layers.py 239.6 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
15
import collections
Y
Yu Yang 已提交
16
import inspect
Z
zhangjinchao01 已提交
17

18
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
19 20
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22
from .evaluators import *
23 24
from .poolings import MaxPooling, AvgPooling, BasePoolingType, \
    CudnnAvgPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
25 26
from .attrs import *
from .default_decorators import *
27

Z
zhangjinchao01 已提交
28 29 30 31 32 33
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
34
__all__ = [
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
    'hsigmoid',
    'conv_projection',
56
    'square_error_cost',
57
    'regression_cost',
Q
qijun 已提交
58
    'classification_cost',
59
    'LayerOutput',
Q
qijun 已提交
60 61 62 63 64 65
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
66
    'seq_concat_layer',
Q
qijun 已提交
67 68 69 70 71 72
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
73
    'scaling_projection',
Q
qijun 已提交
74 75 76 77
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
78
    'rotate_layer',
Q
qijun 已提交
79
    'sum_to_one_norm_layer',
G
guosheng 已提交
80
    'row_l2_norm_layer',
Q
qijun 已提交
81 82 83 84 85 86 87 88
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
89
    'gru_step_naive_layer',
Q
qijun 已提交
90 91 92 93 94 95 96 97 98 99 100 101
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
102
    'warp_ctc_layer',
Q
qijun 已提交
103 104 105 106 107
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
C
caoying03 已提交
108
    'BeamInput',
C
caoying03 已提交
109
    'cross_entropy_over_beam',
Q
qijun 已提交
110 111 112 113
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
L
Luo Tao 已提交
114
    'huber_regression_cost',
115
    'huber_classification_cost',
Q
qijun 已提交
116 117 118
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
X
xuwei06 已提交
119
    'printer_layer',
Q
qijun 已提交
120
    'print_layer',
Y
yuan 已提交
121
    'priorbox_layer',
122
    'cross_channel_norm_layer',
123 124
    'multibox_loss_layer',
    'detection_output_layer',
G
guosheng 已提交
125
    'roi_pool_layer',
Q
qijun 已提交
126
    'spp_layer',
D
dangqingqing 已提交
127
    'pad_layer',
L
Luo Tao 已提交
128
    'eos_layer',
129
    'smooth_l1_cost',
130
    'layer_support',
W
wwhu 已提交
131
    'multiplex_layer',
D
dangqingqing 已提交
132
    'row_conv_layer',
133
    'dropout_layer',
134
    'prelu_layer',
135
    'switch_order_layer',
136
    'gated_unit_layer',
137
    'crop_layer',
138
    'sub_nested_seq_layer',
139
    'clip_layer',
140
    'slice_projection',
141
    'seq_slice_layer',
142
    'kmax_seq_score_layer',
C
chengduoZH 已提交
143
    'img_pool3d_layer',
G
guosheng 已提交
144
    'scale_shift_layer',
C
chengduoZH 已提交
145
    'img_conv3d_layer',
146
    'resize_layer',
Y
yangyaming 已提交
147
    'sub_seq_layer',
Y
yangyaming 已提交
148
    'scale_sub_region_layer',
149
    'factorization_machine',
Q
qijun 已提交
150
]
Z
zhangjinchao01 已提交
151 152 153 154 155 156 157


class LayerType(object):
    """
    Layer type enumerations.
    """

158 159 160 161 162 163 164 165
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
166
    POOLING_AVG = 'average'
167
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
168
    COST = 'cost'
169 170
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
171
    HSIGMOID = 'hsigmoid'
172 173 174 175 176
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
C
chengduoZH 已提交
177
    CUDNNCONVTRANS_LAYER = 'cudnn_convt'
178
    POOL_LAYER = 'pool'
C
chengduoZH 已提交
179
    POOL3D_LAYER = 'pool3d'
Z
zhangjinchao01 已提交
180 181 182
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
183
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
184 185 186 187
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
188
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
189 190 191 192 193 194 195

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
196
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
197 198 199
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
200
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
201
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
202
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
203 204 205 206 207 208 209 210 211 212 213

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
214
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
215
    BLOCK_EXPAND = "blockexpand"
216
    MAXOUT = "maxout"
Q
qijun 已提交
217
    SPP_LAYER = "spp"
D
dangqingqing 已提交
218
    PAD_LAYER = "pad"
W
wwhu 已提交
219
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
220
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
221 222 223

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
224 225
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
G
guosheng 已提交
226
    ROI_POOL_LAYER = 'roi_pool'
D
dangqingqing 已提交
227 228 229 230 231

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
232
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
233

234 235 236
    CONV3D_LAYER = 'conv3d'
    DECONV3D_LAYER = 'deconv3d'

237 238
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
L
Luo Tao 已提交
239
    HUBER_REGRESSION = 'huber_regression'
240
    HUBER_CLASSIFICATION = 'huber_classification'
241 242
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
C
caoying03 已提交
243
    CROSS_ENTROPY_OVER_BEAM = 'cross_entropy_over_beam'
244 245 246 247 248 249
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
250
    SWITCH_ORDER_LAYER = 'switch_order'
251
    CROP_LAYER = 'crop'
C
caoying03 已提交
252
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
253
    CLIP_LAYER = 'clip'
254
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
255

256
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
257
    SCALE_SHIFT_LAYER = 'scale_shift'
Z
zhangjinchao01 已提交
258

259
    RESIZE = 'resize'
Y
yangyaming 已提交
260
    SUB_SEQ_LAYER = 'subseq'
261

Y
yangyaming 已提交
262
    SCALE_SUB_REGION_LAYER = 'scale_sub_region'
263

264 265
    FACTORIZATION_MACHINE = 'factorization_machine'

Z
zhangjinchao01 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
286
    """
L
Luo Tao 已提交
287
    PaddlePaddle supports three sequence types:
288 289 290

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
291 292
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
293

L
Luo Tao 已提交
294
    Accordingly, AggregateLevel supports two modes:
295

L
Luo Tao 已提交
296
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
297
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
298 299
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
300
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
301 302 303
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
304 305
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
306 307 308
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
R
ranqiu 已提交
331
    :type parents: list | tuple | collections.Sequence
Z
zhangjinchao01 已提交
332 333
    """

Q
qijun 已提交
334 335 336 337 338 339 340 341 342
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
343
                 reverse=None):
Z
zhangjinchao01 已提交
344 345
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
346
        assert size is not None
Z
zhangjinchao01 已提交
347 348
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
349
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
350
        self.layer_type = layer_type
351 352
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
353 354 355 356 357 358 359 360
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
361
        self.reverse = reverse
Z
zhangjinchao01 已提交
362

363 364 365 366 367 368 369 370
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

371 372 373 374
    @property
    def depth(self):
        return cp.g_layer_map[self.full_name].depth

375 376 377 378 379 380 381 382
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
383 384 385

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
386
DEVICE = 'device'
Z
zhangjinchao01 已提交
387 388 389


def layer_support(*attrs):
390
    attrs_list = list(attrs)
391
    attrs_list.append(DEVICE)
Q
qijun 已提交
392

Z
zhangjinchao01 已提交
393 394 395
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
396
            for attr in attrs_list:
Z
zhangjinchao01 已提交
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
413 414 415 416 417
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

R
ranqiu 已提交
448
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
449 450 451 452 453 454 455 456
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
457 458
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
459 460 461 462
    proj.origin = input
    return proj


463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

R
ranqiu 已提交
484
    :param input: The input of this layer.
485 486 487 488 489 490 491 492
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
493 494
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
495 496 497 498
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


R
ranqiu 已提交
529
    :param input: The input of this layer, which must contains id fields.
Z
zhangjinchao01 已提交
530 531 532 533 534 535 536 537
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
538 539
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
540 541 542 543
    proj.origin = input
    return proj


544
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

R
ranqiu 已提交
574
    :param input: The input of this layer.
575
    :type input: LayerOutput
Z
zhangjinchao01 已提交
576 577
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
578
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
579 580 581 582 583 584
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
585 586
        if size is None:
            size = input.size - offset
Q
qijun 已提交
587
        proj = IdentityOffsetProjection(
588
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
589 590 591 592
        proj.origin = input
    return proj


593 594
def slice_projection(input, slices):
    """
595 596
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
597 598

    .. math::
599
       output = [input.slices()]
600 601 602 603 604 605 606 607 608

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

R
ranqiu 已提交
609
    :param input: The input of this layer.
610 611 612 613
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
614
    :type slices: pair of int
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

R
ranqiu 已提交
647
    :param input: The input of this layer.
X
xuwei06 已提交
648 649 650 651 652 653
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
654
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
655 656 657 658
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
659
@wrap_param_attr_default()
660
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
661
    """
662
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
663 664 665 666 667 668 669 670 671 672 673 674 675
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

R
ranqiu 已提交
676
    :param input: The input of this layer.
677 678 679 680 681 682
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
683 684
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
685
    proj.origin = input
686
    return proj
Z
zhangjinchao01 已提交
687

688 689

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
690 691
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
692

Z
zhangjinchao01 已提交
693
    .. math::
L
Luo Tao 已提交
694
       out.row[i] += scale * (a.row[i] .* b.row[i])
695

Z
zhangjinchao01 已提交
696 697
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
698

Z
zhangjinchao01 已提交
699
    The example usage is:
700

Z
zhangjinchao01 已提交
701
    .. code-block:: python
702

L
Luo Tao 已提交
703
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
704

705 706 707 708
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
709 710
    :param scale: config scalar, default value is one.
    :type scale: float
711 712
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
713
    """
714 715 716
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
717
    a = kwargs.get('x', a)  # For Backward capacity.
718 719 720 721 722 723
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
724
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
725
    op.origin = [a, b]
726
    return op
Z
zhangjinchao01 已提交
727

728

Z
zhangjinchao01 已提交
729
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
730 731 732
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
733 734 735 736 737 738 739 740 741 742 743 744 745 746
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

R
ranqiu 已提交
747
    :param input: The input of this layer, which should be a sequence.
Z
zhangjinchao01 已提交
748 749 750 751 752 753 754 755 756
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
R
ranqiu 已提交
757
    :type padding_attr: bool | ParameterAttribute
Z
zhangjinchao01 已提交
758 759 760 761 762 763 764 765 766 767 768
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
769 770 771 772 773 774
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
775 776 777 778 779 780 781 782 783 784 785 786 787
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
788
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
789 790 791 792 793 794
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
R
ranqiu 已提交
795
        :param act: Activation type.
Z
zhangjinchao01 已提交
796
        :type act: BaseActivation
R
ranqiu 已提交
797 798 799
        :param bias_attr: The bias attribute. If the parameter is set to False or an object
                          whose type is not ParameterAttribute, no bias is defined. If the
                          parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
800
        :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
801 802 803
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
804 805 806 807 808 809 810
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
811 812 813 814 815
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

816
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
817 818 819 820 821 822 823 824
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
825
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
826
            self.inputs.append(other)
827 828 829 830
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
831 832 833 834 835 836 837 838
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

839
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
840 841
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
842
        assert len(self.inputs) != 0
843
        ml = MixedLayer(
Z
zhangjinchao01 已提交
844 845 846 847 848
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
849
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
850 851 852
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
853
        self.finalized = True
Z
zhangjinchao01 已提交
854 855 856 857 858 859


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
860 861 862 863 864
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
R
ranqiu 已提交
892
    :param input: The input of this layer. It is an optional parameter. If set,
Z
zhangjinchao01 已提交
893
                  then this function will just return layer's name.
R
ranqiu 已提交
894
    :param act: Activation Type. LinearActivation is the default.
Z
zhangjinchao01 已提交
895
    :type act: BaseActivation
R
ranqiu 已提交
896 897 898
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
899
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
900 901 902 903 904 905 906 907 908
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
909 910 911 912 913 914
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
915
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
916 917 918 919 920 921 922 923
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
C
chengduoZH 已提交
924 925
def data_layer(name, size, depth=None, height=None, width=None,
               layer_attr=None):
Z
zhangjinchao01 已提交
926 927 928 929 930 931 932
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
933
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
934

R
ranqiu 已提交
935
    :param name: The name of this layer.
Z
zhangjinchao01 已提交
936 937 938
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
939
    :param height: Height of this data layer, used for image
R
ranqiu 已提交
940
    :type height: int | None
L
Luo Tao 已提交
941
    :param width: Width of this data layer, used for image
R
ranqiu 已提交
942
    :type width: int | None
Z
zhangjinchao01 已提交
943 944
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
945
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
946 947
    :rtype: LayerOutput
    """
Q
qijun 已提交
948 949 950 951
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
C
chengduoZH 已提交
952
        depth=depth,
L
Luo Tao 已提交
953 954
        height=height,
        width=width,
Q
qijun 已提交
955
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
956

C
chengduoZH 已提交
957 958
    if depth is None:
        depth = 1
959 960
    num_filters = None
    if height is not None and width is not None:
C
chengduoZH 已提交
961 962
        num_filters = size / (width * height * depth)
        assert num_filters * width * height * depth == size, \
C
chengduoZH 已提交
963
                "size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
964 965

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
966 967 968 969


@wrap_name_default("embedding")
@wrap_param_attr_default()
970
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
971 972 973 974
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

975
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
976
    :type name: basestring
R
ranqiu 已提交
977
    :param input: The input of this layer, which must be Index Data.
Z
zhangjinchao01 已提交
978 979 980 981 982
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
R
ranqiu 已提交
983
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
984
    :param layer_attr: Extra layer Config. Default is None.
R
ranqiu 已提交
985
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
986
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
987 988
    :rtype: LayerOutput
    """
Q
qijun 已提交
989 990 991 992 993 994
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
995 996 997 998 999 1000 1001 1002 1003
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
1004 1005 1006 1007 1008 1009 1010
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
1023
    which is equal to:
Z
zhangjinchao01 已提交
1024 1025 1026 1027 1028 1029

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

1030
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1031
    :type name: basestring
R
ranqiu 已提交
1032 1033
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
1034 1035
    :param size: The layer dimension.
    :type size: int
R
ranqiu 已提交
1036
    :param act: Activation Type. TanhActivation is the default.
Z
zhangjinchao01 已提交
1037 1038 1039
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
1040 1041 1042
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1043
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1044
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
1045
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1046
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1047 1048 1049 1050
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1051
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1052 1053
        param_attr = [param_attr]
    else:
1054
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1055 1056
            assert len(input) == len(param_attr)
        else:
1057
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
1058
                logger.fatal(
W
wangmeng28 已提交
1059 1060 1061 1062 1063
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
1064 1065
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1066
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1067 1068

