimensional: %s.\n" % len(input_shape)
        )
L
Li Fuchen 已提交
3011

3012 3013
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
3014

3015 3016
        assert (0 <= axis1_) and (axis1_ < len(input_shape)), (
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3017
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
3018
        )
L
Li Fuchen 已提交
3019

3020 3021
        assert (0 <= axis2_) and (axis2_ < len(input_shape)), (
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3022
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
3023
        )
L
Li Fuchen 已提交
3024

3025 3026 3027 3028
        assert axis1_ != axis2_, (
            "axis1 and axis2 cannot be the same axis."
            "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
        )
L
Li Fuchen 已提交
3029

H
hong 已提交
3030
    if in_dygraph_mode():
3031
        return _C_ops.trace(x, offset, axis1, axis2)
3032 3033
    else:
        __check_input(x, offset, axis1, axis2)
H
hong 已提交
3034

3035 3036
        helper = LayerHelper('trace', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
3037

3038 3039 3040 3041 3042 3043 3044
        helper.append_op(
            type='trace',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
L
Li Fuchen 已提交
3045

3046

3047 3048 3049 3050 3051
def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
    """
    This OP computes the diagonals of the input tensor x.

    If ``x`` is 2D, returns the diagonal.
3052
    If ``x`` has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2.
3053 3054 3055 3056 3057 3058 3059
    By default, the 2D planes formed by the first and second axis of the input tensor x.

    The argument ``offset`` determines where diagonals are taken from input tensor x:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
3060

3061
    Args:
3062 3063 3064 3065 3066
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109

    Returns:
        Tensor: a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([2,2,3],'float32')
            print(x)
            # Tensor(shape=[2, 2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[[0.45661032, 0.03751532, 0.90191704],
            #          [0.43760979, 0.86177313, 0.65221709]],

            #         [[0.17020577, 0.00259554, 0.28954273],
            #          [0.51795638, 0.27325270, 0.18117726]]])

            out1 = paddle.diagonal(x)
            print(out1)
            #Tensor(shape=[3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.51795638],
            #        [0.03751532, 0.27325270],
            #        [0.90191704, 0.18117726]])

            out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1)
            print(out2)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])

            out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1)
            print(out3)
            #Tensor(shape=[3, 1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.43760979],
            #        [0.86177313],
            #        [0.65221709]])

            out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2)
            print(out4)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])
3110

3111
    """
J
Jiabin Yang 已提交
3112
    if in_dygraph_mode():
3113
        return _C_ops.diagonal(x, offset, axis1, axis2)
J
Jiabin Yang 已提交
3114
    else:
W
wanghuancoder 已提交
3115

3116 3117 3118 3119 3120 3121 3122
        def __check_input(x, offset, axis1, axis2):
            check_dtype(
                x.dtype,
                'Input',
                ['bool', 'int32', 'int64', 'float16', 'float32', 'float64'],
                'diagonal',
            )
3123

3124 3125 3126 3127 3128
            input_shape = list(x.shape)
            assert len(input_shape) >= 2, (
                "The x must be at least 2-dimensional, "
                "But received Input x's dimensional: %s.\n" % len(input_shape)
            )
3129

3130 3131
            axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
            axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
3132

3133 3134 3135 3136
            assert axis1_ < len(input_shape), (
                "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis1)
            )
3137

3138 3139 3140 3141
            assert axis2_ < len(input_shape), (
                "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis2)
            )
3142

3143 3144 3145 3146
            assert axis1_ != axis2_, (
                "axis1 and axis2 cannot be the same axis."
                "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
            )
3147

3148 3149 3150
        __check_input(x, offset, axis1, axis2)
        helper = LayerHelper('diagonal', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
3151

3152 3153 3154 3155 3156 3157 3158
        helper.append_op(
            type='diagonal',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
3159 3160


F
Feiyu Chan 已提交
3161
@templatedoc(op_type="kron")
W
WuHaobo 已提交
3162
def kron(x, y, name=None):
S
swtkiwi 已提交
3163 3164
    """

3165
    ${comment}
F
Feiyu Chan 已提交
3166 3167

    Args:
3168 3169
        x (Tensor): the fist operand of kron op, data type: float16, float32, float64, int32 or int64.
        y (Tensor): the second operand of kron op, data type: float16, float32, float64, int32 or int64. Its data type should be the same with x.
3170
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
F
Feiyu Chan 已提交
3171 3172

    Returns:
3173
        Tensor: The output of kron, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
3174 3175 3176

    Examples:
        .. code-block:: python
3177

3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
3189
    """
3190
    if in_dygraph_mode():
3191 3192 3193 3194 3195 3196 3197 3198 3199
        return _legacy_C_ops.kron(x, y)
    else:
        helper = LayerHelper('kron', **locals())
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
        check_variable_and_dtype(
            y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
F
Feiyu Chan 已提交
3200

3201 3202 3203 3204 3205
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
        return out
3206 3207 3208 3209


def cumsum(x, axis=None, dtype=None, name=None):
    """
3210 3211
    The cumulative sum of the elements along a given axis.

3212
    Note:
3213
        The first element of the result is the same as the first element of the input.
3214 3215

    Args:
3216
        x (Tensor): The input tensor needed to be cumsumed.
3217
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3218
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3219 3220 3221
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3222
        Tensor, the result of cumsum operator.
3223 3224 3225

    Examples:
        .. code-block:: python
3226

3227
            import paddle
3228

3229 3230
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
3231 3232 3233 3234 3235 3236 3237 3238

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
3239

3240 3241 3242 3243 3244 3245 3246
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
3247
            # paddle.float64
3248 3249 3250 3251 3252 3253
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3254
        x = cast(x, dtype)
3255

H
hong 已提交
3256
    if in_dygraph_mode():
3257 3258
        if axis is None:
            axis = -1
3259
        return _C_ops.cumsum(x, axis, flatten, False, False)
3260 3261 3262 3263 3264 3265 3266 3267 3268
    else:
        check_type(x, 'x', (Variable), 'cumsum')
        locals_var = locals().copy()
        kwargs = dict()
        for name, val in locals_var.items():
            if val is not None:
                kwargs[name] = val
        _cum_sum_ = generate_layer_fn('cumsum')
        return _cum_sum_(**kwargs)
G
guofei 已提交
3269

3270 3271 3272

def logcumsumexp(x, axis=None, dtype=None, name=None):
    r"""
3273
    The logarithm of the cumulative summation of the exponentiation of the elements along a given axis.
3274 3275 3276 3277 3278 3279

