math.py 181.2 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
from __future__ import print_function
Y
Yang Zhang 已提交
18
import numpy as np
19

20 21 22 23 24 25
from paddle.common_ops_import import VarDesc
from paddle.common_ops_import import dygraph_only
from paddle.common_ops_import import OpProtoHolder
from paddle.common_ops_import import templatedoc
from paddle.common_ops_import import dygraph_utils

26 27
from .manipulation import cast
from .creation import _complex_to_real_dtype
L
Ligoml 已提交
28 29 30 31 32
from .layer_function_generator import (
    _generate_doc_string_,
    generate_activation_fn,
    generate_layer_fn,
)
33

34
import paddle
35
from ..static import Variable
L
Ligoml 已提交
36 37 38 39 40 41 42
from ..framework import (
    core,
    in_dygraph_mode,
    _non_static_mode,
    LayerHelper,
    _in_legacy_dygraph,
)
43
from ..fluid.framework import _in_legacy_dygraph
Z
zhiboniu 已提交
44
from ..framework import _varbase_creator, convert_np_dtype_to_dtype_
L
Ligoml 已提交
45 46 47 48 49 50
from ..fluid.data_feeder import (
    check_variable_and_dtype,
    check_type,
    check_dtype,
    convert_dtype,
)
51
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
52
from ..fluid.layers import utils
53 54 55

# TODO: define math functions
# yapf: disable
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
from .ops import abs    # noqa: F401
from .ops import acos    # noqa: F401
from .ops import asin    # noqa: F401
from .ops import ceil    # noqa: F401
from .ops import ceil_    # noqa: F401
from .ops import cos    # noqa: F401
from .ops import tan    # noqa: F401
from .ops import sinh    # noqa: F401
from .ops import cosh    # noqa: F401
from .ops import exp    # noqa: F401
from .ops import exp_    # noqa: F401
from .ops import expm1    # noqa: F401
from .ops import floor    # noqa: F401
from .ops import floor_    # noqa: F401
from .ops import reciprocal    # noqa: F401
from .ops import reciprocal_    # noqa: F401
from .ops import round    # noqa: F401
from .ops import round_    # noqa: F401
from .ops import rsqrt    # noqa: F401
from .ops import rsqrt_    # noqa: F401
from .ops import square    # noqa: F401
from .ops import atan    # noqa: F401
from .ops import erf    # noqa: F401
from .ops import sqrt    # noqa: F401
from .ops import sqrt_    # noqa: F401
from .ops import sin    # noqa: F401
from .ops import asinh    # noqa: F401
from .ops import acosh    # noqa: F401
from .ops import atanh    # noqa: F401


Z
zhiboniu 已提交
87
from ..fluid.layers import elementwise_sub
88
from paddle import _C_ops, _legacy_C_ops
89

90 91
__all__ = []

92 93 94 95 96 97 98 99 100 101 102 103 104
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

105

106 107
def log(x, name=None):
    r"""
C
Chen Long 已提交
108
    Calculates the natural log of the given input Tensor, element-wise.
109 110 111

    .. math::

112
        Out = \ln(x)
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The natural log of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python

            import paddle

            x = [[2,3,4], [7,8,9]]
            x = paddle.to_tensor(x, dtype='float32')
            res = paddle.log(x)
            # [[0.693147, 1.09861, 1.38629], [1.94591, 2.07944, 2.19722]]
    """
    if in_dygraph_mode():
        return _C_ops.log(x)
135 136
    if _in_legacy_dygraph():
        return _legacy_C_ops.log(x)
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log")
    inputs = {'X': [x]}
    helper = LayerHelper('log', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
    return out


def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)

    Args:
164 165 166 167 168 169
        x (Tensor): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
        scale (float|Tensor): The scale factor of the input, it should be a float number or a Tensor with shape [1] and data type as float32.
        bias (float): The bias to be put on the input.
        bias_after_scale (bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act (str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
170 171

    Returns:
C
Chen Long 已提交
172
        Tensor: Output Tensor of scale operator, with shape and data type same as input.
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194

    Examples:
        .. code-block:: python
            
            # scale as a float32 number
            import paddle

            data = paddle.randn(shape=[2,3], dtype='float32')
            res = paddle.scale(data, scale=2.0, bias=1.0)

        .. code-block:: python

            # scale with parameter scale as a Tensor
            import paddle

            data = paddle.randn(shape=[2, 3], dtype='float32')
            factor = paddle.to_tensor([2], dtype='float32')
            res = paddle.scale(data, scale=factor, bias=1.0)