    Layer(
Q
qijun 已提交
1069 1070 1071
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1072 1073 1074 1075 1076
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1077 1078 1079
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1080

1081

1082
@wrap_name_default("print")
1083
def printer_layer(input, format=None, name=None):
1084 1085
    """
    Print the output value of input layers. This layer is useful for debugging.
1086

1087
    :param name: The name of this layer. It is optional.
1088
    :type name: basestring
R
ranqiu 已提交
1089 1090
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
1091
    :return: LayerOutput
1092
    """
1093 1094 1095 1096 1097
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1098 1099 1100

    Layer(
        name=name,
1101
        format=format,
1102
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1103
        inputs=[l.name for l in input], )
1104
    # this layer don't return anything, can not be input of other layer.
1105

X
xuwei06 已提交
1106 1107 1108 1109 1110 1111 1112
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1113

Y
yuan 已提交
1114
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1115
def priorbox_layer(input,
G
gaoyuan 已提交
1116
                   image,
G
gaoyuan 已提交
1117 1118 1119 1120 1121
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1122 1123 1124
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

1125
    :param name: The name of this layer. It is optional.
Y
yuan 已提交
1126
    :type name: basestring
R
ranqiu 已提交
1127
    :param input: The input of this layer.
Y
yuan 已提交
1128
    :type input: LayerOutput
G
gaoyuan 已提交
1129 1130
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1142
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1143 1144 1145
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1146
        inputs=[input.name, image.name],
Y
yuan 已提交
1147 1148 1149 1150 1151 1152
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1153 1154
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1155
        parents=[input, image],
G
gaoyuan 已提交
1156 1157 1158
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1159

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

1174
    :param name: The name of this layer. It is optional.
1175
    :type name: basestring
Y
yangyaming 已提交
1176 1177
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1178
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1179
    :type input_conf: LayerOutput | List of LayerOutput
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1201
    input_loc_num = len(input_loc)
1202 1203 1204 1205 1206 1207

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1208
    input_conf_num = len(input_conf)
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
G
gaoyuan 已提交
1246 1247
    box location. The output's shape of this layer could be zero if there is
    no valid bounding box.
1248

1249
    :param name: The name of this layer. It is optional.
1250
    :type name: basestring
Y
yangyaming 已提交
1251 1252
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1253
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1254
    :type input_conf: LayerOutput | List of LayerOutput.
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1276
    input_loc_num = len(input_loc)
1277 1278 1279 1280 1281 1282

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1283 1284
    input_conf_num = len(input_conf)

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


G
guosheng 已提交
1313 1314 1315 1316 1317 1318
@wrap_name_default("roi_pool")
def roi_pool_layer(input,
                   rois,
                   pooled_width,
                   pooled_height,
                   spatial_scale,
G
guosheng 已提交
1319
                   num_channels=None,
G
guosheng 已提交
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
                   name=None):
    """
    A layer used by Fast R-CNN to extract feature maps of ROIs from the last
    feature map.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
    :param rois: The input ROIs' data.
    :type rois: LayerOutput.
    :param pooled_width: The width after pooling.
    :type pooled_width: int
    :param pooled_height: The height after pooling.
    :type pooled_height: int
    :param spatial_scale: The spatial scale between the image and feature map.
    :type spatial_scale: float
G
guosheng 已提交
1337 1338
    :param num_channels: number of input channel.
    :type num_channels: int
G
guosheng 已提交
1339 1340
    :return: LayerOutput
    """
G
guosheng 已提交
1341 1342 1343 1344
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    size = num_channels * pooled_width * pooled_height
G
guosheng 已提交
1345 1346 1347 1348 1349 1350
    Layer(
        name=name,
        type=LayerType.ROI_POOL_LAYER,
        inputs=[input.name, rois.name],
        pooled_width=pooled_width,
        pooled_height=pooled_height,
1351 1352
        spatial_scale=spatial_scale,
        num_channels=num_channels)
G
guosheng 已提交
1353 1354
    return LayerOutput(
        name, LayerType.ROI_POOL_LAYER, parents=[input, rois], size=size)
G
guosheng 已提交
1355 1356


1357 1358
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1359 1360 1361 1362 1363
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1364

1365
    :param name: The name of this layer. It is optional.
G
gaoyuan 已提交
1366
    :type name: basestring
R
ranqiu 已提交
1367
    :param input: The input of this layer.
G
gaoyuan 已提交
1368 1369 1370 1371 1372
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1373
    assert input.num_filters is not None
G
gaoyuan 已提交
1374 1375
    Layer(
        name=name,
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1389 1390
    return LayerOutput(
        name,
1391
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1392 1393 1394 1395 1396
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1397 1398 1399 1400
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1401 1402 1403 1404
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1405
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1406
                  stride=-1,
Z
zhangjinchao01 已提交
1407 1408 1409 1410
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1411 1412
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1413 1414 1415
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1416
    operation. Note that for sequence with sub-sequence, the default value
1417 1418
    of stride is -1.

Z
zhangjinchao01 已提交
1419 1420 1421 1422 1423 1424
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1425
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1426

L
Luo Tao 已提交
1427 1428
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1429
    :type agg_level: AggregateLevel
1430
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1431
    :type name: basestring
R
ranqiu 已提交
1432
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1433 1434 1435
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
R
ranqiu 已提交
1436
    :type pooling_type: BasePoolingType | None
L
Luo Tao 已提交
1437
    :param stride: The step size between successive pooling regions.
1438
    :type stride: Int
R
ranqiu 已提交
1439 1440 1441
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1442
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1443
    :param layer_attr: The Extra Attributes for layer, such as dropout.
R
ranqiu 已提交
1444
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1445
    :return: LayerOutput object.
Y
Yu Yang 已提交
1446
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1447 1448
    """
    extra_dict = dict()
1449
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1450 1451
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1452 1453 1454 1455
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1456 1457
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1458 1459 1460
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1461 1462 1463 1464 1465 1466
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1467
        stride=stride,
Q
qijun 已提交
1468
        **extra_dict)
Z
zhangjinchao01 已提交
1469

Q
qijun 已提交
1470 1471
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1472

Q
qijun 已提交
1473

Z
zhangjinchao01 已提交
1474 1475
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1476
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1477 1478
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1479
@layer_support()
Q
qijun 已提交
1480 1481
def lstmemory(input,
              name=None,
1482
              size=None,
Q
qijun 已提交
1483 1484 1485 1486 1487 1488
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1489 1490 1491 1492 1493 1494 1495 1496
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1497
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1498

L
luotao02 已提交
1499
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1500

L
luotao02 已提交
1501
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1502

L
luotao02 已提交
1503
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1504

L
luotao02 已提交
1505
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1506 1507


C
caoying03 已提交
1508
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1509
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1510 1511 1512 1513
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1514

C
caoying03 已提交
1515
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1516 1517
    to config a simple plain lstm layer.

C
caoying03 已提交
1518 1519 1520 1521
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1522 1523 1524 1525 1526

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1527 1528
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
R
ranqiu 已提交
1529
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1530 1531 1532
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
R
ranqiu 已提交
1533
    :param act: Activation type. TanhActivation is the default. :math:`h_t`
Z
zhangjinchao01 已提交
1534 1535 1536 1537 1538
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation
R
ranqiu 已提交
1539 1540 1541
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1542
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1543
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1544
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1545
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1546
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1547
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1548 1549 1550 1551 1552 1553
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1554
    assert input.size is not None and input.size % 4 == 0
1555

1556 1557 1558 1559 1560
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1561 1562 1563
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1564

Q
qijun 已提交
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1575

Q
qijun 已提交
1576 1577 1578 1579 1580
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1581

Z
zhangjinchao01 已提交
1582 1583 1584

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1585
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1586 1587
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1588
@layer_support()
Q
qijun 已提交
1589
def grumemory(input,
1590
              size=None,
Q
qijun 已提交
1591 1592 1593 1594 1595 1596
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1618 1619
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1620 1621 1622 1623 1624

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1625 1626 1627
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1628 1629 1630 1631 1632

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1633
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1634
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1635 1636 1637
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1638

C
caoying03 已提交
1639 1640 1641
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1642 1643 1644 1645 1646 1647 1648 1649

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
R
ranqiu 已提交
1650 1651
    :type name: None | basestring
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1652
    :type input: LayerOutput.
1653 1654
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1655
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1656
    :type reverse: bool
R
ranqiu 已提交
1657
    :param act: Activation type, TanhActivation is the default. This activation
Z
zhangjinchao01 已提交
1658 1659 1660 1661 1662 1663
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
R
ranqiu 已提交
1664 1665 1666
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1667
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1668
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1669
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1670
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1671
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1672
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1673 1674 1675 1676
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1677 1678 1679 1680 1681 1682
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1683 1684 1685
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1686

Q
qijun 已提交
1687 1688 1689 1690 1691 1692 1693 1694 1695
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1696

Q
qijun 已提交
1697 1698 1699 1700 1701
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1702

Z
zhangjinchao01 已提交
1703 1704 1705

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1706 1707
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1708
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1709
             stride=-1,
Z
zhangjinchao01 已提交
1710 1711 1712 1713
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1714 1715 1716
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1717
    of stride is -1.
1718

L
Luo Tao 已提交
1719 1720 1721 1722 1723 1724
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1725
    :param agg_level: Aggregated level
1726
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1727
    :type name: basestring
R
ranqiu 已提交
1728
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1729
    :type input: LayerOutput
L
Luo Tao 已提交
1730
    :param stride: The step size between successive pooling regions.
1731
    :type stride: Int
Z
zhangjinchao01 已提交
1732 1733
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1734
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1735 1736
    :rtype: LayerOutput
    """
1737 1738 1739 1740 1741 1742
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1743
    if agg_level == AggregateLevel.TO_SEQUENCE:
1744 1745
        assert stride == -1

Z
zhangjinchao01 已提交
1746 1747 1748 1749 1750
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1751
        stride=stride,
Q
qijun 已提交
1752 1753 1754 1755 1756 1757
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1758 1759 1760 1761


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1762 1763
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1764
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1765
              stride=-1,
Z
zhangjinchao01 已提交
1766 1767 1768 1769
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1770 1771 1772
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1773
    of stride is -1.
1774

L
Luo Tao 已提交
1775 1776 1777 1778 1779 1780
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1781
    :param agg_level: aggregation level
1782
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1783
    :type name: basestring
R
ranqiu 已提交
1784
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1785
    :type input: LayerOutput
L
Luo Tao 已提交
1786
    :param stride: The step size between successive pooling regions.
1787
    :type stride: Int
Z
zhangjinchao01 已提交
1788 1789
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1790
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1791 1792
    :rtype: LayerOutput
    """
1793 1794 1795 1796 1797 1798 1799

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1800
    if agg_level == AggregateLevel.TO_SEQUENCE:
1801 1802
        assert stride == -1

Z
zhangjinchao01 已提交
1803 1804 1805 1806 1807
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1808
        stride=stride,
Q
qijun 已提交
1809 1810 1811 1812 1813 1814
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1815 1816 1817


class ExpandLevel(object):
1818 1819 1820 1821 1822
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1823 1824
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1825 1826
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1827 1828
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1829 1830
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1831 1832
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1833 1834
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1835

1836

Z
zhangjinchao01 已提交
1837 1838
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1839 1840
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1841 1842
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1843
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1855
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1856

R
ranqiu 已提交
1857
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1858 1859 1860
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
1861
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1862
    :type name: basestring
R
ranqiu 已提交
1863 1864 1865
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1866
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1867 1868 1869 1870
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1871
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1872 1873 1874 1875 1876 1877 1878 1879 1880
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1881 1882 1883 1884 1885 1886
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1887 1888


X
xuwei06 已提交
1889
@wrap_name_default()
X
xuwei06 已提交
1890
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1891
@layer_support()
X
xuwei06 已提交
1892 1893 1894
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1895
                 act=None,
X
xuwei06 已提交
1896 1897
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1898
    """
X
xuwei06 已提交
1899
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1900

X
xuwei06 已提交
1901
    If as_row_vector:
X
xuwei06 已提交
1902
    .. math::
X
xuwei06 已提交
1903 1904 1905 1906 1907
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1908 1909 1910 1911 1912

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1913
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1914

R
ranqiu 已提交
1915
    :param input: The input of this layer.
X
xuwei06 已提交
1916 1917 1918
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
1919
    :param name: The name of this layer. It is optional.
X
xuwei06 已提交
1920 1921 1922 1923 1924 1925
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
R
ranqiu 已提交
1926
    :param act: Activation type. IdentityActivation is the default.
X
xuwei06 已提交
1927
    :type act: BaseActivation
X
xuwei06 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1938
        active_type=act.name,
X
xuwei06 已提交
1939
        num_filters=num_repeats,
X
xuwei06 已提交
1940
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1941
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1942 1943 1944 1945 1946
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1947
        activation=act,
Q
qijun 已提交
1948 1949
        parents=[input])

X
xuwei06 已提交
1950

1951 1952 1953
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1954
@layer_support(ERROR_CLIPPING, DROPOUT)
1955 1956 1957 1958 1959 1960 1961 1962
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1963
    the dimension of each instance is M, and the input reshape_size is N, then the
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

R
ranqiu 已提交
1974
    :param input: The input of this layer.
1975 1976 1977
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
1978
    :param name: The name of this layer. It is optional.
1979
    :type name: basestring
R
ranqiu 已提交
1980
    :param act: Activation type. IdentityActivation is the default.
1981 1982 1983
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
R
ranqiu 已提交
1984 1985 1986
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1987
    :type bias_attr: ParameterAttribute | None | bool | Any
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

R
ranqiu 已提交
2026 2027
    :param input: The input of this layer.
    :type input: list | tuple
Z
zhangjinchao01 已提交
2028 2029
    :param weight: Weight layer.
    :type weight: LayerOutput
2030
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2031 2032 2033
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2034
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2035 2036
    :rtype: LayerOutput
    """
2037
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2038
    assert len(input) == 2
2039 2040 2041 2042 2043 2044 2045
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2046 2047 2048 2049
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
2050 2051 2052 2053 2054 2055
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
2056 2057


L
liaogang 已提交
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
2074
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
2075