    For summation index j given by `axis` and other indices i, the result is

    .. math::

        logcumsumexp(x)_{ij} = log \sum_{i=0}^{j}exp(x_{ij})
3280

3281 3282 3283 3284 3285 3286
    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor.
        axis (int, optional): The dimension to do the operation along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3287
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3288 3289 3290
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3291
        Tensor, the result of logcumsumexp operator.
3292 3293 3294

    Examples:
        .. code-block:: python
3295

3296
            import paddle
3297

3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
            data = paddle.arange(12, dtype='float64')
            data = paddle.reshape(data, (3, 4))

            y = paddle.logcumsumexp(data)
            # [ 0.         1.3132617  2.4076061  3.4401898  4.4519143  5.4561934
            #   6.4577627  7.4583397  8.458551   9.45863   10.458658  11.458669 ]

            y = paddle.logcumsumexp(data, axis=0)
            # [[ 0.        1.        2.        3.      ]
            #  [ 4.01815   5.01815   6.01815   7.01815 ]
            #  [ 8.018479  9.018479 10.018479 11.018479]]
3309

3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
            y = paddle.logcumsumexp(data, axis=-1)
            # [[ 0.         1.3132617  2.4076061  3.4401898]
            #  [ 4.         5.3132615  6.407606   7.44019  ]
            #  [ 8.         9.313262  10.407606  11.440189 ]]

            y = paddle.logcumsumexp(data, dtype='float64')
            print(y.dtype)
            # paddle.float64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = cast(x, dtype)

    if in_dygraph_mode():
3327 3328
        if axis is None:
            axis = -1
3329
        return _C_ops.logcumsumexp(x, axis, flatten, False, False)
3330 3331 3332 3333
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], "logcumsumexp"
        )
3334

3335 3336 3337 3338 3339 3340 3341 3342 3343
        helper = LayerHelper('logcumsumexp', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logcumsumexp',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'axis': axis, 'flatten': flatten},
        )
        return out
3344 3345


H
hlygit66666 已提交
3346 3347 3348 3349
def cumprod(x, dim=None, dtype=None, name=None):
    """
    Compute the cumulative product of the input tensor x along a given dimension dim.

3350 3351
    Note:
        The first element of the result is the same as the first element of the input.
H
hlygit66666 已提交
3352 3353 3354

    Args:
        x (Tensor): the input tensor need to be cumproded.
Z
Zman 已提交
3355 3356 3357 3358 3359 3360 3361
        dim (int, optional): the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank),
                    where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64, complex64,
                    complex128. If specified, the input tensor is casted to dtype before the operation is performed.
                    This is useful for preventing data type overflows. The default value is None.
        name (str, optional): Name for the operation (optional, default is None). For more information,
                    please refer to :ref:`api_guide_Name`.
H
hlygit66666 已提交
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397

    Returns:
        Tensor, the result of cumprod operator.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
            # [[ 0  1  2  3 ]
            #  [ 4  5  6  7 ]
            #  [ 8  9  10 11]]

            y = paddle.cumprod(data, dim=0)
            # [[ 0  1   2   3]
            #  [ 0  5  12  21]
            #  [ 0 45 120 231]]

            y = paddle.cumprod(data, dim=-1)
            # [[ 0   0   0    0]
            #  [ 4  20 120  840]
            #  [ 8  72 720 7920]]

            y = paddle.cumprod(data, dim=1, dtype='float64')
            # [[ 0.   0.   0.    0.]
            #  [ 4.  20. 120.  840.]
            #  [ 8.  72. 720. 7920.]]

            print(y.dtype)
            # paddle.float64

    """

    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3398
        x = cast(x, dtype)
H
hlygit66666 已提交
3399

3400
    if in_dygraph_mode():
3401
        return _C_ops.cumprod(x, dim)
3402 3403 3404 3405 3406 3407 3408 3409
    else:
        check_variable_and_dtype(
            x,
            "x",
            ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'],
            'cumprod',
        )
        check_type(dim, 'dim', int, 'cumprod')
H
hlygit66666 已提交
3410

3411 3412 3413 3414 3415 3416 3417 3418 3419
        helper = LayerHelper('cumprod', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='cumprod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': dim},
        )
        return out
H
hlygit66666 已提交
3420

3421

J
Jack Zhou 已提交
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
3438

3439
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3440
            out = paddle.isfinite(x)
N
Noel 已提交
3441
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
3442
    """
H
hong 已提交
3443
    if in_dygraph_mode():
3444
        return _C_ops.isfinite(x)
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
    else:
        helper = LayerHelper("isfinite_v2", **locals())
        check_variable_and_dtype(
            x,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'isfinite',
        )
        out = helper.create_variable_for_type_inference('bool')
        helper.append_op(
            type="isfinite_v2", inputs={"X": x}, outputs={"Out": out}
        )
        return out
J
Jack Zhou 已提交
3458

3459

J
Jack Zhou 已提交
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3476

3477
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3478
            out = paddle.isinf(x)
N
Noel 已提交
3479
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
3480
    """
H
hong 已提交
3481
    if in_dygraph_mode():
3482
        return _C_ops.isinf(x)
3483 3484 3485 3486 3487 3488 3489 3490
    else:
        helper = LayerHelper("isinf_v2", **locals())
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf'
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
3491

3492

J
Jack Zhou 已提交
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
3509

3510
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3511
            out = paddle.isnan(x)
N
Noel 已提交
3512
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
3513
    """
H
hong 已提交
3514
    if in_dygraph_mode():
3515
        return _C_ops.isnan(x)
3516 3517 3518 3519 3520 3521 3522 3523
    else:
        helper = LayerHelper("isnan_v2", **locals())
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan'
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
3524 3525


G
guofei 已提交
3526 3527 3528 3529 3530
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
3531
        x (Tensor): The input tensor, its data type should be float32, float64, int32, int64.
3532 3533 3534
        axis (int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`,
            multiply all elements of `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`,
G
guofei 已提交
3535
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
3536
        keepdim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result
3537
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
3538 3539 3540
        dtype (str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64,
            int32, int64. If specified, the input tensor is casted to dtype before operator performed.
            This is very useful for avoiding data type overflows. The default value is None, the dtype
G
guofei 已提交
3541
            of output is the same as input Tensor `x`.
3542
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
G
guofei 已提交
3543 3544 3545

    Returns:
        Tensor, result of product on the specified dim of input tensor.
3546

G
guofei 已提交
3547 3548 3549 3550 3551 3552
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
3553 3554
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
            out1 = paddle.prod(x)
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
3571 3572
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
3573 3574 3575 3576 3577 3578 3579 3580
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
3581 3582 3583
        check_dtype(
            dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod'
        )
G
guofei 已提交
3584
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3585
            x = cast(x, dtype)
G
guofei 已提交
3586