    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
195 196 197
        out = _C_ops.scale(x, scale, float(bias), bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out, act)
    elif _in_legacy_dygraph():
198
        _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
199
        out = _legacy_C_ops.scale(x, 'scale',
200 201
                           float(_scale), 'bias',
                           float(bias), 'bias_after_scale', bias_after_scale)
W
wanghuancoder 已提交
202
        return dygraph_utils._append_activation_in_dygraph(out, act)
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230

    check_variable_and_dtype(x, "x", [
        'float16', 'uint16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], "scale")
    inputs = {'X': [x]}
    attrs = {
        'bias': float(bias),
        'bias_after_scale': bias_after_scale,
    }
    if isinstance(scale, Variable):
        inputs['ScaleTensor'] = [scale]
    else:
        attrs['scale'] = float(scale)
    helper = LayerHelper('scale', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return helper.append_activation(out)


def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
    """
    stanh activation.

    .. math::

231
        out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        scale_a (float, optional): The scale factor a of the input. Default is 0.67.
        scale_b (float, optional): The scale factor b of the output. Default is 1.7159.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = paddle.stanh(x, scale_a=0.67, scale_b=1.72) # [1.00616539, 1.49927628, 1.65933108, 1.70390463]

    """

    if _non_static_mode():
254
        return _legacy_C_ops.stanh(x, 'scale_a', scale_a, 'scale_b', scale_b)
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'stanh')

    helper = LayerHelper('stanh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out

def multiplex(inputs, index, name=None):
    """

    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.

    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .

    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .

    For Example:

            .. code-block:: text

                Given:

                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

                index = [[3],[0],[1],[2]]

                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]


    Args:
        inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
        index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
299
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
300

301 302 303 304 305 306 307 308
    Returns:
        Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64.

    Examples:

        .. code-block:: python

            import paddle
309
            
310 311 312 313
            img1 = paddle.to_tensor([[1, 2], [3, 4]], dtype=paddle.float32)
            img2 = paddle.to_tensor([[5, 6], [7, 8]], dtype=paddle.float32)
            inputs = [img1, img2]
            index = paddle.to_tensor([[1], [0]], dtype=paddle.int32)
314
            res = paddle.multiplex(inputs, index)
315
            print(res) # Tensor([[5., 6.], [3., 4.]], dtype=float32)
316 317

    """
318 319 320
    if in_dygraph_mode():
        return _C_ops.multiplex(inputs, index)
    elif _in_legacy_dygraph():
321
        return _legacy_C_ops.multiplex(index, inputs)
322

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
    helper = LayerHelper('multiplex', **locals())

    check_type(inputs, 'inputs', (list), 'multiplex')
    if len(inputs) < 2:
        raise ValueError(
            "inputs should be a list object with at least 2 elements.")
    for id, x in enumerate(inputs):
        check_variable_and_dtype(x, 'input[' + str(id) + ']',
                                 ['float32', 'float64', 'int32', 'int64'],
                                 'multiplex')
    check_variable_and_dtype(index, "index", ['int32', 'int64'], 'multiplex')

    out = helper.create_variable_for_type_inference(inputs[0].dtype)
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out

343 344 345 346 347 348
@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_scale`.
    """
349
    if in_dygraph_mode():
350
        return _C_ops.scale_(x, scale, float(bias), bias_after_scale)
351 352
    if _in_legacy_dygraph():
        _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
353
        return _legacy_C_ops.scale_(x, 'scale',
354 355
                                float(_scale), 'bias',
                                float(bias), 'bias_after_scale', bias_after_scale)
356 357


358
def pow(x, y, name=None):
359
    """
C
Chen Long 已提交
360
    Compute the power of Tensor elements. The equation is:
S
swtkiwi 已提交
361

362 363
    .. math::
        out = x^{y} 
364

365 366
    Note:
        ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
367 368


369
    Args:
370
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
371
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
372 373
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
374
    Returns:
375
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
376 377 378

    Examples:

379
        ..  code-block:: python
380 381 382

            import paddle

383 384 385 386 387 388 389 390 391 392 393 394
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            # example 1: y is a float or int
            res = paddle.pow(x, 2)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
            res = paddle.pow(x, 2.5)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1.         , 5.65685415 , 15.58845711])

395
            # example 2: y is a Tensor
396
            y = paddle.to_tensor([2], dtype='float32')
397
            res = paddle.pow(x, y)
398 399 400
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
401 402