L
liaogang 已提交
2076
    :param   input:        A input layer.
L
liaogang 已提交
2077
    :type    input:        LayerOutput.
L
liaogang 已提交
2078
    :param   out_size_x:   bilinear interpolation output width.
R
ranqiu 已提交
2079
    :type    out_size_x:   int | None
L
liaogang 已提交
2080
    :param   out_size_y:   bilinear interpolation output height.
R
ranqiu 已提交
2081
    :type    out_size_y:   int | None
L
liaogang 已提交
2082
    :param   name:         The layer's name, which cna not be specified.
R
ranqiu 已提交
2083
    :type    name:         None | basestring
L
liaogang 已提交
2084
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
2085 2086 2087 2088 2089 2090 2091
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2092
    assert input.num_filters is not None
L
liaogang 已提交
2093
    num_channels = input.num_filters
Q
qijun 已提交
2094 2095 2096 2097 2098 2099 2100
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2101
                channels=num_channels)),
Q
qijun 已提交
2102 2103 2104 2105 2106 2107 2108 2109 2110
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2111

Z
zhangjinchao01 已提交
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2131
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2132 2133 2134
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2135
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2136 2137 2138
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2139
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2140 2141
    :rtype: LayerOutput
    """
2142 2143 2144
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2145 2146 2147
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2148
        inputs=[weight.name, input.name],
Q
qijun 已提交
2149 2150 2151
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2152 2153 2154 2155 2156 2157


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2158
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2159 2160

    .. math::
2161
       y  = w x
Z
zhangjinchao01 已提交
2162

2163 2164 2165 2166 2167
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2168 2169 2170 2171 2172 2173 2174

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2175
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2176 2177 2178
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2179
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2180 2181 2182
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2183
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2184 2185
    :rtype: LayerOutput
    """
2186 2187 2188
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2189 2190 2191 2192
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2193 2194 2195
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2196 2197 2198 2199 2200 2201


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2202
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

R
ranqiu 已提交
2215
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2216
    :type input: LayerOutput
2217
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2218 2219 2220
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2221
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2222 2223 2224 2225 2226 2227
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2228 2229 2230
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2231 2232


2233 2234
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2235
def rotate_layer(input, height, width, name=None, layer_attr=None):
2236
    """
H
Haonan 已提交
2237 2238
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2239 2240

    .. math::
H
Haonan 已提交
2241
       y(j,i,:) = x(M-i-1,j,:)
2242

H
Haonan 已提交
2243
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2244 2245 2246 2247 2248 2249

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2250 2251
                          height=100,
                          width=100)
2252

R
ranqiu 已提交
2253
    :param input: The input of this layer.
2254 2255 2256
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
2257
    :param name: The name of this layer. It is optional.
2258 2259 2260 2261 2262 2263 2264
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2265 2266 2267
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2268
        width=width,
H
Haonan 已提交
2269 2270 2271 2272 2273 2274 2275 2276
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2277 2278


Z
zhangjinchao01 已提交
2279 2280
@wrap_name_default()
@layer_support()
2281
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2282 2283 2284 2285
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2286
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2287 2288 2289 2290 2291
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2292

2293 2294
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2295

L
Luo Tao 已提交
2296 2297 2298 2299 2300 2301
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

2302
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2314
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2315 2316
    :rtype: LayerOutput
    """
2317
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2318 2319 2320 2321 2322 2323
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2324
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2325
    else:
2326 2327
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2328 2329 2330 2331 2332 2333
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2334
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2335
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2336

2337

Z
zhangjinchao01 已提交
2338 2339
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2340
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2341
@layer_support()
Q
qijun 已提交
2342 2343
def hsigmoid(input,
             label,
2344
             num_classes=None,
Q
qijun 已提交
2345 2346 2347 2348
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2360
                        label=data_layer)
Z
zhangjinchao01 已提交
2361

R
ranqiu 已提交
2362 2363
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
2364 2365 2366
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
R
ranqiu 已提交
2367
    :type num_classes: int | None
2368
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
2369
    :type name: basestring
R
ranqiu 已提交
2370 2371 2372
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2373
    :type bias_attr: ParameterAttribute | None | bool | Any
2374
    :param param_attr: Parameter Attribute. None means default parameter.
R
ranqiu 已提交
2375
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
2376 2377
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2378
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2379 2380 2381 2382
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2383 2384 2385 2386 2387 2388 2389 2390 2391
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2392 2393 2394
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2395 2396 2397 2398 2399
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2400 2401
    ipts_for_layer = []
    parents = []
2402
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2403
        assert isinstance(each_input, LayerOutput)
2404
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2405 2406 2407 2408
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2409
    l = Layer(
Z
zhangjinchao01 已提交
2410 2411 2412 2413 2414
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2415 2416 2417
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2418

2419

Z
zhangjinchao01 已提交
2420 2421 2422 2423 2424
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2425 2426 2427 2428 2429 2430 2431 2432 2433
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2434
                   dilation=1,
Q
qijun 已提交
2435 2436 2437 2438 2439 2440 2441
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2442
                   dilation_y=None,
2443 2444
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2445
    """
2446
    Convolution layer for image. Paddle can support both square and non-square
2447
    input currently.
Z
zhangjinchao01 已提交
2448 2449 2450 2451

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2452

2453
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2454
    and non-square input currently.
2455

X
xuwei06 已提交
2456
    The details of convolution transpose layer,
2457 2458 2459
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2460 2461 2462 2463
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2464 2465 2466
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2467
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2468 2469
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2470

L
Luo Tao 已提交
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

2481
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2482
    :type name: basestring
R
ranqiu 已提交
2483
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2484
    :type input: LayerOutput
2485 2486
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
R
ranqiu 已提交
2487
    :type filter_size: int | tuple | list
C
caoying03 已提交
2488 2489 2490
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
R
ranqiu 已提交
2491
    :type filter_size_y: int | None
Z
zhangjinchao01 已提交
2492
    :param num_filters: Each filter group's number of filter
R
ranqiu 已提交
2493
    :param act: Activation type. ReluActivation is the default.
Z
zhangjinchao01 已提交
2494 2495 2496
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2497 2498
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
R
ranqiu 已提交
2499
    :type stride: int | tuple | list
Z
zhangjinchao01 已提交
2500 2501
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2502 2503
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
2504
    :type padding: int | tuple | list
Z
zhangjinchao01 已提交
2505 2506
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
2507 2508
    :param dilation: The x dimension of the dilation. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
2509
    :type dilation: int | tuple | list
W
wanghaoshuang 已提交
2510 2511
    :param dilation_y: The y dimension of the dilation.
    :type dilation_y: int
R
ranqiu 已提交
2512 2513 2514
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2515
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
2516 2517 2518 2519 2520 2521 2522 2523 2524
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2525 2526
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2527
    :param layer_type: specify the layer_type, default is None. If trans=True,
2528 2529
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2530
                       "cudnn_conv"
2531
    :type layer_type: String
D
dangqingqing 已提交
2532
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2533 2534 2535 2536 2537
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2538

Z
zhangjinchao01 已提交
2539
    if filter_size_y is None:
2540 2541 2542 2543 2544 2545
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2546
    if stride_y is None:
2547 2548 2549 2550 2551 2552
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2553
    if padding_y is None:
2554 2555 2556 2557 2558 2559
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2560 2561 2562 2563 2564 2565 2566
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2567 2568
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2569
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2570 2571 2572 2573
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2574

2575
    if layer_type:
W
wanghaoshuang 已提交
2576 2577
        if dilation > 1 or dilation_y > 1:
            assert layer_type in ["cudnn_conv", "cudnn_convt"]
2578
        if trans:
2579
            assert layer_type in ["exconvt", "cudnn_convt"]
2580 2581 2582 2583 2584
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2585

X
xuwei06 已提交
2586
    l = Layer(
Z
zhangjinchao01 已提交
2587
        name=name,
Q
qijun 已提交
2588 2589 2590 2591 2592
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2593
                dilation=dilation,
Q
qijun 已提交
2594 2595 2596 2597 2598
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2599
                dilation_y=dilation_y,
Q
qijun 已提交
2600 2601
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2602 2603 2604 2605
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2606
        type=lt,
Q
qijun 已提交
2607 2608 2609 2610 2611 2612 2613 2614
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2615 2616 2617 2618


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2629 2630
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2631 2632 2633 2634 2635 2636 2637
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2666
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2667
    :type padding: int
2668
    :param padding_y: pooling padding height. It's equal to padding by default.
R
ranqiu 已提交
2669
    :type padding_y: int | None
Z
zhangjinchao01 已提交
2670 2671
    :param name: name of pooling layer
    :type name: basestring.
R
ranqiu 已提交
2672
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2673
    :type input: LayerOutput
2674
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2675
    :type pool_size: int
2676
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
R
ranqiu 已提交
2677
    :type pool_size_y: int | None
Z
zhangjinchao01 已提交
2678 2679
    :param num_channels: number of input channel.
    :type num_channels: int
2680
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2681 2682
                      MaxPooling.
    :type pool_type: BasePoolingType
2683
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2684
    :type stride: int
2685
    :param stride_y: stride height of pooling. It is equal to stride by default.
R
ranqiu 已提交
2686
    :type stride_y: int | None
Z
zhangjinchao01 已提交
2687 2688
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2689 2690 2691 2692
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2693 2694
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

W
wanghaoshuang 已提交
2705 2706 2707 2708
    assert type(pool_type) in [AvgPooling, MaxPooling, CudnnAvgPooling,
                               CudnnMaxPooling], \
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling are supported"

2709
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2710
        if (
Y
Yu Yang 已提交
2711
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2712
        else pool_type.name
2713 2714 2715 2716
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2717
    l = Layer(
Z
zhangjinchao01 已提交
2718 2719
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2732
                    padding_y=padding_y))
Q
qijun 已提交
2733
        ],
2734
        ceil_mode=ceil_mode,
Q
qijun 已提交
2735 2736 2737 2738 2739 2740 2741
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2742 2743


C
chengduoZH 已提交
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
@wrap_name_default("pool3d")
@layer_support()
def img_pool3d_layer(input,
                     pool_size,
                     name=None,
                     num_channels=None,
                     pool_type=None,
                     stride=1,
                     padding=0,
                     layer_attr=None,
                     pool_size_y=None,
                     stride_y=None,
                     padding_y=None,
                     pool_size_z=None,
                     stride_z=None,
                     padding_z=None,
                     ceil_mode=True):
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool3d_layer(input=conv,
                                 pool_size=3,
                                 num_channels=8,
                                 stride=1,
                                 padding=1,
                                 pool_type=MaxPooling())

    :param padding: pooling padding width.
R
ranqiu 已提交
2796
    :type padding: int | tuple | list
C
chengduoZH 已提交
2797 2798
    :param name: name of pooling layer
    :type name: basestring.
R
ranqiu 已提交
2799
    :param input: The input of this layer.
C
chengduoZH 已提交
2800 2801
    :type input: LayerOutput
    :param pool_size: pooling window width
R
ranqiu 已提交
2802
    :type pool_size: int | tuple | list
C
chengduoZH 已提交
2803 2804 2805 2806 2807 2808
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
                      MaxPooling.
    :type pool_type: BasePoolingType
    :param stride: stride width of pooling.
R
ranqiu 已提交
2809
    :type stride: int | tuple | list
C
chengduoZH 已提交
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name + '-projection' \
        if (
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
        else pool_type.name

    if isinstance(pool_size, collections.Sequence):
        assert len(pool_size) == 3
        pool_size, pool_size_y, pool_size_z = pool_size
    else:
        pool_size_y = pool_size
        pool_size_z = pool_size

    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride

    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_y = padding
    else:
        padding_y = padding
        padding_z = padding

    l = Layer(
        name=name,
        type=LayerType.POOL3D_LAYER,
        inputs=[
            Input(
                input.name,
                pool=Pool3d(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
                    padding_y=padding_y,
                    size_z=pool_size_z,
                    stride_z=stride_z,
                    padding_z=padding_z))
        ],
        ceil_mode=ceil_mode,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


Q
qijun 已提交
2884 2885
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2886 2887 2888 2889 2890 2891
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2892 2893 2894 2895 2896
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2897 2898 2899 2900
    The example usage is:

    ..  code-block:: python

2901 2902 2903
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2904 2905
                        pool_type=MaxPooling())

2906
    :param name: The name of this layer. It is optional.
Q
qijun 已提交
2907
    :type name: basestring
R
ranqiu 已提交
2908
    :param input: The input of this layer.
Q
qijun 已提交
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2934
    l = Layer(
Q
qijun 已提交
2935 2936
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2937 2938 2939 2940 2941
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2942
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2954 2955 2956 2957
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2958
    l = Layer(
Q
qijun 已提交
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2978 2979 2980 2981


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2982 2983 2984 2985 2986 2987
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2988
                      layer_attr=None):
Z
zhangjinchao01 已提交
2989
    """
2990
    Response normalization across feature maps.
D
dangqingqing 已提交
2991 2992
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2993

L
Luo Tao 已提交
2994 2995 2996
    The example usage is:

    ..  code-block:: python
2997

L
Luo Tao 已提交
2998 2999
        norm = img_cmrnorm_layer(input=net, size=5)

3000
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3001 3002
    :type name: None | basestring
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3003
    :type input: LayerOutput
3004
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
3005
    :type size: int
D
dangqingqing 已提交
3006
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
3007
    :type scale: float
D
dangqingqing 已提交
3008
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
3009 3010 3011 3012 3013
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3014
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3015 3016 3017
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
3018
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
3019 3020 3021


@wrap_bias_attr_default()
3022 3023
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
3024 3025
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
3026
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3027 3028 3029
def batch_norm_layer(input,
                     act=None,
                     name=None,
C
chengduoZH 已提交
3030
                     img3D=False,
Q
qijun 已提交
3031 3032 3033 3034
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
3035 3036
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
C
chengduoZH 已提交
3037 3038
                     use_global_stats=None,
                     mean_var_names=None):
Z
zhangjinchao01 已提交
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
3057 3058 3059
    The example usage is:

    ..  code-block:: python
3060

L
Luo Tao 已提交
3061 3062
        norm = batch_norm_layer(input=net, act=ReluActivation())