3587
    reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
3588
    if in_dygraph_mode():
3589
        return _C_ops.prod(x, axis, keepdim, reduce_all)
3590 3591 3592 3593 3594 3595 3596
    else:
        helper = LayerHelper('reduce_prod', **locals())
        check_variable_and_dtype(
            x,
            'x/input',
            ['float32', 'float64', 'int32', 'int64'],
            'reduce_prod',
3597
        )
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
        helper.append_op(
            type='reduce_prod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
W
WangXi 已提交
3608 3609 3610 3611


def sign(x, name=None):
    """
3612
    Returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
W
WangXi 已提交
3613 3614

    Args:
3615 3616
        x (Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
WangXi 已提交
3617 3618 3619 3620 3621 3622 3623 3624 3625

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

3626
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
3627 3628 3629
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
H
hong 已提交
3630
    if in_dygraph_mode():
3631
        return _C_ops.sign(x)
3632 3633 3634 3635 3636 3637
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'sign'
        )
        helper = LayerHelper("sign", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
hong 已提交
3638

3639
        helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})
W
WangXi 已提交
3640

3641
        return out
W
WangXi 已提交
3642 3643 3644


def tanh(x, name=None):
3645
    r"""
W
WangXi 已提交
3646 3647 3648
    Tanh Activation Operator.

    .. math::
3649
        out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

3664
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
3665
            out = paddle.tanh(x)
N
Noel 已提交
3666
            print(out)
W
WangXi 已提交
3667 3668
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
H
hong 已提交
3669
    if in_dygraph_mode():
3670
        return _C_ops.tanh(x)
3671 3672 3673 3674 3675 3676 3677 3678 3679
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'tanh'
        )
        check_type(x, 'x', (Variable), 'tanh')
        helper = LayerHelper('tanh', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
        return out
S
Steffy-zxf 已提交
3680

3681

3682
@inplace_apis_in_dygraph_only
3683 3684 3685 3686 3687
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
3688
    return _C_ops.tanh_(x)
3689 3690


S
Steffy-zxf 已提交
3691 3692
def increment(x, value=1.0, name=None):
    """
3693
    The API is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
S
Steffy-zxf 已提交
3694 3695 3696 3697
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
3698
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
S
Steffy-zxf 已提交
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
H
hong 已提交
3714
    if in_dygraph_mode():
3715
        return _C_ops.increment_(x, value)
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
    else:
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'increment'
        )
        helper = LayerHelper("increment", **locals())
        helper.append_op(
            type='increment',
            inputs={'X': [x]},
            outputs={'Out': [x]},
            attrs={'step': float(value)},
        )
        return x
3728 3729 3730 3731


def all(x, axis=None, keepdim=False, name=None):
    """
3732
    Computes the ``logical and`` of tensor elements over the given dimension.
3733 3734 3735 3736 3737

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3738
            Tensor with a single element, otherwise must be in the
3739 3740 3741 3742 3743 3744
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3745
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3746 3747 3748 3749 3750 3751 3752 3753

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3754

N
Noel 已提交
3755
            # x is a bool Tensor with following elements:
3756 3757
            #    [[True, False]
            #     [True, True]]
C
Chen Long 已提交
3758
            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
3759
            print(x)
S
syyxsxx 已提交
3760
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3761

3762 3763 3764
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
C
Chen Long 已提交
3765

3766 3767 3768
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
C
Chen Long 已提交
3769 3770

            # keepdim=False, out3 should be [False, True], out.shape should be (2,)
3771 3772
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
C
Chen Long 已提交
3773 3774 3775

            # keepdim=True, out4 should be [[False], [True]], out.shape should be (2,1)
            out4 = paddle.all(x, axis=1, keepdim=True) # [[False], [True]]
3776
            print(out4)
3777

3778
    """
3779
    if in_dygraph_mode():
3780
        return _C_ops.all(x, axis, keepdim)
3781 3782 3783 3784 3785 3786 3787 3788
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
        check_variable_and_dtype(x, 'x', ['bool'], 'all')
3789

3790
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')
3791

3792 3793 3794 3795 3796 3797 3798 3799 3800
        helper = LayerHelper('all', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_all',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
3801 3802 3803 3804


def any(x, axis=None, keepdim=False, name=None):
    """
C
Chen Long 已提交
3805
    Computes the ``logical or`` of tensor elements over the given dimension, and return the result.
3806 3807 3808 3809 3810

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3811
            Tensor with a single element, otherwise must be in the
3812 3813 3814 3815 3816 3817
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3818
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3819 3820 3821 3822 3823 3824 3825 3826

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3827 3828 3829

            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
            x = paddle.assign(x)
3830
            print(x)
S
syyxsxx 已提交
3831
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3832 3833 3834 3835
            # x is a bool Tensor with following elements:
            #    [[True, False]
            #     [True, True]]

3836 3837 3838
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
C
Chen Long 已提交
3839

3840 3841
            # out2 should be [True, True]
            out2 = paddle.any(x, axis=0)  # [True, True]
3842
            print(out2)
C
Chen Long 已提交
3843 3844

            # keepdim=False, out3 should be [True, True], out.shape should be (2,)
3845
            out3 = paddle.any(x, axis=-1)  # [True, True]
3846
            print(out3)
C
Chen Long 已提交
3847 3848 3849

            # keepdim=True, result should be [[True], [True]], out.shape should be (2,1)
            out4 = paddle.any(x, axis=1, keepdim=True)  # [[True], [True]]
3850 3851
            print(out4)

3852
    """
3853
    if in_dygraph_mode():
3854
        return _C_ops.any(x, axis, keepdim)
3855 3856 3857 3858 3859 3860 3861
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
3862

3863
        check_variable_and_dtype(x, 'x', ['bool'], 'any')
3864

3865
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')
3866

3867 3868 3869 3870 3871 3872 3873 3874 3875
        helper = LayerHelper('any', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_any',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
L
Leo Chen 已提交
3876

3877

L
Leo Chen 已提交
3878 3879
def broadcast_shape(x_shape, y_shape):
    """
I
Infinity_lee 已提交
3880 3881 3882 3883 3884 3885
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape.