    """
403
    # in dynamic graph mode
404
    if in_dygraph_mode():
405
        if isinstance(y, (int, float)):
406
            return _C_ops.pow(x, y)
407
        elif isinstance(y, (paddle.Tensor, Variable)):
408
            return _C_ops.elementwise_pow(x, y)
409 410
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype))
411
    if _in_legacy_dygraph():
412
        if isinstance(y, (int, float)):
413
            return _legacy_C_ops.pow(x, 'factor', y)
414
        elif isinstance(y, (paddle.Tensor, Variable)):
415 416
            return _elementwise_op_in_dygraph(
                x, y, axis=-1, act=None, op_name='elementwise_pow')
417
        else:
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
            raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype))
    # in static graph mode
    if isinstance(y, (int, float)):
        helper = LayerHelper('pow', **locals())
        inputs = {'X': x}
        attrs = {'factor': y}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
        return out
    elif isinstance(y, (paddle.Tensor, Variable)):
        # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
        helper = LayerHelper('elementwise_pow', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
    else:
        raise TypeError('y must be scalar or tensor type, but received: %s '% (type(y)))
435 436


437
OP_NAMEMAPPING = {
438 439 440 441 442 443 444 445
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
446
    'elementwise_mod': 'remainder',
447
}
448

449 450 451 452 453 454 455
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
456 457 458
    def is_inplace(op_name):
        return  op_name[-1] == "_"

459
    if op_name not in OP_NAMEMAPPING.keys() or axis != -1:
460
        op = getattr(_legacy_C_ops, op_name)
461
        out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
W
wanghuancoder 已提交
462 463 464 465 466 467
    else:
        if in_dygraph_mode():
            op = getattr(_C_ops, OP_NAMEMAPPING[op_name] if not is_inplace(op_name) else op_name)
            out = op(x, y)

        if _in_legacy_dygraph():
468
            op = getattr(_legacy_C_ops, op_name)
W
wanghuancoder 已提交
469
            out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
470 471 472 473 474 475 476 477 478 479

    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)

def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

480 481
    out = helper.kwargs.get('out', None)

482 483 484
    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
W
will-jl944 已提交
485
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
486 487
        original_op_type)
    check_variable_and_dtype(
W
will-jl944 已提交
488
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
489 490 491 492 493
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
494 495 496 497 498 499

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(name=name, dtype=x.dtype, persistable=False)
500 501 502 503 504 505 506 507 508 509 510

    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


Y
Yang Zhang 已提交
511
def add(x, y, name=None):
512
    """
513 514 515 516 517 518 519 520
    Elementwise Add Operator.
    Add two tensors element-wise
    The equation is:

    ..  math::

        Out=X+Y

521 522
    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.
523 524

    There are two cases for this operator:
525 526 527 528

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

529
    For case 2:
530 531 532 533

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
    2. If $axis$ is -1 (default), $axis$=rank($X$)−rank($Y$).
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).
534 535 536 537

        For example:

        ..  code-block:: python
538

539 540 541 542 543 544
            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
545

546
    Args:
547 548 549
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
550 551

    Returns:
552
        N-D Tensor. A location into which the result is stored. It’s dimension equals with x.
553 554 555 556

    Examples:

        ..  code-block:: python
557

558
            import paddle
559

560 561 562 563
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.to_tensor([1, 5, 2], 'float64')
            z = paddle.add(x, y)
            print(z)  # [3., 8., 6. ]
564
    """
565

J
Jiabin Yang 已提交
566
    if in_dygraph_mode():
567
        return _C_ops.add( x, y)
J
Jiabin Yang 已提交
568 569
    else:
        if _in_legacy_dygraph():
570
            return _legacy_C_ops.elementwise_add(x, y)
J
Jiabin Yang 已提交
571 572
        else:
            return _elementwise_op(LayerHelper('elementwise_add', **locals()))
573 574


575 576 577 578 579 580 581 582 583 584 585 586 587
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_add`.
    """
    op_type = 'elementwise_add_'
    axis = -1

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))

588
    if in_dygraph_mode():
589
        return _C_ops.add_(x, y)
590 591 592 593
    else:
        out = _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
        return out
594 595


596 597
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
598
    Substract two tensors element-wise. The equation is:
599 600 601 602

    .. math::
        out = x - y

603 604
    Note:
        ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
605 606 607 608 609 610 611 612 613 614 615 616

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
617

618 619 620 621 622 623
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[5, 6], [3, 4]])
            res = paddle.subtract(x, y)
            print(res)
624 625 626
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[-4, -4],
            #         [ 4,  4]])
627 628 629 630 631

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 0, 4])
            res = paddle.subtract(x, y)
            print(res)
632 633 634
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[ 0,  2, -1],
            #          [ 0,  2, -1]]])
635

636 637
            x = paddle.to_tensor([2, float('nan'), 5], dtype='float32')
            y = paddle.to_tensor([1, 4, float('nan')], dtype='float32')
638 639
            res = paddle.subtract(x, y)
            print(res)
640 641
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
642