3063
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3064 3065 3066 3067
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
    :param batch_norm_type: We have batch_norm, mkldnn_batch_norm and cudnn_batch_norm.
                            batch_norm supports CPU, MKLDNN and GPU. cudnn_batch_norm
                            requires cuDNN version greater or equal to v4 (>=v4).
                            But cudnn_batch_norm is faster and needs less
                            memory than batch_norm. mkldnn_batch_norm requires
                            enable use_mkldnn. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU,
                            mkldnn_batch_norm for MKLDNN and batch_norm for CPU.
                            Otherwise, select batch norm type based on the
                            specified type. If you use cudnn_batch_norm,
Z
zhangjinchao01 已提交
3078
                            we suggested you use latest version, such as v5.1.
R
ranqiu 已提交
3079
    :type batch_norm_type: None | string, None or "batch_norm" or "cudnn_batch_norm"
3080
                           or "mkldnn_batch_norm"
Z
zhangjinchao01 已提交
3081 3082 3083 3084 3085 3086 3087 3088 3089
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
R
ranqiu 已提交
3090
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
R
ranqiu 已提交
3102
    :type use_global_stats: bool | None.
Z
zhangjinchao01 已提交
3103 3104 3105 3106 3107
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
C
chengduoZH 已提交
3108 3109
    :param mean_var_names: [mean name, variance name]
    :type mean_var_names: string list
D
dangqingqing 已提交
3110
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3111 3112 3113 3114 3115 3116 3117 3118 3119
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
3120
           (batch_norm_type == "mkldnn_batch_norm") or \
Z
zhangjinchao01 已提交
3121
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
3122
    l = Layer(
Z
zhangjinchao01 已提交
3123
        name=name,
C
chengduoZH 已提交
3124
        img3D=img3D,
Q
qijun 已提交
3125 3126
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
3127 3128 3129 3130 3131 3132
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
C
chengduoZH 已提交
3133
        mean_var_names=mean_var_names,
Q
qijun 已提交
3134
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3135

Q
qijun 已提交
3136 3137 3138 3139 3140 3141 3142
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

R
ranqiu 已提交
3164
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3165
    :type input: LayerOutput
3166
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3167 3168 3169
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3170
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3171 3172 3173 3174 3175 3176
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
3177 3178 3179
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
3180 3181


G
guosheng 已提交
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

R
ranqiu 已提交
3200
    :param input: The input of this layer.
G
guosheng 已提交
3201
    :type input: LayerOutput
3202
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
3218 3219 3220
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
3221
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3222
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
3245 3246 3247
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3248 3249

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
3250 3251
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
3252 3253
    Please refer to dropout_layer for details.

3254
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3255 3256 3257
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
R
ranqiu 已提交
3258 3259
    :type input: LayerOutput | list | tuple
    :param act: Activation Type. LinearActivation is the default.
Z
zhangjinchao01 已提交
3260
    :type act: BaseActivation
R
ranqiu 已提交
3261 3262 3263
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3264
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3265 3266
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3267
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3268 3269 3270 3271 3272 3273
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3274
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3275 3276 3277 3278 3279 3280 3281
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3282
    l = Layer(
Q
qijun 已提交
3283 3284 3285
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3286 3287
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3288
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3289

Q
qijun 已提交
3290 3291 3292 3293 3294 3295 3296
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3297 3298 3299 3300


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3301
@layer_support(DROPOUT, ERROR_CLIPPING)
3302
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3303 3304 3305 3306
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

3307 3308 3309 3310 3311 3312
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

3313
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3314 3315
    :type name: basestring
    :param input: input layers or projections
R
ranqiu 已提交
3316 3317
    :type input: list | tuple | collections.Sequence
    :param act: Activation type. IdentityActivation is the default.
Z
zhangjinchao01 已提交
3318 3319 3320
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3321
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3322 3323 3324 3325 3326 3327 3328 3329
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3330
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3331 3332

    def __is_type__(o, tp):
3333
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3355 3356
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3357

Q
qijun 已提交
3358 3359
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3360

3361 3362
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3363

3364
    layer = Layer(
Q
qijun 已提交
3365 3366
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3367 3368
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3369
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3370
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3371

3372
    sz = layer.config.size
Z
zhangjinchao01 已提交
3373

Q
qijun 已提交
3374 3375 3376 3377 3378 3379 3380 3381
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3382 3383
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3384
@wrap_bias_attr_default(has_bias=False)
3385
@layer_support(DROPOUT, ERROR_CLIPPING)
3386 3387 3388 3389
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
3390

3391
    Inputs:
X
xuwei06 已提交
3392
      - a = [a1, a2, ..., am]
3393
      - b = [b1, b2, ..., bn]
3394

X
xuwei06 已提交
3395 3396 3397 3398
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3399 3400 3401 3402 3403 3404 3405

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

3406
    :param name: The name of this layer. It is optional.
3407 3408 3409 3410 3411
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
R
ranqiu 已提交
3412
    :param act: Activation type. IdentityActivation is the default.
3413 3414 3415
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3416 3417 3418
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3419
    :type bias_attr: ParameterAttribute | None | bool | Any
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3441
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3442 3443
def memory(name,
           size,
3444
           memory_name=None,
Q
qijun 已提交
3445 3446 3447 3448
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

3469 3470 3471 3472 3473 3474 3475 3476 3477
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
L
Liu Yiqun 已提交
3478

3479 3480 3481 3482 3483 3484 3485
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3486 3487 3488
    :type name: basestring
    :param size: size of memory.
    :type size: int
3489 3490 3491
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
3492
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3493 3494
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
R
ranqiu 已提交
3495
    :type boot_layer: LayerOutput | None
Z
zhangjinchao01 已提交
3496
    :param boot_bias: boot layer's bias
R
ranqiu 已提交
3497
    :type boot_bias: ParameterAttribute | None
Z
zhangjinchao01 已提交
3498 3499 3500 3501
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
3502
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3513 3514
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3515

3516 3517 3518 3519 3520 3521 3522 3523
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3524 3525

    lout = LayerOutput(
3526
        name=memory_name,
Q
qijun 已提交
3527 3528 3529
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3530 3531 3532 3533
    return lout


@wrap_bias_attr_default()
3534 3535
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3536 3537 3538
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3539 3540
def lstm_step_layer(input,
                    state,
3541
                    size=None,
Q
qijun 已提交
3542 3543 3544 3545 3546 3547
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3548
    """
3549 3550
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3551 3552 3553

    ..  math::

3554
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3555

3556
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3557

3558
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3559

3560
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3561

L
luotao02 已提交
3562
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3563 3564


L
luotao02 已提交
3565
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3566
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3567
    input vectors.
Z
zhangjinchao01 已提交
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3578 3579
    This layer has two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, whose name is 'state' and can use
Z
zhangjinchao01 已提交
3580 3581
    :code:`get_output_layer` to extract this output.

3582
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3583
    :type name: basestring
3584 3585
    :param size: Layer's size. NOTE: lstm layer's size, should be equal to
                 :code:`input.size/4`, and should be equal to
Z
zhangjinchao01 已提交
3586 3587 3588 3589 3590 3591
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
R
ranqiu 已提交
3592
    :param act: Activation type. TanhActivation is the default.
Z
zhangjinchao01 已提交
3593
    :type act: BaseActivation
R
ranqiu 已提交
3594
    :param gate_act: Gate Activation Type. SigmoidActivation is the default.
Z
zhangjinchao01 已提交
3595
    :type gate_act: BaseActivation
R
ranqiu 已提交
3596
    :param state_act: State Activation Type. TanhActivation is the default.
Z
zhangjinchao01 已提交
3597
    :type state_act: BaseActivation
R
ranqiu 已提交
3598 3599 3600
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3601
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3602 3603
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3604
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3605 3606
    :rtype: LayerOutput
    """
3607 3608 3609

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3610 3611 3612 3613 3614 3615 3616
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3617
        size=state.size,
Q
qijun 已提交
3618 3619
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3620

Q
qijun 已提交
3621 3622 3623 3624 3625 3626 3627
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3628 3629 3630


@wrap_bias_attr_default()
W
wangyang59 已提交
3631
@wrap_param_attr_default()
Q
qijun 已提交
3632
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3633 3634 3635
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3636 3637 3638 3639 3640 3641 3642
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3643
                   param_attr=None,
Q
qijun 已提交
3644
                   layer_attr=None):
Z
zhangjinchao01 已提交
3645 3646 3647 3648 3649 3650 3651
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
R
ranqiu 已提交
3652
    :type act: BaseActivation
3653
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3654 3655
    :param gate_act: Activation type of this layer's two gates. Default is Sigmoid.
    :type gate_act: BaseActivation
R
ranqiu 已提交
3656 3657 3658
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3659
    :type bias_attr: ParameterAttribute | None | bool | Any
3660 3661
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
3662
    :param layer_attr:
D
dangqingqing 已提交
3663
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3664 3665 3666 3667 3668 3669 3670 3671
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3672 3673 3674 3675
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3676
        # backward model compatibility.
3677
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3678 3679 3680 3681
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3682
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3683
    return LayerOutput(
Q
qijun 已提交
3684 3685
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3686
        parents=[input, output_mem],
Q
qijun 已提交
3687 3688
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3689 3690


Y
Yu Yang 已提交
3691 3692 3693 3694
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3695
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
    GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING
    and DROPOUT.

    :param input:
    :param output_mem:
    :param size:
3713
    :param name: The name of this layer. It is optional.
Y
Yu Yang 已提交
3714
    :param act:
R
ranqiu 已提交
3715 3716 3717
    :type act: BaseActivation
    :param gate_act: Activation type of this layer's two gates. Default is Sigmoid.
    :type gate_act: BaseActivation
R
ranqiu 已提交
3718 3719 3720
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3721
    :type bias_attr: ParameterAttribute | None | bool | Any
Y
Yu Yang 已提交
3722 3723 3724
    :param param_attr:
    :param layer_attr:
    :return:
R
ranqiu 已提交
3725
    :rtype: LayerOutput
Y
Yu Yang 已提交
3726 3727 3728 3729 3730 3731
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

3732
    if bias_attr and bias_attr.attr.get("parameter_name", None) is not None:
3733 3734 3735 3736
        raise ValueError("You should not specify the field `name` in bias_attr."
                         " Otherwise, the three biases, which correponding to "
                         " the two gates and the mixed layer for computing Wx+b"
                         ", will share the same parameter matrix unexpectedly.")
3737

Y
Yu Yang 已提交
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3775 3776 3777 3778
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3779 3780 3781 3782
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3783

3784
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3785 3786 3787 3788 3789 3790 3791
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3792
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3793 3794 3795 3796 3797 3798 3799
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3800 3801 3802 3803 3804 3805 3806
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3807

Q
qijun 已提交
3808 3809 3810 3811 3812
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3813 3814 3815 3816 3817 3818 3819


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3820 3821 3822 3823 3824 3825 3826
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3827
    """
3828 3829
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3830

3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


R
ranqiu 已提交
3846
    :param input: The input of this layer.
3847
    :type input: LayerOutput
R
ranqiu 已提交
3848
    :param act: Activation type. TanhActivation is the default.
3849
    :type act: BaseActivation
R
ranqiu 已提交
3850 3851 3852
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3853
    :type bias_attr: ParameterAttribute | None | bool | Any
3854 3855
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
3856
    :param name: The name of this layer. It is optional.
3857 3858 3859
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3860
    :return: LayerOutput object.
3861
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3862
    """
Q
qijun 已提交
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3878 3879 3880 3881 3882 3883


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
3884 3885
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3886
    """
3887

Z
zhangjinchao01 已提交
3888 3889 3890
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
3891
        assert input.size is not None
Z
zhangjinchao01 已提交
3892
        if size is not None:
3893
            assert input.size == size
Z
zhangjinchao01 已提交
3894 3895


3896
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
3897
    """
3898
    DEPRECATED.
Z
zhangjinchao01 已提交
3899 3900 3901 3902 3903 3904 3905 3906
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3907
    return input
Z
zhangjinchao01 已提交
3908 3909 3910


@wrap_name_default("recurrent_group")
3911
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
3912
    """
C
caoying03 已提交
3913 3914 3915 3916 3917
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

R
ranqiu 已提交
3960
    :type input: LayerOutput | StaticInput | SubsequenceInput | list | tuple
Z
zhangjinchao01 已提交
3961

3962 3963
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3964
    :type reverse: bool
3965

3966 3967
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
3968 3969 3970 3971 3972 3973 3974

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

R
ranqiu 已提交
3975
    :type targetInlink: LayerOutput | SubsequenceInput
3976

D
dangqingqing 已提交
3977
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3978 3979 3980 3981
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

3982
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
3983
        input = [input]
3984
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3985 3986

    def is_in_links(x):
3987
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
3988 3989 3990 3991

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3992
        name=name,
3993 3994
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
3995 3996
    in_args = []
    for each_input in input:
3997
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
3998
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
3999
            mem = memory(
4000
                name=None,
Q
qijun 已提交
4001 4002
                size=each_input.input.size,
                boot_layer=each_input.input)
4003
            mem.set_input(mem)
Z
zhangjinchao01 已提交
4004
            in_args.append(mem)
4005 4006
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
4007

Z
zhangjinchao01 已提交
4008 4009 4010 4011 4012
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

4013 4014 4015 4016 4017 4018
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
4019 4020 4021

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
4022
    for layer_out in layer_outs:
4023 4024
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
4025 4026
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
4027 4028 4029 4030 4031
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

4032

Z
zhangjinchao01 已提交
4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
4061 4062

    def before_real_step(self):
Q
qijun 已提交
4063 4064 4065 4066 4067 4068 4069 4070 4071
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
4072 4073 4074
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
4075
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

R
ranqiu 已提交
4093
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4094
    :type input: LayerOutput
4095
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4096 4097 4098
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4099
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4100 4101 4102 4103
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4114

4115

H
Haonan 已提交
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

4128
    :param name: The name of this layer. It is optional.
H
Haonan 已提交
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
4152

Z
zhangjinchao01 已提交
4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

4169
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
4170
    :type name: basestring
R
ranqiu 已提交
4171
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4172 4173 4174 4175 4176
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4177
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4178 4179
    :rtype: LayerOutput
    """
Q
qijun 已提交
4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4191 4192 4193


@wrap_name_default()
Q
qijun 已提交
4194 4195 4196 4197 4198 4199 4200
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
4201
                num_results_per_sample=None):
4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
4213
            with mixed_layer(size=512, name='rnn') as simple_rnn:
4214 4215 4216 4217
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