    Note:
        If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
Leo Chen 已提交
3886 3887 3888 3889

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
3890

L
Leo Chen 已提交
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
3902

L
Leo Chen 已提交
3903 3904 3905 3906 3907 3908
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)
3909

3910

3911 3912 3913 3914 3915
def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
3916
        x (Tensor): The input Tensor which hold the complex numbers.
3917
            Optional data types are: complex64, complex128, float32, float64, int32 or int64.
3918
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3919 3920

    Returns:
C
Chen Long 已提交
3921
        out (Tensor): The conjugate of input. The shape and data type is the same with input. If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.
3922 3923 3924 3925 3926

    Examples:
        .. code-block:: python

          import paddle
3927

3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
          data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1+1j), (2+2j), (3+3j)],
          #        [(4+4j), (5+5j), (6+6j)]])

          conj_data=paddle.conj(data)
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1-1j), (2-2j), (3-3j)],
          #        [(4-4j), (5-5j), (6-6j)]])

    """
H
hong 已提交
3939
    if in_dygraph_mode():
3940
        return _C_ops.conj(x)
3941 3942 3943 3944 3945 3946 3947
    else:
        check_variable_and_dtype(
            x,
            "x",
            ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'],
            'conj',
        )
H
hong 已提交
3948

3949 3950 3951 3952
        helper = LayerHelper('conj', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
3953

3954 3955
        helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
        return out
3956

3957

Z
zyfncg 已提交
3958 3959 3960 3961 3962 3963 3964 3965 3966
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
3967
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zyfncg 已提交
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            res = paddle.digamma(data)
            print(res)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[-0.57721591,  0.03648996],
            #        [ nan       ,  5.32286835]])
    """

J
Jiabin Yang 已提交
3984
    if in_dygraph_mode():
3985
        return _C_ops.digamma(x)
J
Jiabin Yang 已提交
3986
    else:
3987 3988 3989 3990 3991
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'digamma')
        helper = LayerHelper('digamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
        return out
Z
zyfncg 已提交
3992

3993

3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
def lgamma(x, name=None):
    r"""
    Calculates the lgamma of the given input tensor, element-wise.

    This operator performs elementwise lgamma for input $X$.
    :math:`out = log\Gamma(x)`


    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the lgamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.lgamma(x)
            print(out)
            # [1.31452441, 1.76149750, 2.25271273, 1.09579802]
    """
    if in_dygraph_mode():
        return _C_ops.lgamma(x)
4021 4022 4023 4024 4025 4026
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'lgamma')
        helper = LayerHelper('lgamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='lgamma', inputs={'X': x}, outputs={'Out': out})
        return out
4027 4028


4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.neg(x)
            print(out)
            # [0.4 0.2 -0.1 -0.3]
    """

4051 4052 4053
    return scale(
        x, scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name
    )
4054

R
ronnywang 已提交
4055

4056
def atan2(x, y, name=None):
R
ronnywang 已提交
4057
    r"""
4058
    Element-wise arctangent of x/y with consideration of the quadrant.
R
ronnywang 已提交
4059 4060 4061 4062

    Equation:
        .. math::

4063 4064 4065 4066 4067 4068 4069 4070
            atan2(x,y)=\left\{\begin{matrix}
            & tan^{-1}(\frac{x}{y}) & y > 0 \\
            & tan^{-1}(\frac{x}{y}) + \pi & x>=0, y < 0 \\
            & tan^{-1}(\frac{x}{y}) - \pi & x<0, y < 0 \\
            & +\frac{\pi}{2} & x>0, y = 0 \\
            & -\frac{\pi}{2} & x<0, y = 0 \\
            &\text{undefined} & x=0, y = 0
            \end{matrix}\right.
R
ronnywang 已提交
4071 4072

    Args:
4073 4074
        x (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
        y (Tensor): An N-D Tensor, must have the same type as `x`.
R
ronnywang 已提交
4075 4076 4077 4078 4079 4080 4081 4082
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).

    Examples:
        .. code-block:: python

4083
            import paddle
R
ronnywang 已提交
4084

4085 4086 4087
            x = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  1,  1, -1])
R
ronnywang 已提交
4088

4089 4090 4091
            y = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  -1,  1, 1])
R
ronnywang 已提交
4092

4093 4094 4095
            out = paddle.atan2(x, y)
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-2.35619450,  2.35619450,  0.78539819, -0.78539819])
R
ronnywang 已提交
4096 4097 4098

    """

J
Jiabin Yang 已提交
4099
    if in_dygraph_mode():
4100
        return _C_ops.atan2(x, y)
R
ronnywang 已提交
4101
    else:
4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
        check_variable_and_dtype(
            x,
            'x',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
        check_variable_and_dtype(
            y,
            'y',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
R
ronnywang 已提交
4114

4115 4116 4117 4118 4119
        helper = LayerHelper('atan2', **locals())
        inputs = {'X1': x, 'X2': y}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='atan2', inputs=inputs, outputs={'Out': out})
        return out
A
andyjpaddle 已提交
4120

4121

W
wangzhen38 已提交
4122 4123 4124 4125 4126
def logit(x, eps=None, name=None):
    r"""
    This function generates a new tensor with the logit of the elements of input x. x is clamped to [eps, 1-eps] when eps is not zero. When eps is zero and x < 0 or x > 1, the function will yields NaN.

    .. math::
4127

W
wangzhen38 已提交
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
        logit(x) = ln(\frac{x}{1 - x})

    where

    .. math::

        x_i=
            \left\{\begin{array}{rcl}
                x_i & &\text{if } eps == Default \\
                eps & &\text{if } x_i < eps \\
                x_i & &\text{if } eps <= x_i <= 1-eps \\
                1-eps & &\text{if } x_i > 1-eps
            \end{array}\right.

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        eps (float, optional):  the epsilon for input clamp bound. Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out(Tensor): A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0.2635, 0.0106, 0.2780, 0.2097, 0.8095])
            out1 = paddle.logit(x)
            print(out1)
4159
            # [-1.0277, -4.5365, -0.9544, -1.3269,  1.4468]
W
wangzhen38 已提交
4160 4161

    """
4162
    if eps is None:
W
wangzhen38 已提交
4163
        eps = 0.0
4164
    if in_dygraph_mode():
4165
        return _C_ops.logit(x, eps)
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'logit'
        )
        helper = LayerHelper("logit", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logit',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'eps': eps},
        )
        return out
W
wangzhen38 已提交
4179

4180

4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
def lerp(x, y, weight, name=None):
    r"""
    Does a linear interpolation between x and y based on weight.

    Equation:
        .. math::

            lerp(x, y, weight) = x + weight * (y - x).