4218 4219 4220 4221 4222
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

4223 4224
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
4225 4226
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
4227 4228
                               bos_id=0,
                               eos_id=1,
4229
                               beam_size=5)
4230 4231 4232 4233 4234 4235 4236 4237 4238

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
4239
                 step, and it is applied to sequences with arbitrary length by
4240 4241 4242 4243 4244
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
4245 4246
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
4247
                  In beam_search, none of the input's type should be LayerOutput.
4248
    :type input: list
4249 4250 4251
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
4252
                   symbol is essential, since it is used to initialize the RNN
4253 4254 4255 4256 4257 4258 4259 4260
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4261 4262
    :param max_length: Max generated sequence length.
    :type max_length: int
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4273 4274
    :return: The generated word index.
    :rtype: LayerOutput
4275 4276
    """

Z
zhangjinchao01 已提交
4277 4278 4279 4280 4281
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4282
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4283 4284 4285 4286 4287 4288
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4289 4290 4291
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4292
        if isinstance(each_input, BaseGeneratedInput):
4293 4294
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4295
            generated_input_index = i
4296

Z
zhangjinchao01 已提交
4297 4298 4299
        else:
            real_input.append(each_input)

4300
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4301 4302 4303 4304 4305 4306 4307 4308

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4309 4310 4311 4312 4313 4314
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4315 4316 4317 4318 4319 4320

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4321
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4322 4323
        return predict

4324 4325
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4326

Q
qijun 已提交
4327

4328 4329
def __cost_input__(input, label, weight=None):
    """
4330
    inputs and parents for cost layers.
4331
    """
C
caoying03 已提交
4332 4333 4334 4335 4336 4337
    if isinstance(input, LayerOutput):
        input = [input]
    if isinstance(label, LayerOutput):
        label = [label]
    ipts = [Input(ipt.name) for ipt in (input + label)]
    parents = [ipt for ipt in (input + label)]
4338
    if weight is not None:
4339
        assert weight.size == 1
4340 4341 4342
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4343

Z
zhangjinchao01 已提交
4344 4345

@wrap_name_default()
L
luotao1 已提交
4346
@layer_support()
4347 4348 4349 4350 4351 4352
def square_error_cost(input,
                      label,
                      weight=None,
                      name=None,
                      coeff=1.0,
                      layer_attr=None):
Z
zhangjinchao01 已提交
4353
    """
4354
    sum of square error cost:
L
Luo Tao 已提交
4355 4356 4357

    ..  math::

4358
        cost = \\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4359

4360
    :param name: The name of this layer. It is optional.
4361
    :type name: basestring
Z
zhangjinchao01 已提交
4362
    :param input: Network prediction.
4363
    :type input: LayerOutput
Z
zhangjinchao01 已提交
4364
    :param label: Data label.
4365 4366 4367 4368
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
4369 4370
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4371 4372
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4373
    :return: LayerOutput object.
4374
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4375
    """
4376 4377
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4378 4379 4380 4381
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4382
        coeff=coeff,
Q
qijun 已提交
4383
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4384
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4385 4386


4387
regression_cost = square_error_cost
L
Luo Tao 已提交
4388 4389


Z
zhangjinchao01 已提交
4390
@wrap_name_default("cost")
4391
@layer_support()
Q
qijun 已提交
4392 4393 4394 4395
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4396
                        evaluator=classification_error_evaluator,
4397 4398
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4399 4400 4401
    """
    classification cost Layer.

4402
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4403 4404 4405 4406 4407
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
4408 4409 4410
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
Z
zhangjinchao01 已提交
4411
    :param evaluator: Evaluator method.
4412 4413
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
4414 4415
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
4416
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4417 4418 4419 4420 4421
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4422 4423 4424

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4425 4426 4427 4428
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4429
        coeff=coeff,
Q
qijun 已提交
4430
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4431 4432 4433 4434 4435 4436 4437 4438 4439 4440

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4441
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4442

4443
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4444 4445 4446 4447 4448
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4449
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4450

4451

Q
qijun 已提交
4452 4453 4454 4455 4456 4457 4458 4459 4460
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4461 4462
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

4473 4474
       op = conv_operator(img=input1,
                          filter=input2,
4475
                          filter_size=3,
Z
zhangjinchao01 已提交
4476 4477 4478
                          num_filters=64,
                          num_channels=64)

4479 4480 4481 4482
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
4483 4484
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
4485 4486 4487
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
4488
    :type filter_size_y: int
4489 4490
    :param num_filters: channel of output data.
    :type num_filters: int
4491 4492
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
4493
    :param stride: The x dimension of the stride.
L
luotao02 已提交
4494
    :type stride: int
Z
zhangjinchao01 已提交
4495
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
4496
    :type stride_y: int
Z
zhangjinchao01 已提交
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4510

4511 4512
    if num_channels is None:
        num_channels = img.num_filters
4513 4514

    assert isinstance(filter, LayerOutput)
4515
    assert filter.size is not None
4516

4517 4518 4519
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4531

4532
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4533 4534
    return op

Q
qijun 已提交
4535

4536
@wrap_param_attr_default()
Q
qijun 已提交
4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4547 4548
                    param_attr=None,
                    trans=False):
4549 4550 4551 4552 4553 4554 4555 4556 4557
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4558
       proj = conv_projection(input=input1,
4559 4560 4561 4562
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

R
ranqiu 已提交
4563
    :param input: The input of this layer.
4564 4565 4566 4567 4568 4569 4570 4571 4572
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
4573 4574
    :param num_channels: channel of input data.
    :type num_channels: int
4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
4587
    :param trans: whether it is convTrans or conv
R
ranqiu 已提交
4588
    :type trans: bool
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4619
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4620 4621 4622 4623 4624
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4625 4626 4627
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4640 4641 4642 4643

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4644

D
dangqingqing 已提交
4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
4662

D
dangqingqing 已提交
4663
    For example,
4664

4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4686 4687

    The simply usage is:
D
dangqingqing 已提交
4688 4689 4690 4691 4692 4693 4694 4695

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

R
ranqiu 已提交
4696
    :param input: The input of this layer.
D
dangqingqing 已提交
4697 4698
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
R
ranqiu 已提交
4699
    :type pad_c: list | None
D
dangqingqing 已提交
4700
    :param pad_h: padding size in height dimension.
R
ranqiu 已提交
4701
    :type pad_h: list | None
D
dangqingqing 已提交
4702
    :param pad_w: padding size in width dimension.
R
ranqiu 已提交
4703
    :type pad_w: list | None
D
dangqingqing 已提交
4704 4705
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
4706
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4749
@wrap_name_default()
L
luotao1 已提交
4750 4751
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4763 4764 4765 4766
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4767 4768 4769 4770 4771

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4772
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4773

4774
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4775
    :type name: basestring
4776 4777
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4778
    :param b: input layer b.
4779
    :type b: LayerOutput
L
luotao1 已提交
4780 4781
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4782
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4783 4784
    :rtype: LayerOutput
    """
4785 4786
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4787 4788 4789
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4790
        inputs=[a.name, b.name],
Q
qijun 已提交
4791
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4792

Q
qijun 已提交
4793 4794
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4795 4796 4797 4798 4799


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4800
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4801
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4802 4803 4804 4805 4806 4807 4808 4809
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4810 4811 4812 4813 4814
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4815
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4816 4817

    In this formular:
4818 4819
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4820 4821
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4822
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4823 4824 4825 4826 4827

    The simple usage is:

    .. code-block:: python

4828
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4829

4830
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4831
    :type name: basestring
4832 4833 4834 4835
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4836
    :param size: the layer dimension.
L
luotao02 已提交
4837
    :type size: int.
R
ranqiu 已提交
4838
    :param act: Activation type. LinearActivation is the default.
Z
zhangjinchao01 已提交
4839 4840
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4841
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
4842 4843 4844
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
4845
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
4846
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4847
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4848
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4849 4850
    :rtype: LayerOutput
    """
4851
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4852 4853 4854 4855 4856 4857
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4858 4859 4860 4861
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4862 4863 4864 4865 4866 4867


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
4868
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
4869 4870
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4871
                       select=None,
Q
qijun 已提交
4872 4873
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4874 4875 4876
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4877 4878 4879
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4880 4881 4882 4883 4884 4885 4886 4887 4888 4889
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4890
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4891

4892
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4893
    :type name: basestring
R
ranqiu 已提交
4894 4895
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
4896 4897
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4898
                   If is None, acts exactly like fc_layer.
4899
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4900 4901
    :param size: The layer dimension.
    :type size: int
R
ranqiu 已提交
4902
    :param act: Activation type. TanhActivation is the default.
Z
zhangjinchao01 已提交
4903 4904 4905
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
4906 4907 4908
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
4909
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
4910
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4911
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4912
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4913 4914 4915 4916
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4917
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4918 4919
        param_attr = [param_attr]
    else:
4920
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4921 4922
            assert len(input) == len(param_attr)
        else:
4923
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
4924
                logger.fatal(
W
wangmeng28 已提交
4925 4926 4927 4928 4929
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
4930 4931
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4932 4933 4934 4935
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4936
    Layer(
Q
qijun 已提交
4937 4938 4939
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4940 4941 4942
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4943
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4944 4945 4946 4947
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4948 4949 4950 4951 4952 4953 4954
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4955 4956 4957


@wrap_name_default()
L
luotao1 已提交
4958 4959
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

R
ranqiu 已提交
4970
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4971
    :type input: LayerOutput
4972
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4973
    :type name: basestring
L
luotao1 已提交
4974
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4975
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4976
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4977 4978
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4979
    l = Layer(
Z
zhangjinchao01 已提交
4980 4981 4982
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4983 4984 4985
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4986 4987 4988


@wrap_name_default()
L
luotao1 已提交
4989
@layer_support()
Q
qijun 已提交
4990 4991 4992 4993
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4994
                          layer_attr=None):
Z
zhangjinchao01 已提交
4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

R
ranqiu 已提交
5008
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5009
    :type input: LayerOutput
5010
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5011 5012 5013 5014 5015
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
5016
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5017
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5018
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5019 5020 5021 5022 5023 5024 5025 5026
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
5027 5028 5029
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
5030 5031 5032


@wrap_name_default()
L
luotao1 已提交
5033
@layer_support()
Q
qijun 已提交
5034
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5035
    """
5036 5037 5038 5039
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
5040 5041 5042

    .. math::

5043
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
5044

5045 5046 5047 5048 5049
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
5050

5051
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
5052 5053

    In this formular:
5054 5055 5056 5057 5058 5059
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
5060 5061 5062 5063 5064

    The simple usage is:

    .. code-block:: python

5065
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
5066 5067
                                       size=elem_dim)

5068 5069 5070 5071
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
5072 5073
    :param size: the dimension of this layer.
    :type size: int
5074
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5075
    :type name: basestring
L
luotao1 已提交
5076
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5077
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5078
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5079 5080
    :rtype: LayerOutput
    """
5081 5082 5083 5084
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
5085
            size = vectors.size / weights.size
5086 5087
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
5088 5089
    Layer(
        name=name,
5090
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
5091
        size=size,
5092
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
5093 5094 5095
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
5096

5097

5098
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
5099

5100

Z
zhangjinchao01 已提交
5101
@wrap_name_default()
L
luotao1 已提交
5102
@layer_support()
Z
zhangjinchao01 已提交
5103 5104 5105 5106 5107 5108 5109
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
5110
                       num_channels=None,
L
luotao1 已提交
5111 5112
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5113 5114
    """
    Expand feature map to minibatch matrix.
5115
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
5116
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
5117 5118 5119 5120 5121 5122 5123 5124 5125 5126

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
5127
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
5128 5129
    convolution neural network, and before recurrent neural network.

5130 5131 5132 5133
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
5134
       block_expand = block_expand_layer(input=layer,
5135
                                         num_channels=128,
5136 5137 5138 5139 5140
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

R
ranqiu 已提交
5141
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5142
    :type input: LayerOutput
5143
    :param num_channels: The channel number of input layer.
R
ranqiu 已提交
5144
    :type num_channels: int | None
Z
zhangjinchao01 已提交
5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
5157
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5158
    :type name: None | basestring.
L
luotao1 已提交
5159
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5160
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5161
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5162 5163
    :rtype: LayerOutput
    """
5164 5165 5166
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
5184 5185


5186 5187
@wrap_name_default()
@layer_support()
5188
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
5189 5190 5191 5192 5193
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

5194
    So groups should be larger than 1, and the num of channels should be able
5195 5196
    to devided by groups.

X
xuwei06 已提交
5197 5198 5199 5200 5201 5202 5203 5204
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

5205
    Please refer to Paper:
5206 5207 5208 5209
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
5210

5211 5212 5213 5214 5215 5216 5217 5218
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

R
ranqiu 已提交
5219
    :param input: The input of this layer.
5220 5221 5222
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
R
ranqiu 已提交
5223
    :type num_channels: int | None
5224 5225
    :param groups: The group number of input layer.
    :type groups: int
5226
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5227
    :type name: None | basestring.
5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
5239 5240 5241 5242 5243 5244 5245 5246 5247
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
5248 5249


Z
zhangjinchao01 已提交
5250
@wrap_name_default()
L
luotao1 已提交
5251
@layer_support()
Q
qijun 已提交
5252 5253 5254 5255 5256
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
5257
              layer_attr=None):
Z
zhangjinchao01 已提交
5258 5259 5260 5261 5262
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

5263 5264
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
5265 5266
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
5267 5268 5269 5270 5271 5272 5273 5274

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

C
caoying03 已提交
5275
    The example usage is:
Z
zhangjinchao01 已提交
5276 5277 5278 5279 5280 5281 5282 5283

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

R
ranqiu 已提交
5284
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5285 5286 5287
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
5288
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
5289
    :type size: int
5290
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5291
    :type name: basestring | None
Z
zhangjinchao01 已提交
5292 5293
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
5294
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5295
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5296
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5297 5298 5299 5300
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5301 5302 5303 5304 5305
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5306
    Layer(
5307 5308 5309 5310
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5311
        inputs=[input.name, label.name],
Q
qijun 已提交
5312
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5313 5314
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5315

5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5327
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5328
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5329 5330 5331 5332 5333 5334 5335
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

5336 5337 5338
    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
L
Liu Yiqun 已提交
5339
    icml2006_GravesFGS06.pdf>`_.
5340 5341 5342