    Args:
4191 4192 4193
        x (Tensor): An N-D Tensor with starting points, the data type is float32, float64.
        y (Tensor): An N-D Tensor with ending points, the data type is float32, float64.
        weight (float|Tensor): The weight for the interpolation formula. When weight is Tensor, the data type is float32, float64.
4194 4195 4196 4197 4198 4199 4200 4201 4202
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

            import paddle
4203

4204 4205 4206
            x = paddle.arange(1., 5., dtype='float32')
            y = paddle.empty([4], dtype='float32')
            y.fill_(10.)
4207
            out = paddle.lerp(x, y, 0.5)
4208
            # out: [5.5, 6., 6.5, 7.]
4209 4210

    """
H
hong 已提交
4211
    if in_dygraph_mode():
4212
        check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
H
hong 已提交
4213 4214 4215
        if isinstance(weight, float):
            weight = paddle.to_tensor(weight, dtype=x.dtype)

4216
        return _C_ops.lerp(x, y, weight)
4217
    else:
4218
        if isinstance(weight, float):
4219
            weight = paddle.full(shape=[1], fill_value=weight, dtype=x.dtype)
4220

4221 4222 4223 4224 4225
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'lerp')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'lerp')
        check_variable_and_dtype(
            weight, 'weight', ['float32', 'float64'], 'lerp'
        )
4226

4227 4228 4229 4230 4231
        helper = LayerHelper('lerp', **locals())
        inputs = {'X': x, 'Y': y, 'Weight': weight}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='lerp', inputs=inputs, outputs={'Out': out})
        return out
4232

4233

4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
@inplace_apis_in_dygraph_only
def lerp_(x, y, weight, name=None):
    r"""
    Inplace version of ``lerp`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_lerp`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
    if isinstance(weight, float):
        weight = paddle.to_tensor([weight], dtype=x.dtype)
    elif isinstance(weight, (paddle.Tensor, Variable)):
        out_shape = broadcast_shape(out_shape, weight.shape)
    if out_shape != x.shape:
4247
        raise ValueError(
4248 4249 4250 4251
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
4252
    return _C_ops.lerp_(x, y, weight)
4253

4254

W
wuhuanzhou 已提交
4255 4256
def erfinv(x, name=None):
    r"""
4257
    The inverse error function of x. Please refer to :ref:`api_paddle_erf`
W
wuhuanzhou 已提交
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267

        .. math::

            erfinv(erf(x)) = x.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4268
        out (Tensor), an N-D Tensor, the shape and data type is the same with input.
W
wuhuanzhou 已提交
4269 4270 4271 4272 4273

    Example:
        .. code-block:: python

            import paddle
4274

W
wuhuanzhou 已提交
4275 4276 4277 4278 4279
            x = paddle.to_tensor([0, 0.5, -1.], dtype="float32")
            out = paddle.erfinv(x)
            # out: [0, 0.4769, -inf]

    """
H
hong 已提交
4280
    if in_dygraph_mode():
4281
        return _C_ops.erfinv(x)
4282 4283 4284 4285 4286 4287
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'erfinv')
        helper = LayerHelper('erfinv', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='erfinv', inputs={'X': x}, outputs={'Out': out})
        return out
W
wuhuanzhou 已提交
4288

4289

W
wuhuanzhou 已提交
4290 4291 4292 4293 4294 4295 4296
@inplace_apis_in_dygraph_only
def erfinv_(x, name=None):
    r"""
    Inplace version of ``erfinv`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_erfinv`.
    """
    check_type(x, 'x', (paddle.Tensor, Variable), 'erfinv')
4297
    return _C_ops.erfinv_(x)
W
wuhuanzhou 已提交
4298

4299

4300
def rad2deg(x, name=None):
4301
    r"""
4302
    Convert each of the elements of input x from angles in radians to degrees.
4303

4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
    Equation:
        .. math::

            rad2deg(x)=180/ \pi * x

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
4320
            import math
4321

4322 4323 4324 4325 4326 4327 4328
            x1 = paddle.to_tensor([3.142, -3.142, 6.283, -6.283, 1.570, -1.570])
            result1 = paddle.rad2deg(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [180.02334595, -180.02334595,  359.98937988, -359.98937988,
            #           9.95437622 , -89.95437622])

4329
            x2 = paddle.to_tensor(math.pi/2)
4330 4331 4332 4333
            result2 = paddle.rad2deg(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [90.])
4334

4335 4336 4337 4338 4339 4340 4341
            x3 = paddle.to_tensor(1)
            result3 = paddle.rad2deg(x3)
            print(result3)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [57.29578018])
    """
    rad2deg_scale = 180 / np.pi
4342 4343 4344
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4345
        return _C_ops.scale(x, rad2deg_scale, 0.0, True)
4346
    else:
4347 4348 4349
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'rad2deg'
        )
4350 4351 4352
        helper = LayerHelper('rad2deg', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
4353
            out_cast = helper.create_variable_for_type_inference(
4354 4355 4356 4357 4358 4359 4360 4361
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
4362
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
4363 4364 4365 4366 4367 4368
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': rad2deg_scale},
        )
4369 4370
        return out

4371

4372
def deg2rad(x, name=None):
4373
    r"""
4374
    Convert each of the elements of input x from degrees to angles in radians.
4375

4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
        .. math::

            deg2rad(x)=\pi * x / 180

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
4391

4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
            x1 = paddle.to_tensor([180.0, -180.0, 360.0, -360.0, 90.0, -90.0])
            result1 = paddle.deg2rad(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274, -3.14159274,  6.28318548, -6.28318548,  1.57079637,
            #           -1.57079637])

            x2 = paddle.to_tensor(180)
            result2 = paddle.deg2rad(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274])
    """
    deg2rad_scale = np.pi / 180.0
4406 4407 4408
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4409
        return _C_ops.scale(x, deg2rad_scale, 0.0, True)
4410
    else:
4411 4412 4413
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'deg2rad'
        )
4414 4415 4416
        helper = LayerHelper('deg2rad', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
4417
            out_cast = helper.create_variable_for_type_inference(
4418 4419 4420 4421 4422 4423 4424 4425
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
4426
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
4427 4428 4429 4430 4431 4432
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': deg2rad_scale},
        )
4433
        return out
A
andyjpaddle 已提交
4434

4435

T
Tao Luo 已提交
4436 4437 4438 4439
def gcd(x, y, name=None):
    """
    Computes the element-wise greatest common divisor (GCD) of input |x| and |y|.
    Both x and y must have integer types.
4440

T
Tao Luo 已提交
4441 4442 4443
    Note:
        gcd(0,0)=0, gcd(0, y)=|y|

T
Tao Luo 已提交
4444 4445
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4446
    Args:
4447 4448
        x (Tensor): An N-D Tensor, the data type is int32,int64.
        y (Tensor): An N-D Tensor, the data type is int32,int64.
T
Tao Luo 已提交
4449 4450 4451 4452 4453 4454 4455 4456 4457
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
4458

T
Tao Luo 已提交
4459 4460 4461 4462 4463 4464
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.gcd(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])

T
Tao Luo 已提交
4465
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477
            paddle.gcd(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20, 1 , 2 , 1 , 4 , 5])

            x4 = paddle.to_tensor(0)
            paddle.gcd(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20])

            paddle.gcd(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
4478

T
Tao Luo 已提交
4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
            x5 = paddle.to_tensor(-20)
            paddle.gcd(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])
    """
    shape = paddle.broadcast_shape(x.shape, y.shape)
    x = paddle.broadcast_to(x, shape)
    y = paddle.broadcast_to(y, shape)
    x = paddle.abs(x)
    y = paddle.abs(y)

    def _gcd_cond_fn(x, y):
        return paddle.any(y != 0)

    def _gcd_body_fn(x, y):
        # paddle.mod will raise an error when any element of y is 0. To avoid
        # that, we change those zeros to ones. Their values don't matter because
        # they won't be used.
4497
        y_not_equal_0 = y != 0
T
Tao Luo 已提交
4498
        y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype))
4499 4500 4501 4502 4503 4504 4505 4506
        x, y = (
            paddle.where(y_not_equal_0, y, x),
            paddle.where(
                y_not_equal_0,
                paddle.mod(x, y_safe),
                paddle.zeros(y.shape, y.dtype),
            ),
        )
T
Tao Luo 已提交
4507 4508
        return (paddle.where(x < y, y, x), paddle.where(x < y, x, y))

4509
    if in_dygraph_mode():
T
Tao Luo 已提交
4510 4511 4512 4513 4514
        while _gcd_cond_fn(x, y):
            x, y = _gcd_body_fn(x, y)

        return x
    else:
T
Tao Luo 已提交
4515 4516
        check_variable_and_dtype(x, 'x', ['int32', 'int64'], 'gcd')
        check_variable_and_dtype(y, 'y', ['int32', 'int64'], 'gcd')
T
Tao Luo 已提交
4517 4518 4519
        out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y])
        return out

4520

T
Tao Luo 已提交
4521 4522 4523 4524
def lcm(x, y, name=None):
    """
    Computes the element-wise least common multiple (LCM) of input |x| and |y|.
    Both x and y must have integer types.
4525

T
Tao Luo 已提交
4526 4527 4528
    Note:
        lcm(0,0)=0, lcm(0, y)=0

T
Tao Luo 已提交
4529 4530
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4531
    Args:
4532 4533
        x (Tensor): An N-D Tensor, the data type is int32,int64.
        y (Tensor): An N-D Tensor, the data type is int32,int64.
T
Tao Luo 已提交
4534 4535 4536 4537 4538 4539 4540 4541 4542
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
4543

T
Tao Luo 已提交
4544 4545 4546 4547 4548 4549
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.lcm(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])

T
Tao Luo 已提交
4550
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
            paddle.lcm(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0, 20, 20, 60, 20, 20])

            x4 = paddle.to_tensor(0)
            paddle.lcm(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])

            paddle.lcm(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
4563

T
Tao Luo 已提交
4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
            x5 = paddle.to_tensor(-20)
            paddle.lcm(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])
    """
    d = paddle.gcd(x, y)
    # paddle.mod will raise an error when any element of y is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    d_equal_0 = paddle.equal(d, 0)
    d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d)
4575 4576 4577
    out = paddle.where(
        d_equal_0, paddle.zeros(d.shape, d.dtype), paddle.abs(x * y) // d_safe
    )
T
Tao Luo 已提交
4578 4579
    return out

4580

A
andyjpaddle 已提交
4581 4582 4583
def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
    r"""
    Computes the n-th forward difference along the given axis.
4584
    The first-order differences is computed by using the following formula:
A
andyjpaddle 已提交
4585 4586 4587 4588

    .. math::

        out[i] = x[i+1] - x[i]
4589 4590

    Higher-order differences are computed by using paddle.diff() recursively.
A
andyjpaddle 已提交
4591 4592 4593
    Only n=1 is currently supported.

    Args:
4594
        x (Tensor): The input tensor to compute the forward difference on
4595
        n (int, optional): The number of times to recursively compute the difference.
A
andyjpaddle 已提交
4596
                          Only support n=1. Default:1
4597 4598
        axis (int, optional): The axis to compute the difference along. Default:-1
        prepend (Tensor, optional): The tensor to prepend to input along axis before computing the difference.
4599
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
4600
                                   and its shapes must match x's shape except on axis.
4601 4602
        append (Tensor, optional): The tensor to append to input along axis before computing the difference,
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
4603
                                   and its shapes must match x's shape except on axis.
4604
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4605

A
andyjpaddle 已提交
4606 4607 4608 4609 4610 4611 4612
    Returns:
        Tensor: The output tensor with same dtype with x.

    Examples:
        .. code-block:: python

            import paddle
4613

A
andyjpaddle 已提交
4614 4615 4616 4617 4618 4619 4620 4621 4622
            x = paddle.to_tensor([1, 4, 5, 2])
            out = paddle.diff(x)
            print(out)
            # out:
            # [3, 1, -3]

            y = paddle.to_tensor([7, 9])
            out = paddle.diff(x, append=y)
            print(out)
4623
            # out:
A
andyjpaddle 已提交
4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
            # [3, 1, -3, 5, 2]

            z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            out = paddle.diff(z, axis=0)
            print(out)
            # out:
            # [[3, 3, 3]]
            out = paddle.diff(z, axis=1)
            print(out)
            # out:
            # [[1, 1], [1, 1]]
    """

    if axis < 0:
        axis = axis + len(x.shape)
    if axis > len(x.shape):
        axis = len(x.shape)
    if axis < 0:
        axis = 0
    dtype = x.dtype
    axes = [axis]
    infer_flags = list(1 for i in range(len(axes)))
4646
    if in_dygraph_mode():
A
andyjpaddle 已提交
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
4659
            new_input = _C_ops.concat(input_list, axis)
A
andyjpaddle 已提交
4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
4672 4673 4674
        input_front = _C_ops.slice(
            new_input, axes, starts_1, ends_1, infer_flags, []
        )
A
andyjpaddle 已提交
4675 4676 4677 4678
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
4679 4680 4681
        input_back = _C_ops.slice(
            new_input, axes, starts_2, ends_2, infer_flags, []
        )
4682 4683

        if x.dtype == paddle.bool:
4684
            return _C_ops.logical_xor(input_back, input_front)
4685
        else:
4686
            return _C_ops.subtract(input_back, input_front)
A
andyjpaddle 已提交
4687
    else:
4688
        check_variable_and_dtype(
4689 4690
            x, 'x', ['float32', 'float64', 'bool', 'int32', 'int64'], 'diff'
        )
A
andyjpaddle 已提交
4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
        check_type(axis, 'axis', (int), 'diff')
        helper = LayerHelper('diff', **locals())
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True