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
L
Liu Yiqun 已提交
5343 5344 5345
          label needed by CTC, you need to use (num_classes + 1) as the input size.
          Thus, the size of both warp_ctc layer and 'input' layer should be set to
          num_classes + 1.
5346 5347
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
5348
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
5349
          'linear' activation is expected instead in the 'input' layer.
5350

C
caoying03 已提交
5351
    The example usage is:
5352 5353 5354 5355 5356 5357 5358 5359 5360

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

R
ranqiu 已提交
5361
    :param input: The input of this layer.
5362 5363 5364 5365 5366
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
5367
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5368
    :type name: basestring | None
5369 5370 5371 5372 5373
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5374
    :type layer_attr: ExtraLayerAttribute | None
5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5397
@wrap_name_default()
5398
@wrap_param_attr_default()
L
luotao1 已提交
5399
@layer_support()
Q
qijun 已提交
5400 5401 5402 5403 5404 5405
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5406
              coeff=1.0,
L
luotao1 已提交
5407
              layer_attr=None):
Z
zhangjinchao01 已提交
5408 5409 5410 5411
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5412
    The example usage is:
Z
zhangjinchao01 已提交
5413 5414 5415 5416 5417 5418 5419 5420 5421 5422

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
5423
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5424 5425 5426 5427 5428 5429 5430
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5431
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5432
    :type name: None | basestring
5433 5434
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5435
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5436
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5437
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5438 5439 5440 5441 5442
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5443 5444 5445 5446 5447 5448
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5449

Q
qijun 已提交
5450
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5451 5452 5453 5454
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5455 5456 5457 5458
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5459
        coeff=coeff,
Q
qijun 已提交
5460
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5461 5462 5463
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5464 5465 5466 5467
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5468

5469

Z
zhangjinchao01 已提交
5470
@wrap_name_default()
5471
@wrap_param_attr_default()
L
luotao1 已提交
5472
@layer_support()
Q
qijun 已提交
5473 5474 5475 5476 5477
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5478
                       layer_attr=None):
Z
zhangjinchao01 已提交
5479 5480 5481 5482 5483 5484 5485
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

C
caoying03 已提交
5486
    The example usage is:
L
Luo Tao 已提交
5487 5488 5489 5490 5491 5492

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5493 5494 5495 5496 5497 5498 5499 5500
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5501
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5502
    :type name: None | basestring
L
luotao1 已提交
5503
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5504
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5505
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5506 5507 5508 5509 5510 5511
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5512
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5513 5514 5515 5516
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5517 5518 5519 5520
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5521
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5522 5523 5524
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5525 5526 5527 5528
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5529

Q
qijun 已提交
5530

C
caoying03 已提交
5531 5532 5533 5534 5535
"""
Following are cost Layers.
"""


5536
@wrap_bias_attr_default(has_bias=True)
5537
@wrap_param_attr_default()
5538 5539
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5540 5541
def nce_layer(input,
              label,
C
caoying03 已提交
5542
              num_classes=None,
5543
              param_attr=None,
Q
qijun 已提交
5544 5545 5546 5547 5548 5549
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5550
    """
C
caoying03 已提交
5551 5552 5553 5554 5555 5556
    Noise-contrastive estimation. This layer implements the method in the
    following paper:

    Reference:
        A fast and simple algorithm for training neural probabilistic language
        models. https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf
5557 5558 5559 5560 5561

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5562 5563
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5564 5565
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

5566
    :param name: The name of this layer. It is optional.
5567
    :type name: basestring
C
caoying03 已提交
5568 5569
    :param input: The input layers. It should be a LayerOutput or a list/tuple
                  of LayerOutput.
R
ranqiu 已提交
5570
    :type input: LayerOutput | list | tuple | collections.Sequence
C
caoying03 已提交
5571
    :param label: The ground truth.
5572
    :type label: LayerOutput
C
caoying03 已提交
5573 5574
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. The default value is None.
5575
    :type weight: LayerOutput
C
caoying03 已提交
5576
    :param num_classes: The class number.
5577
    :type num_classes: int
C
caoying03 已提交
5578 5579 5580 5581
    :param param_attr: The parameter attributes.
    :type param_attr: ParameterAttribute|list
    :param num_neg_samples: The number of sampled negative labels. The default
                            value is 10.
5582
    :type num_neg_samples: int
C
caoying03 已提交
5583 5584 5585 5586 5587 5588 5589
    :param neg_distribution: The discrete noisy distribution over the output
                             space from which num_neg_samples negative labels
                             are sampled. If this parameter is not set, a
                             uniform distribution will be used. A user defined
                             distribution is a list whose length must be equal
                             to the num_classes. Each member of the list defines
                             the probability of a class given input x.
R
ranqiu 已提交
5590
    :type neg_distribution: list | tuple | collections.Sequence | None
C
caoying03 已提交
5591 5592 5593 5594
    :param bias_attr: The attribute for bias. If this parameter is set False or
                      any object whose type is not ParameterAttribute, no bias
                      is added. If this parameter is set True, the bias is
                      initialized to zero.
R
ranqiu 已提交
5595
    :type bias_attr: ParameterAttribute | None | bool | Any
5596 5597
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
C
caoying03 已提交
5598
    :return: The LayerOutput object.
5599 5600 5601 5602
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5603 5604 5605 5606 5607 5608 5609 5610
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5611
    assert isinstance(input, collections.Sequence)
5612

5613 5614
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5615 5616
    if num_classes is None:
        num_classes = label.size
5617 5618 5619
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5620
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
5621

5622 5623
    ipts_for_layer = []
    parents = []
5624
    for each_input, attr in zip(input, param_attr):
5625
        assert isinstance(each_input, LayerOutput)
5626
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5627 5628 5629 5630 5631 5632 5633 5634 5635 5636
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5637
    l = Layer(
5638 5639 5640 5641
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
C
caoying03 已提交
5642
        active_type=SigmoidActivation().name,
5643 5644 5645
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5646 5647
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5648 5649 5650 5651
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
C
caoying03 已提交
5652
        activation=SigmoidActivation())
5653 5654


Z
zhangjinchao01 已提交
5655
@wrap_name_default()
L
luotao1 已提交
5656
@layer_support()
Q
qijun 已提交
5657 5658 5659 5660 5661 5662 5663
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5664
    """
5665
    A cost Layer for learning to rank using gradient descent. Details can refer
5666 5667
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
5668 5669 5670 5671 5672
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
5673
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5674

L
luotao02 已提交
5675
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5676

L
luotao02 已提交
5677
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5678 5679 5680 5681 5682 5683 5684 5685

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5686
    The example usage is:
Z
zhangjinchao01 已提交
5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
R
ranqiu 已提交
5703
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5704
    :type name: None | basestring
Z
zhangjinchao01 已提交
5705 5706
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5707 5708
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5709
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5722 5723 5724 5725 5726 5727
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5728

X
xuwei06 已提交
5729
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5730

5731

Z
zhangjinchao01 已提交
5732
@wrap_name_default()
L
luotao1 已提交
5733
@layer_support()
Q
qijun 已提交
5734 5735 5736 5737 5738 5739
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5740 5741 5742
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5743
    The example usage is:
Z
zhangjinchao01 已提交
5744 5745 5746 5747 5748 5749 5750 5751

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5752
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
5753 5754 5755 5756
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
R
ranqiu 已提交
5757
                     e.g., 5 for NDCG@5. It must be less than or equal to the
Z
zhangjinchao01 已提交
5758 5759 5760 5761 5762 5763
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
5764 5765 5766
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
5767
    :type max_sort_size: int
R
ranqiu 已提交
5768
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5769
    :type name: None | basestring
L
luotao1 已提交
5770 5771
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5772
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5773 5774
    :rtype: LayerOutput
    """
5775 5776 5777
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5778 5779 5780 5781 5782 5783 5784
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5785

Q
qijun 已提交
5786 5787
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5788

5789

Z
zhangjinchao01 已提交
5790
@wrap_name_default()
L
luotao1 已提交
5791
@layer_support()
5792 5793 5794 5795 5796 5797
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5798 5799 5800
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5801 5802
    The example usage is:

Z
zhangjinchao01 已提交
5803 5804
    .. code-block:: python

X
xuwei06 已提交
5805
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5806
                            label=label_layer)
Z
zhangjinchao01 已提交
5807 5808 5809 5810

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
R
ranqiu 已提交
5811
    :type input: LayerOutput
R
ranqiu 已提交
5812
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5813 5814 5815 5816
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
    :type coeff: float
5817 5818 5819 5820
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
R
ranqiu 已提交
5821 5822
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5823
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5824
    :return: LayerOutput object.
R
ranqiu 已提交
5825
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
5826 5827
    """

5828
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5829 5830 5831
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5832
        inputs=ipts,
Q
qijun 已提交
5833 5834
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5835
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5836

5837

Z
zhangjinchao01 已提交
5838
@wrap_name_default()
L
luotao1 已提交
5839
@layer_support()
Q
qijun 已提交
5840 5841 5842 5843
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5844 5845
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5846 5847
    """
    A loss layer for multi class entropy with selfnorm.
5848
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5849

C
caoying03 已提交
5850 5851
    The example usage is:

Z
zhangjinchao01 已提交
5852 5853
    .. code-block:: python

X
xuwei06 已提交
5854
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5855
                                          label=label_layer)
Z
zhangjinchao01 已提交
5856 5857

    :param input: The first input layer.
R
ranqiu 已提交
5858
    :type input: LayerOutput
Z
zhangjinchao01 已提交
5859
    :param label: The input label.
R
ranqiu 已提交
5860
    :type input: LayerOutput
R
ranqiu 已提交
5861
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5862 5863 5864 5865
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
    :type coeff: float
Z
zhangjinchao01 已提交
5866
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
R
ranqiu 已提交
5867 5868 5869
    :type softmax_selfnorm_alpha: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5870
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5871
    :return: LayerOutput object.
R
ranqiu 已提交
5872
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
5873
    """
Q
qijun 已提交
5874 5875 5876 5877 5878 5879 5880
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5881

Q
qijun 已提交
5882 5883 5884 5885 5886
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5887

5888

X
xuwei06 已提交
5889 5890 5891 5892
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
5893
    A loss layer which calculates the sum of the input as loss.
X
xuwei06 已提交
5894

C
caoying03 已提交
5895 5896
    The example usage is:

X
xuwei06 已提交
5897 5898
    .. code-block:: python

L
Luo Tao 已提交
5899
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5900

R
ranqiu 已提交
5901
    :param input: The input of this layer.
R
ranqiu 已提交
5902
    :type input: LayerOutput
R
ranqiu 已提交
5903
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5904 5905 5906
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
X
xuwei06 已提交
5907 5908 5909 5910
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5911
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5912 5913 5914 5915 5916
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5917

Q
qijun 已提交
5918
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5919 5920


Z
zhangjinchao01 已提交
5921
@wrap_name_default()
L
luotao1 已提交
5922
@layer_support()
L
Luo Tao 已提交
5923 5924 5925 5926 5927 5928
def huber_regression_cost(input,
                          label,
                          name=None,
                          delta=1.0,
                          coeff=1.0,
                          layer_attr=None):
Z
zhangjinchao01 已提交
5929
    """
5930 5931 5932
    In statistics, the Huber loss is a loss function used in robust regression,
    that is less sensitive to outliers in data than the squared error loss.
    Given a prediction f(x), a label y and :math:`\delta`, the loss function
L
Luo Tao 已提交
5933 5934 5935 5936 5937
    is defined as:

    .. math:
       loss = 0.5*\left ( y-f(x) \right )^2, \left | y-f(x) \right |\leq \delta
       loss = \delta \left | y-f(x) \right |-0.5\delta ^2, otherwise
Z
zhangjinchao01 已提交
5938

C
caoying03 已提交
5939 5940
    The example usage is:

Z
zhangjinchao01 已提交
5941 5942
    .. code-block:: python

L
Luo Tao 已提交
5943 5944 5945
       cost = huber_regression_cost(input=input_layer, label=label_layer)

    :param input: The first input layer.
R
ranqiu 已提交
5946
    :type input: LayerOutput
L
Luo Tao 已提交
5947
    :param label: The input label.
R
ranqiu 已提交
5948
    :type input: LayerOutput
R
ranqiu 已提交
5949
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5950
    :type name: basestring
L
Luo Tao 已提交
5951
    :param delta: The difference between the observed and predicted values.
R
ranqiu 已提交
5952 5953 5954 5955 5956 5957
    :type delta: float
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
Luo Tao 已提交
5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
    assert isinstance(input, LayerOutput)
    Layer(
        name=name,
        type=LayerType.HUBER_REGRESSION,
        inputs=[input.name, label.name],
        delta=delta,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HUBER_REGRESSION, parents=[input, label], size=1)


Z
zhangjinchao01 已提交
5974
@wrap_name_default()
L
luotao1 已提交
5975
@layer_support()
5976 5977 5978 5979 5980
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
5981
    """
5982 5983 5984
    For classification purposes, a variant of the Huber loss called modified Huber
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
    a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber
5985 5986 5987
    loss is defined as:

    .. math:
5988
       loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1
5989
       loss = -4yf(x), \text{otherwise}
Z
zhangjinchao01 已提交
5990

C
caoying03 已提交
5991 5992
    The example usage is:

Z
zhangjinchao01 已提交
5993 5994
    .. code-block:: python

5995
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
5996 5997

    :param input: The first input layer.
R
ranqiu 已提交
5998
    :type input: LayerOutput
Z
zhangjinchao01 已提交
5999
    :param label: The input label.
R
ranqiu 已提交
6000
    :type input: LayerOutput
R
ranqiu 已提交
6001
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6002 6003 6004 6005 6006 6007
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6008
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6009
    :return: LayerOutput object.
R
ranqiu 已提交
6010
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6011
    """
6012 6013 6014
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
6015 6016
    Layer(
        name=name,
6017
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
6018 6019 6020
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
6021 6022
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
6023

6024

Z
zhangjinchao01 已提交
6025
@wrap_name_default()
L
luotao1 已提交
6026
@layer_support()
Q
qijun 已提交
6027 6028 6029 6030
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
6031
                                     layer_attr=None):
Z
zhangjinchao01 已提交
6032 6033 6034
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
6035 6036
    The example usage is:

Z
zhangjinchao01 已提交
6037 6038
    .. code-block:: python

X
xuwei06 已提交
6039
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
6040
                                               label=label_layer)
Z
zhangjinchao01 已提交
6041 6042 6043 6044 6045

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6046
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6047 6048 6049
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
Z
zhangjinchao01 已提交
6050
    :type coeff: float
R
ranqiu 已提交
6051 6052
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6053
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6054
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6055 6056 6057
    :rtype: LayerOutput
    """

6058 6059
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
C
caoying03 已提交
6060 6061 6062 6063
        logger.log(logging.WARN,
                   ("%s is not a recommended activation for "
                    "multi_binary_label_cross_entropy, sigmoid is better") %
                   repr(input.activation))
Q
qijun 已提交
6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
6076 6077


C
caoying03 已提交
6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099
class BeamInput(object):
    """
    Define the input for cross_entropy_over_beam layer.