        if has_pend:
            new_input = helper.create_variable_for_type_inference(dtype)
4707 4708 4709 4710 4711 4712
            helper.append_op(
                type='concat',
                inputs={'X': input_list},
                outputs={'Out': [new_input]},
                attrs={'axis': axis},
            )
A
andyjpaddle 已提交
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
        else:
            new_input = x

        dim_len = new_input.shape[axis]
        attrs_1 = {'axes': axes}
        starts_1 = [0]
        ends_1 = [dim_len - 1]
        attrs_1['starts'] = starts_1
        attrs_1['ends'] = ends_1
        input_front = helper.create_variable_for_type_inference(dtype)
4723 4724 4725 4726 4727 4728
        helper.append_op(
            type='slice',
            inputs={'Input': new_input},
            attrs=attrs_1,
            outputs={'Out': input_front},
        )
A
andyjpaddle 已提交
4729 4730 4731 4732 4733 4734
        attrs_2 = {'axes': axes}
        starts_2 = [1]
        ends_2 = [dim_len]
        attrs_2['starts'] = starts_2
        attrs_2['ends'] = ends_2
        input_back = helper.create_variable_for_type_inference(dtype)
4735 4736 4737 4738 4739 4740
        helper.append_op(
            type='slice',
            inputs={'Input': new_input},
            attrs=attrs_2,
            outputs={'Out': input_back},
        )
A
andyjpaddle 已提交
4741 4742 4743

        if dtype == paddle.bool:
            out = helper.create_variable_for_type_inference(dtype)
4744 4745 4746 4747 4748
            helper.append_op(
                type='logical_xor',
                inputs={"X": input_back, "Y": input_front},
                outputs={"Out": out},
            )
A
andyjpaddle 已提交
4749
        else:
4750 4751 4752
            out = paddle.tensor.math._subtract_with_axis(
                input_back, input_front, axis=axis
            )
A
andyjpaddle 已提交
4753 4754

        return out
F
Feiyu Chan 已提交
4755

4756

F
Feiyu Chan 已提交
4757 4758
def angle(x, name=None):
    r"""
4759
    Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while
F
Feiyu Chan 已提交
4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
    for negative real numbers, the angle is :math:`\pi`.

    Equation:
        .. math::

            angle(x)=arctan2(x.imag, x.real)

    Args:
        x (Tensor): An N-D Tensor, the data type is complex64, complex128, or float32, float64 .
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4772
        Tensor: An N-D Tensor of real data type with the same precision as that of x's data type.
F
Feiyu Chan 已提交
4773 4774 4775 4776 4777 4778 4779 4780 4781

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32')
            y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32')
            z = x + 1j * y
4782 4783 4784 4785 4786 4787
            print(z)
            # Tensor(shape=[4, 4], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[(-2-2j), (-2-1j), (-2+0j), (-2+1j)],
            #         [(-1-2j), (-1-1j), (-1+0j), (-1+1j)],
            #         [-2j    , -1j    ,  0j    ,  1j    ],
            #         [ (1-2j),  (1-1j),  (1+0j),  (1+1j)]])
F
Feiyu Chan 已提交
4788 4789

            theta = paddle.angle(z)
4790 4791 4792 4793 4794 4795
            print(theta)
            # Tensor(shape=[4, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-2.35619450, -2.67794514,  3.14159274,  2.67794514],
            #         [-2.03444386, -2.35619450,  3.14159274,  2.35619450],
            #         [-1.57079637, -1.57079637,  0.        ,  1.57079637],
            #         [-1.10714877, -0.78539819,  0.        ,  0.78539819]])
F
Feiyu Chan 已提交
4796 4797
    """

W
WangZhen 已提交
4798
    if in_dygraph_mode():
F
Feiyu Chan 已提交
4799
        return _C_ops.angle(x)
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812
    else:
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'complex64', 'complex128'], 'angle'
        )
        op_type = "angle"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": x}
        out = helper.create_variable_for_type_inference(
            dtype=_complex_to_real_dtype(x.dtype)
        )
        outputs = {"Out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
        return out
4813

4814

4815
def heaviside(x, y, name=None):
4816
    r"""
4817 4818 4819 4820 4821
    Computes the Heaviside step function determined by corresponding element in y for each element in x. The equation is

    .. math::
        heaviside(x, y)=
            \left\{
4822 4823 4824 4825
                \begin{array}{lcl}
                0,& &\text{if} \ x < 0, \\
                y,& &\text{if} \ x = 0, \\
                1,& &\text{if} \ x > 0.
4826
                \end{array}
4827
            \right.
4828

4829
    Note:
I
Infinity_lee 已提交
4830 4831 4832
        ``paddle.heaviside`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
4833 4834

    Args:
4835 4836
        x (Tensor): The input tensor of Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
        y (Tensor): The tensor that determines a Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x and y have different shapes and are broadcastable, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-0.5, 0, 0.5])
            y = paddle.to_tensor([0.1])
            paddle.heaviside(x, y)
            #    [0.        , 0.10000000, 1.        ]
            x = paddle.to_tensor([[-0.5, 0, 0.5], [-0.5, 0.5, 0]])
            y = paddle.to_tensor([0.1, 0.2, 0.3])
            paddle.heaviside(x, y)
            #    [[0.        , 0.20000000, 1.        ],
            #     [0.        , 1.        , 0.30000001]]
4855
    """
4856 4857 4858
    op_type = 'elementwise_heaviside'
    axis = -1
    act = None
4859
    if in_dygraph_mode():
4860 4861 4862
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type
        )
4863 4864
    else:
        return _elementwise_op(LayerHelper(op_type, **locals()))
4865

4866

4867 4868 4869 4870 4871 4872
def frac(x, name=None):
    """
    This API is used to return the fractional portion of each element in input.

    Args:
        x (Tensor): The input tensor, which data type should be int32, int64, float32, float64.
4873
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4874 4875 4876 4877 4878

    Returns:
        Tensor: The output Tensor of frac.

    Examples:
4879
        .. code-block:: python
4880 4881 4882

            import paddle

4883 4884
            input = paddle.to_tensor([[12.22000003, -1.02999997],
                                    [-0.54999995, 0.66000003]])
4885
            output = paddle.frac(input)
4886 4887 4888 4889
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[ 0.22000003, -0.02999997],
            #         [-0.54999995,  0.66000003]])
4890 4891 4892 4893
    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
4894
    if x.dtype not in [
4895 4896 4897 4898
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
4899
    ]:
4900
        raise TypeError(
4901 4902 4903 4904
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
4905
    if in_dygraph_mode():
4906 4907
        y = _C_ops.trunc(x)
        return _C_ops.subtract(x, y)
4908
    else:
4909 4910
        inputs = {"X": x}
        attrs = {}
4911

4912 4913 4914 4915 4916 4917 4918 4919 4920
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            x, "X", ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        y = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": y}
        )
        return _elementwise_op(LayerHelper(op_type, **locals()))
4921

4922

4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947
def sgn(x, name=None):
    """
    For complex tensor, this API returns a new tensor whose elements have the same angles as the corresponding
    elements of input and absolute values of one.
    For other float dtype tensor,
    this API returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero, same as paddle.sign.