    A beam is made up of a triple: the first one is scores over all
    candidates; the second one is indices of top k selected candidates; the
    third one is the index of ground truth, which is also always called
    gold.
    """

    def __init__(self, candidate_scores, selected_candidates, gold):
        assert isinstance(candidate_scores, LayerOutput)
        self.candidate_scores = candidate_scores
        assert candidate_scores.size == 1

        assert isinstance(selected_candidates, LayerOutput)
        self.selected_candidates = selected_candidates

        assert isinstance(gold, LayerOutput)
        self.gold = gold


C
caoying03 已提交
6100 6101
@wrap_name_default()
@layer_support()
C
caoying03 已提交
6102
def cross_entropy_over_beam(input, name=None):
C
caoying03 已提交
6103
    """
C
caoying03 已提交
6104 6105 6106
    This layer is used in learning to search models, which is to solve complex
    joint prediction problems based on learning to search through a
    problem-defined search space.
C
caoying03 已提交
6107

C
caoying03 已提交
6108 6109 6110 6111 6112
    Specifically, the learning to search process for this layer begins with
    searching a target sequence from a nested sequence. In the first search
    step, top beam size sequences with highest scores, indices of these top k
    sequences in the original nested sequence, and the ground truth (also
    called gold) altogether (a triple) make up of the first beam.
C
caoying03 已提交
6113

C
caoying03 已提交
6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131
    Then, several special positions, for example, start and end positions
    that define meaningful segments are searched. In these searches, top k
    positions with highest scores are selected, and then sequence, starting
    from the selected starts till ends of the sequences (or a fixed position)
    are taken to search next.

    We call the possible top k results returned in one search the beam. This
    search process can be repeated for pre-defined turns and leads to several
    beam expansions.

    Finally, the layer cross_entropy_over_beam takes all the beam expansions
    which contain several candidate targets found along the multi-step search.
    cross_entropy_over_beam calculates cross entropy over the expanded beams
    which all the candidates in the beam as the normalized factor.

    Note that, if gold falls off the beam at search step t, then the cost is
    calculated over the beam at step t.

6132
    This cost layer always works together with kmax_seq_score_layer,
C
caoying03 已提交
6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152
    sub_nested_seq_layer, and sequence_slice_layer to trim the input to form a
    sub-search space.


    The example usage is:

    .. code-block:: python

       cost = cross_entropy_over_beam(input=[
           BeamInput(
               candidate_scores=beam1_candidates,
               selected_candidates=beam1_topk,
               gold=gold1),
           BeamInput(
               candidate_scores=beam2_candidates,
               selected_candidates=beam2_topk,
               gold=gold2),
       ])


R
ranqiu 已提交
6153
    :param input: Input beams for this layer.
C
caoying03 已提交
6154
    :type input: BeamInput
R
ranqiu 已提交
6155
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    if isinstance(input, BeamInput):
        input = [input]
    else:
        assert isinstance(input, list), (
            'input for cross_entropy_over_beam shold be a python list '
            'of BeamInput object.')
        for ipt in input:
            assert isinstance(ipt, BeamInput), (
                'input for cross_entropy_over_beam '
                'should be a BeamInput object.')

    ipts = []
    parents = []
    for beam in input:
        parents += [beam.candidate_scores, beam.selected_candidates, beam.gold]
        ipts += [
            beam.candidate_scores.name, beam.selected_candidates.name,
            beam.gold.name
        ]

    Layer(name=name, type=LayerType.CROSS_ENTROPY_OVER_BEAM, inputs=ipts)
C
caoying03 已提交
6182 6183 6184
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)


D
dangqingqing 已提交
6185 6186
@wrap_name_default()
@layer_support()
6187
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
6188 6189
    """
    This is a L1 loss but more smooth. It requires that the
R
ranqiu 已提交
6190
    sizes of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
6191 6192 6193 6194 6195 6196 6197 6198 6199

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

6200
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
6201

R
ranqiu 已提交
6202 6203 6204
    Reference:
        Fast R-CNN
        https://arxiv.org/pdf/1504.08083v2.pdf
D
dangqingqing 已提交
6205

C
caoying03 已提交
6206 6207
    The example usage is:

D
dangqingqing 已提交
6208 6209
    .. code-block:: python

6210 6211
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
6212 6213 6214 6215 6216

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6217
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6218
    :type name: basestring
R
ranqiu 已提交
6219 6220
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
6221
    :type coeff: float
R
ranqiu 已提交
6222 6223
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
6236
        coeff=coeff,
D
dangqingqing 已提交
6237 6238 6239
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
6240 6241 6242 6243 6244


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6245 6246 6247
    This layer multiplex multiple layers according to the indexes,
    which are provided by the first input layer.
    inputs[0]: the indexes of the layers to form the output of size batchSize.
W
wwhu 已提交
6248
    inputs[1:N]; the candidate output data.
R
ranqiu 已提交
6249 6250
    For each index i from 0 to batchSize - 1, the i-th row of the output is the
    the same to the i-th row of the (index[i] + 1)-th layer.
W
wwhu 已提交
6251 6252 6253 6254 6255 6256 6257 6258

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
6259 6260
    The example usage is:

W
wwhu 已提交
6261 6262 6263 6264 6265 6266
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
6267
    :param name: The name of this layer. It is optional.
W
wwhu 已提交
6268
    :type name: basestring
R
ranqiu 已提交
6269 6270
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
W
wwhu 已提交
6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
6294 6295


6296 6297 6298 6299
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """

R
ranqiu 已提交
6300 6301 6302 6303 6304 6305
    The example usage is:

    .. code-block:: python

        dropout = dropout_layer(input=input_layer, dropout_rate=0.5)

6306
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6307
    :type name: basestring
R
ranqiu 已提交
6308
    :param input: The input of this layer.
R
ranqiu 已提交
6309 6310 6311 6312 6313
    :type input: LayerOutput
    :param dropout_rate: The probability of dropout.
    :type dropout_rate: float
    :return: LayerOutput object.
    :rtype: LayerOutput
6314 6315 6316 6317 6318 6319 6320
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
6321 6322


D
dangqingqing 已提交
6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
R
ranqiu 已提交
6336
    introduced in paper of `Deep Speech 2: End-to-End Speech Recognition
D
dangqingqing 已提交
6337 6338 6339 6340 6341 6342 6343
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
R
ranqiu 已提交
6344
    efficient manner to improve unidirectional RNNs.
6345

R
ranqiu 已提交
6346
    The connection of row convolution is different from the 1D sequence
D
dangqingqing 已提交
6347 6348 6349 6350
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
6351

D
dangqingqing 已提交
6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


R
ranqiu 已提交
6367
    :param input: The input of this layer.
D
dangqingqing 已提交
6368 6369 6370 6371
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
R
ranqiu 已提交
6372
    :param act: Activation Type. LinearActivation is the default.
D
dangqingqing 已提交
6373
    :type act: BaseActivation
R
ranqiu 已提交
6374 6375
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
D
dangqingqing 已提交
6376
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
6377 6378
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6379
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
6395 6396


6397 6398 6399 6400 6401 6402 6403 6404 6405
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
R
ranqiu 已提交
6406
    The Parametric Relu activation that actives outputs with a learnable weight.
6407 6408 6409 6410 6411 6412 6413 6414 6415

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
6416 6417 6418 6419 6420 6421
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

6422
    :param name: The name of this layer. It is optional.
6423
    :type name: basestring
R
ranqiu 已提交
6424
    :param input: The input of this layer.
6425
    :type input: LayerOutput
R
ranqiu 已提交
6426
    :param partial_sum: this parameter makes a group of inputs share the same weight.
C
caoying03 已提交
6427 6428

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
R
ranqiu 已提交
6429 6430
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share the same weight.
        - partial_sum = number of outputs, indicates all elements share the same weight.
C
caoying03 已提交
6431 6432

    :type partial_sum: int
6433
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
R
ranqiu 已提交
6434 6435 6436
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6437
    :type layer_attr: ExtraLayerAttribute | None
6438 6439 6440 6441
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

6442
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
C
caoying03 已提交
6443
    assert isinstance(param_attr, ParameterAttribute)
6444 6445 6446

    l = Layer(
        name=name,
C
caoying03 已提交
6447
        type=LayerType.PRELU,
C
caoying03 已提交
6448
        inputs=Input(input.name, **param_attr.attr),
6449 6450 6451 6452 6453 6454 6455
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)
6456 6457


6458
@wrap_name_default()
C
caoying03 已提交
6459
@layer_support(ERROR_CLIPPING, DROPOUT)
6460 6461 6462 6463 6464 6465 6466
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6467 6468
                     gate_bias_attr=True,
                     inproj_attr=None,
6469 6470 6471 6472 6473 6474 6475
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
R
ranqiu 已提交
6476
    product between :match:`X'` and :math:`\sigma` is finally returned.
6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489

    Reference:
        Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

R
ranqiu 已提交
6490
    :param input: The input of this layer.
6491
    :type input: LayerOutput
R
ranqiu 已提交
6492
    :param size: The dimension of this layer's output.
6493
    :type size: int
R
ranqiu 已提交
6494
    :param act: Activation type of the projection. LinearActivation is the default.
6495
    :type act: BaseActivation
6496
    :param name: The name of this layer. It is optional.
6497
    :type name: basestring
R
ranqiu 已提交
6498 6499
    :param gate_attr: The extra layer attribute of the gate. See ExtraLayerAttribute for
                      details.
R
ranqiu 已提交
6500
    :type gate_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6501 6502 6503
    :param gate_param_attr: The parameter attribute of the gate. See ParameterAttribute
                            for details.
    :type gate_param_attr: ParameterAttribute
R
ranqiu 已提交
6504 6505 6506
    :param gate_bias_attr: The bias attribute of the gate. If the parameter is set to False or
                           an object whose type is not ParameterAttribute, no bias is defined.
                           If the parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6507 6508 6509
    :type gate_bias_attr: ParameterAttribute | bool | None | Any
    :param inproj_attr: Extra layer attributes of the projection. See ExtraLayerAttribute for
                        details.
R
ranqiu 已提交
6510
    :type inproj_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6511 6512 6513
    :param inproj_param_attr: The parameter attribute of the projection. See ParameterAttribute
                              for details.
    :type inproj_param_attr: ParameterAttribute
R
ranqiu 已提交
6514 6515 6516
    :param inproj_bias_attr: The bias attribute of the projection. If the parameter is set to False
                             or an object whose type is not ParameterAttribute, no bias is defined.
                             If the parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6517 6518 6519
    :type inproj_bias_attr: ParameterAttribute | bool | None | Any
    :param layer_attr: Extra layer attribute of the product. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6520
    :type layer_attr: ExtraLayerAttribute | None
6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6533
        layer_attr=inproj_attr,
6534 6535 6536 6537 6538 6539 6540 6541 6542
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6543
        param_attr=gate_param_attr,
6544 6545 6546 6547 6548
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6549 6550


6551
@layer_support()
6552
@wrap_name_default('switch_order')
W
wanghaoshuang 已提交
6553 6554
def switch_order_layer(input,
                       name=None,
6555
                       reshape_axis=None,
W
wanghaoshuang 已提交
6556 6557
                       act=None,
                       layer_attr=None):
6558
    """
6559
    This layer switch dimension order of image input.
6560 6561
    From order "batchSize, channels, height, width"
    to order "batchSize, height, width, channels".
6562 6563 6564 6565

    The example usage is:

    .. code-block:: python
6566 6567
       reshape_axis = 3
       switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
6568
       reshape = {'height':[ 0, 1, 2], 'width':[3]}
6569

R
ranqiu 已提交
6570
    :param input: The input of this layer.
6571
    :type input: LayerOutput
6572
    :param name: The name of this layer. It is optional.
6573
    :type name: basestring
R
ranqiu 已提交
6574 6575
    :param reshape_axis: Specify the axises of 'height'. Its value should be positive and less than 4.
    :type reshape_axis: int
6576 6577 6578
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6579
    assert isinstance(input, LayerOutput)
6580 6581 6582 6583 6584
    assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
    height = [ele for ele in xrange(reshape_axis)]
    width = [ele for ele in range(reshape_axis, 4)]
    reshape = {'height': height, 'width': width}

6585 6586
    l = Layer(
        name=name,
W
wanghaoshuang 已提交
6587
        inputs=input.name,
6588 6589
        reshape=reshape,
        type=LayerType.SWITCH_ORDER_LAYER,
W
wanghaoshuang 已提交
6590
        active_type=act.name,
6591 6592 6593
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
6594
        layer_type=LayerType.SWITCH_ORDER_LAYER,
6595
        activation=act,
6596 6597
        parents=input,
        size=l.config.size)
W
wanghaoshuang 已提交
6598 6599


6600 6601
@wrap_name_default()
@layer_support()
6602
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6603
    """
R
ranqiu 已提交
6604 6605 6606
    This layer crops images according to the offset and shape. Users can set
    the crop shape through the argument 'shape' explicitly or by specifying a
    reference input layer.
6607

6608 6609 6610
    The example usage is:

    .. code-block:: python
W
whs 已提交
6611
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6612

R
ranqiu 已提交
6613 6614
    :param input: The input of this layer. If two inputs are given, the second one
                  will be regarded as the reference.
R
ranqiu 已提交
6615 6616
    :type input: LayerOutput | Sequence
    :param offset: The crop offset.
6617
    :type offset: Sequence
R
ranqiu 已提交
6618
    :param axis: The start axis to be cropped. For image input layer:
6619 6620 6621 6622
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
R
ranqiu 已提交
6623 6624
    :type axis: int
    :param shape: The shape to be cropped to. Default is None.
6625
    :type shape: Sequence | None
6626
    :param name: The name of this layer. It is optional.
6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6648 6649


C
caoying03 已提交
6650 6651
@wrap_name_default()
@layer_support()
6652
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6653
    """
6654
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6655
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6656