    Args:
        x (Tensor): The input tensor, which data type should be float16, float32, float64, complex64, complex128.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A sign Tensor for real input, or normalized Tensor for complex input, shape and data type are same as input.

    Examples:
        .. code-block:: Python

            import paddle

            x = paddle.to_tensor([[3 + 4j, 7 - 24j, 0, 1 + 2j], [6 + 8j, 3, 0, -2]])
            print(paddle.sgn(x))
            #[[0.6+0.8j       0.28-0.96j      0.+0.j      0.4472136+0.8944272j]
            # [0.6+0.8j       1.+0.j          0.+0.j      -1.+0.j]]

    """
4948
    if x.dtype not in [
4949 4950 4951 4952 4953
        paddle.float16,
        paddle.float32,
        paddle.float64,
        paddle.complex64,
        paddle.complex128,
4954
    ]:
4955
        raise TypeError(
4956 4957 4958 4959
            "The data type of input must be one of ['float16', 'float32', 'float64', 'complex64', 'complex128'], but got {}".format(
                x.dtype
            )
        )
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970
    if paddle.is_complex(x):
        expand_x = paddle.as_real(x)
        x_abs = paddle.abs(x)
        x_abs = paddle.unsqueeze(x_abs, axis=-1)
        output = expand_x / x_abs
        zeros = paddle.zeros_like(output)
        output = paddle.where(paddle.isnan(output), zeros, output)

        return paddle.as_complex(output)
    else:
        return paddle.sign(x)
4971

4972

4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
def take(x, index, mode='raise', name=None):
    """
    Returns a new tensor with the elements of input tensor x at the given index.
    The input tensor is treated as if it were viewed as a 1-D tensor.
    The result takes the same shape as the index.

    Args:
        x (Tensor): An N-D Tensor, its data type should be int32, int64, float32, float64.
        index (Tensor): An N-D Tensor, its data type should be int32, int64.
        mode (str, optional): Specifies how out-of-bounds index will behave. the candicates are ``'raise'``, ``'wrap'`` and ``'clip'``.

            - ``'raise'``: raise an error (default);
            - ``'wrap'``: wrap around;
            - ``'clip'``: clip to the range. ``'clip'`` mode means that all indices that are too large are replaced by the index that addresses the last element. Note that this disables indexing with negative numbers.

        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Tensor with the same shape as index, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x_int = paddle.arange(0, 12).reshape([3, 4])
            x_float = x_int.astype(paddle.float64)

            idx_pos = paddle.arange(4, 10).reshape([2, 3])  # positive index
            idx_neg = paddle.arange(-2, 4).reshape([2, 3])  # negative index
            idx_err = paddle.arange(-2, 13).reshape([3, 5])  # index out of range

            paddle.take(x_int, idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_neg)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 ],
            #         [1 , 2 , 3 ]])

            paddle.take(x_float, idx_pos)
            # Tensor(shape=[2, 3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[4., 5., 6.],
            #         [7., 8., 9.]])

            x_int.take(idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_err, mode='wrap')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 0 ]])

            paddle.take(x_int, idx_err, mode='clip')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 11]])

    """
    if mode not in ['raise', 'wrap', 'clip']:
        raise ValueError(
5040 5041 5042 5043
            "'mode' in 'take' should be 'raise', 'wrap', 'clip', but received {}.".format(
                mode
            )
        )
5044

5045
    if in_dygraph_mode():
5046 5047
        if not isinstance(index, (paddle.Tensor, Variable)):
            raise TypeError(
5048
                "The type of 'index' must be Tensor, but got {}".format(
5049 5050 5051
                    type(index)
                )
            )
5052 5053
        if index.dtype not in [paddle.int32, paddle.int64]:
            raise TypeError(
5054 5055 5056 5057
                "The data type of 'index' must be one of ['int32', 'int64'], but got {}".format(
                    index.dtype
                )
            )
5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070

    else:
        check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'take')

    input_1d = x.flatten()
    index_1d = index.flatten()
    max_index = input_1d.shape[-1]

    if mode == 'raise':
        # This processing enables 'take' to handle negative indexes within the correct range.
        index_1d = paddle.where(index_1d < 0, index_1d + max_index, index_1d)
    elif mode == 'wrap':
        # The out of range indices are constrained by taking the remainder.
5071
        index_1d = paddle.where(index_1d < 0, index_1d % max_index, index_1d)
5072 5073 5074
        index_1d = paddle.where(
            index_1d >= max_index, index_1d % max_index, index_1d
        )
5075 5076 5077 5078 5079 5080 5081
    elif mode == 'clip':
        # 'clip' mode disables indexing with negative numbers.
        index_1d = clip(index_1d, 0, max_index - 1)

    out = input_1d.index_select(index_1d).reshape(index.shape)

    return out
5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107


def frexp(x, name=None):
    """
    The function used to decompose a floating point number into mantissa and exponent.

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
    Returns:

        - mantissa (Tensor), A mantissa Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

        - exponent (Tensor), A exponent Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3, 4]], dtype="float32")
            print(paddle.tensor.math.frexp(x))
            # (Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,[[0.50000000, 0.50000000, 0.75000000, 0.50000000]]),
            #  Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,[[1., 2., 2., 3.]]))
5108
    """
5109 5110
    if x.dtype not in [paddle.float32, paddle.float64]:
        raise TypeError(
5111 5112 5113 5114
            "The data type of input must be one of ['float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
5115 5116
    input_x = paddle.abs(x)
    exponent = paddle.floor(paddle.log2(input_x))
5117 5118 5119
    exponent = paddle.where(
        paddle.isinf(exponent), paddle.full_like(exponent, 0), exponent
    )
5120 5121 5122 5123

    # 0填充
    mantissa = paddle.divide(input_x, 2**exponent)
    # 计算exponent
5124 5125 5126 5127 5128 5129 5130 5131 5132 5133
    exponent = paddle.where(
        (mantissa >= 1),
        paddle.add(exponent, paddle.ones_like(exponent)),
        exponent,
    )
    mantissa = paddle.where(
        (mantissa >= 1),
        paddle.divide(mantissa, 2 ** paddle.ones_like(exponent)),
        mantissa,
    )
5134 5135 5136

    mantissa = paddle.where((x < 0), mantissa * -1, mantissa)
    return mantissa, exponent