C
caoying03 已提交
6657 6658 6659
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6660 6661 6662 6663

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6664

R
ranqiu 已提交
6665
        sub_nest_seq = sub_nested_seq_layer(input=data, selected_indices=selected_ids)
6666

C
caoying03 已提交
6667

R
ranqiu 已提交
6668
    :param input: The input of this layer. It is a nested sequence.
6669
    :type input: LayerOutput
R
ranqiu 已提交
6670
    :param selected_indices: A set of sequence indices in the nested sequence.
C
caoying03 已提交
6671
    :type input: LayerOutput
6672
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6673 6674 6675 6676
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6677

6678 6679 6680 6681 6682 6683 6684
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6685
    l = Layer(
6686 6687
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6688 6689 6690 6691 6692 6693 6694
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6695 6696


G
guosheng 已提交
6697
@wrap_name_default("clip")
6698
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6699 6700 6701 6702 6703 6704 6705 6706 6707
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6708
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6709

6710
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6711
    :type name: basestring
R
ranqiu 已提交
6712
    :param input: The input of this layer.
G
guosheng 已提交
6713
    :type input: LayerOutput.
6714
    :param min: The lower threshold for clipping.
R
ranqiu 已提交
6715
    :type min: float
6716
    :param max: The upper threshold for clipping.
R
ranqiu 已提交
6717
    :type max: float
6718 6719
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6720 6721 6722 6723 6724
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6725 6726
        min=min,
        max=max)
G
guosheng 已提交
6727 6728
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6729 6730


6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

6755
    :param name: The name of this layer. It is optional.
6756
    :type name: basestring
R
ranqiu 已提交
6757
    :param input: The input of this layer, which should be a sequence.
6758
    :type input: LayerOutput
R
ranqiu 已提交
6759
    :param starts: The start indices to slice the input sequence.
R
ranqiu 已提交
6760
    :type starts: LayerOutput | None
R
ranqiu 已提交
6761
    :param ends: The end indices to slice the input sequence.
R
ranqiu 已提交
6762
    :type ends: LayerOutput | None
6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
6794 6795


6796 6797
@wrap_name_default()
@layer_support()
6798
def kmax_seq_score_layer(input, name=None, beam_size=1):
6799
    """
R
ranqiu 已提交
6800
    This layer accepts one input which is scores over a sequence or a nested
6801 6802 6803 6804
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

6805
        kmax_indices = kmax_seq_score_layer(input=input_layer, beam_size)
6806 6807


6808
    :param name: The name of this layer. It is optional.
6809
    :type name: basestring
R
ranqiu 已提交
6810 6811
    :param input: The input of this layer. It stores scores over a sequence or
                  a nested sequence and its size must be 1.
R
ranqiu 已提交
6812
    :type input: LayerOutput
R
ranqiu 已提交
6813 6814
    :param beam_size: The indices of the sequences with top beam_size scores are returned.
    :type beam_size: int
6815 6816 6817
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6818
    assert isinstance(input, LayerOutput), ("kmax_seq_score_layer "
6819
                                            "accepts only one input.")
6820
    assert input.size == 1, (
6821
        "input of kmax_seq_score_layer is a score "
6822 6823 6824 6825 6826 6827 6828 6829 6830 6831
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
6832 6833


6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859
@wrap_name_default("conv3d")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_conv3d_layer(input,
                     filter_size,
                     num_filters,
                     name=None,
                     num_channels=None,
                     act=None,
                     groups=1,
                     stride=1,
                     padding=0,
                     bias_attr=None,
                     param_attr=None,
                     shared_biases=True,
                     layer_attr=None,
                     trans=False,
                     layer_type=None):
    """

    The example usage is:

    ..  code-block:: python

C
chengduoZH 已提交
6860
        conv = img_conv3d_layer(input=data, filter_size=1,
6861 6862 6863 6864 6865
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

6866
    :param name: The name of this layer. It is optional.
6867
    :type name: basestring
R
ranqiu 已提交
6868
    :param input: The input of this layer.
6869
    :type input: LayerOutput
R
ranqiu 已提交
6870 6871
    :param filter_size: The dimensions of the filter kernel along three axises. If the parameter
                        is set to one integer, the three dimensions will be same.
R
ranqiu 已提交
6872
    :type filter_size: int | tuple | list
R
ranqiu 已提交
6873 6874
    :param num_filters: The number of filters in each group.
    :type num_filters: int
R
ranqiu 已提交
6875
    :param act: Activation type. ReluActivation is the default.
6876
    :type act: BaseActivation
R
ranqiu 已提交
6877
    :param groups: The number of the filter groups.
6878
    :type groups: int
R
ranqiu 已提交
6879 6880
    :param stride: The strides of the convolution along three axises. If the parameter
                   is set to one integer, the three strides will be same.
R
ranqiu 已提交
6881
    :type stride: int | tuple | list
R
ranqiu 已提交
6882 6883
    :param padding: The numbers of padding along three axises. If the parameter is set to
                    one integer, they will be same.
R
ranqiu 已提交
6884
    :type padding: int | tuple | list
R
ranqiu 已提交
6885 6886 6887
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6888
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
6889 6890 6891
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None,  its actual value will be automatically set to
                         the channels number of the input .
6892
    :type num_channels: int
R
ranqiu 已提交
6893 6894
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
6895
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
6896
    :param shared_biases: Whether biases will be shared between filters or not.
6897
    :type shared_biases: bool
R
ranqiu 已提交
6898 6899
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
6900
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
6901
    :param trans: True if it is a convTransLayer, False if it is a convLayer
6902
    :type trans: bool
R
ranqiu 已提交
6903 6904 6905 6906
    :param layer_type: Specify the layer_type. If the parameter is set, it must be "deconv3d"
                       when trans=True. If not set, it will be automatically set to "deconv3d"
                       when trans=True and "conv3d" when trans=False.
    :type layer_type: basestring
6907 6908 6909 6910 6911 6912 6913
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

C
chengduoZH 已提交
6914 6915 6916 6917 6918 6919
    if isinstance(filter_size, collections.Sequence):
        assert len(filter_size) == 3
        filter_size, filter_size_y, filter_size_z = filter_size
    else:
        filter_size_y = filter_size
        filter_size_z = filter_size
6920

C
chengduoZH 已提交
6921 6922 6923 6924 6925 6926
    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride
6927

C
chengduoZH 已提交
6928 6929 6930 6931 6932 6933
    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_z = padding
    else:
        padding_y = padding
        padding_z = padding
6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

    if layer_type:
        if trans:
            assert layer_type in ["deconv3d"]
        lt = layer_type
    else:
        lt = LayerType.DECONV3D_LAYER if trans else LayerType.CONV3D_LAYER

    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            conv=Conv3D(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y,
                filter_size_z=filter_size_z,
                padding_z=padding_z,
                stride_z=stride_z),
            **param_attr.attr),
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
        type=lt,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
C
chengduoZH 已提交
6980 6981


G
guosheng 已提交
6982 6983 6984 6985 6986
@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
6987
    A layer applies a linear transformation to each element in each row of
R
ranqiu 已提交
6988
    the input matrix. For each element, the layer first re-scales it and then
6989 6990
    adds a bias to it.

X
xuwei06 已提交
6991
    This layer is very like the SlopeInterceptLayer, except the scale and
6992 6993
    bias are trainable.

G
guosheng 已提交
6994 6995 6996 6997 6998 6999 7000 7001
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

7002
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
7003
    :type name: basestring
R
ranqiu 已提交
7004 7005
    :param input: The input of this layer.
    :type input: LayerOutput
R
ranqiu 已提交
7006 7007
    :param param_attr: The parameter attribute of scaling. See ParameterAttribute for
                      details.
G
guosheng 已提交
7008
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
7009 7010 7011
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
7012
    :type bias_attr: ParameterAttribute | None | bool | Any
G
guosheng 已提交
7013 7014 7015 7016 7017 7018 7019 7020 7021 7022
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)
7023 7024 7025 7026 7027 7028 7029 7030 7031


@wrap_name_default("resize")
def resize_layer(input, size, name=None):
    """
    The resize layer resizes the input matrix with a shape of [Height, Width]
    into the output matrix with a shape of [Height x Width / size, size],
    where size is the parameter of this layer indicating the output dimension.

R
ranqiu 已提交
7032
    :param input: The input of this layer.
7033 7034 7035
    :type input: LayerOutput.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
7036
    :param size: The resized output dimension of this layer.
7037 7038 7039 7040 7041 7042
    :type size: int
    :return: A LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(name=name, type=LayerType.RESIZE, inputs=Input(input.name), size=size)
    return LayerOutput(name, LayerType.RESIZE, parents=[input], size=input.size)
7043 7044


Y
yangyaming 已提交
7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061
@wrap_act_default(act=LinearActivation())
@wrap_name_default('sub_seq')
def sub_seq_layer(input, offsets, sizes, act=None, bias_attr=None, name=None):
    """
    sub_seq_layer will return sub-sequences from the input sequences. For each
    sequence in the input sequence layer, sub_seq_layer will slice it by given
    offset and size. Please notice that, number of offset value and size value
    both are equal to the number of sequence in the input layer.

    .. code-block:: python

        sub_seq = sub_seq_layer(input=input_seq, offsets=offsets, sizes=sizes)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer, which should be sequence.
    :type input: LayerOutput
R
ranqiu 已提交
7062 7063
    :param offsets: The offset indices to slice the input sequence, which should
                    be sequence type.
Y
yangyaming 已提交
7064
    :type offsets: LayerOutput
R
ranqiu 已提交
7065
    :param sizes: The sizes of the sub-sequences, which should be sequence type.
Y
yangyaming 已提交
7066
    :type sizes: LayerOutput
R
ranqiu 已提交
7067
    :param act: Activation type, LinearActivation is the default.
Y
yangyaming 已提交
7068
    :type act: BaseActivation.
R
ranqiu 已提交
7069 7070 7071
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
Y
yangyaming 已提交
7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096
    :type bias_attr: ParameterAttribute | None | bool | Any
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of sub_seq_layer layer must be a PaddlePaddle layer.')
    assert isinstance(offsets, LayerOutput), (
        'The offset indices for sub_seq_layer, '
        'must be a PaddlePaddle layer.')
    assert isinstance(sizes, LayerOutput), (
        'The sizes of sub-sequences, must be a PaddlePaddle layer.')

    Layer(
        name=name,
        type=LayerType.SUB_SEQ_LAYER,
        inputs=[input.name, offsets.name, sizes.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr))

    return LayerOutput(
        name,
        LayerType.SUB_SEQ_LAYER,
        parents=[input, offsets, sizes],
        size=input.size)
Y
yangyaming 已提交
7097 7098


Y
yangyaming 已提交
7099 7100
@wrap_name_default('scale_sub_region')
def scale_sub_region_layer(input, indices, value, name=None):
Y
yangyaming 已提交
7101
    """
Y
yangyaming 已提交
7102 7103 7104 7105 7106 7107
    Given an image or feature map with CHW information, scale_sub_region_layer
    can be used to multiply a real value to values of a sub continuous region.
    You can provide start and end indices of CHW for each instance.
    Please notice that all start indices are counting from 1.
    The shape of indices should be [batch_size, 6] and the layout for each row
    is [C_Start, C_End, H_Start, H_End, W_Start, W_End].
Y
yangyaming 已提交
7108 7109 7110

    .. code-block:: python

Y
yangyaming 已提交
7111 7112 7113
        scale_sub_region = scale_sub_region_layer(input=input,
                                                  indices=indices,
                                                  value=value)
Y
yangyaming 已提交
7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer which should contains CHW information.
    :type input: LayerOutput
    :param indices: Start index and end index for C H W, the input value should
                    be a 2-D matrix with shape [batch_size, 6].
    :type indices: LayerOutput.
    :param value: value to multiply.
    :type value: float
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
Y
yangyaming 已提交
7129 7130
        'The first input of scale_sub_region_layer, '
        'must be a PaddlePaddle layer.')
Y
yangyaming 已提交
7131 7132 7133 7134 7135 7136 7137
    assert isinstance(indices, LayerOutput), (
        'The start and end indices for CHW, must be a PaddlePaddle layer.')
    assert isinstance(value, float), (
        'The value to multiply, must be a real value.')

    Layer(
        name=name,
Y
yangyaming 已提交
7138
        type=LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7139 7140 7141 7142 7143
        inputs=[input.name, indices.name],
        value=value)

    return LayerOutput(
        name,
Y
yangyaming 已提交
7144
        LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7145
        parents=[input, indices],
Y
yangyaming 已提交
7146
        num_filters=input.num_filters,
Y
yangyaming 已提交
7147
        size=input.size)
7148 7149


7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support()
def factorization_machine(input,
                          factor_size,
                          act=None,
                          name=None,
                          param_attr=None,
                          layer_attr=None):
    """
    The Factorization Machine models pairwise feature interactions as inner
    product of the learned latent vectors corresponding to each input feature.
    The Factorization Machine can effectively capture feature interactions
7164 7165 7166 7167 7168
    especially when the input is sparse.

    This implementation only consider the 2-order feature interactions using
    Factorization Machine with the formula:

7169 7170
    .. math::
        y = \sum_{i=1}^{n-1}\sum_{j=i+1}^n\langle v_i, v_j \rangle x_i x_j
7171

7172 7173 7174 7175
    Note:
        X is the input vector with size n. V is the factor matrix. Each row of V
        is the latent vector corresponding to each input dimesion. The size of
        each latent vector is k.
7176 7177 7178 7179 7180

    For details of Factorization Machine, please refer to the paper:
        Rendle, Steffen. Factorization machines. IEEE 10th International
        Conference on Data Mining (ICDM). IEEE, 2010.

7181 7182
    .. code-block:: python
       factor_machine = factorization_machine(input=input_layer, factor_size=10)
7183

7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211
    :param input: The input layer.
    :type input: LayerOutput
    :param factor_size: The hyperparameter that defines the dimensionality of
                        the latent vector size
    :type context_len: int
    :param act: Activation Type. Default is linear activation.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute. If None, the latent vectors will
                       be initialized smartly. It's better to set it by
                       yourself.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert factor_size > 0, "the factor_size must be greater than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        factor_size=factor_size,
        type=LayerType.FACTORIZATION_MACHINE,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FACTORIZATION_MACHINE, input, activation=act, size=1)