643
            x = paddle.to_tensor([5, float('inf'), -float('inf')], dtype='float64')
644 645 646
            y = paddle.to_tensor([1, 4, 5], dtype='float64')
            res = paddle.subtract(x, y)
            print(res)
647 648
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 4.  ,  inf., -inf.])
649 650 651 652
    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
J
Jiabin Yang 已提交
653
    if in_dygraph_mode():
654
        return _C_ops.subtract(x, y)
J
Jiabin Yang 已提交
655 656 657 658 659 660
    else:
        if _in_legacy_dygraph():
            return _elementwise_op_in_dygraph(
                x, y, axis=axis, act=act, op_name=op_type)
        else:
            return _elementwise_op(LayerHelper(op_type, **locals()))
661 662


663 664 665 666 667 668 669 670 671 672 673 674 675
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_subtract`.
    """
    axis = -1
    act = None

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))

676
    if in_dygraph_mode():
677
        return _C_ops.subtract_(x, y)
678 679 680 681
    else:
        out = _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_sub_')
        return out
682 683


684
def divide(x, y, name=None):
685
    """
686
    Divide two tensors element-wise. The equation is:
687

688 689
    .. math::
        out = x / y
690

691 692
    Note:
        ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
693

694 695 696 697
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
698

699
    Returns:
700
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
701

702
    Examples:
703

704
        ..  code-block:: python
705

706
            import paddle
707

708 709
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
710
            z = paddle.divide(x, y)
711
            print(z)  # [2., 0.6, 2.]
712

713 714 715 716
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
J
Jiabin Yang 已提交
717
    if in_dygraph_mode():
718
        return _C_ops.divide( x, y)
J
Jiabin Yang 已提交
719 720 721 722 723 724
    else:
        if _in_legacy_dygraph():
            return _elementwise_op_in_dygraph(
                x, y, axis=axis, act=act, op_name=op_type)
        else:
            return _elementwise_op(LayerHelper(op_type, **locals()))
725 726


727 728 729
def floor_divide(x, y, name=None):
    """
    Floor divide two tensors element-wise. The equation is:
730

731 732
    .. math::
        out = x // y
733

734 735
    Note:
        ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
736

737 738 739 740
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
741

742 743
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
744

745
    Examples:
746

747
        ..  code-block:: python
748

749
            import paddle
750

751 752
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
753
            z = paddle.floor_divide(x, y)
754
            print(z)  # [2, 0, 2, 2]
755

756 757 758
    """
    op_type = 'elementwise_floordiv'
    axis = -1
759 760 761
    if in_dygraph_mode():
        return _C_ops.floor_divide(x, y)
    elif _in_legacy_dygraph():
762 763
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
764

765
    return _elementwise_op(LayerHelper(op_type, **locals()))
766 767


768
def remainder(x, y, name=None):
769
    r"""
770 771 772
    Mod two tensors element-wise. The equation is:

    .. math::
773

774 775
        out = x \% y

776 777
    Note:
        ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
778 779

    Args:
780 781
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
782 783 784
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
785
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
786 787 788 789 790 791 792

    Examples:

        ..  code-block:: python

            import paddle

793 794
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
795
            z = paddle.remainder(x, y)
W
WangXi 已提交
796
            print(z)  # [0, 3, 2, 1]
797 798 799

    """
    op_type = 'elementwise_mod'
800
    axis = -1
801 802 803 804

    if in_dygraph_mode():
        return _C_ops.remainder(x, y)
    elif _in_legacy_dygraph():
805
        return _elementwise_op_in_dygraph(
806
            x, y, axis=axis, op_name=op_type)
807 808 809 810

    return _elementwise_op(LayerHelper(op_type, **locals()))


811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
@inplace_apis_in_dygraph_only
def remainder_(x, y, name=None):
    r"""
    Inplace version of ``remainder`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_remainder`.
    """
    op_type = 'elementwise_mod_'
    axis = -1

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape))

    return _elementwise_op_in_dygraph(x, y, axis=axis, op_name=op_type)


829 830
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
831 832


833
def multiply(x, y, name=None):
834
    """
835
    multiply two tensors element-wise. The equation is:
836

837 838
    .. math::
        out = x * y
839

840 841
    Note:
        ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.
842

843
    Args:
W
will-jl944 已提交
844 845
        x (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
        y (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
846
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
847

848
    Returns:
849
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
850

851 852 853 854 855 856
    Examples:

        ..  code-block:: python

            import paddle

857 858
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
859
            res = paddle.multiply(x, y)
860
            print(res) # [[5, 12], [21, 32]]
861

862
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
863 864 865
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
866 867 868 869

    """
    op_type = 'elementwise_mul'
    act = None
870
    axis = -1
871

J
Jiabin Yang 已提交
872
    if in_dygraph_mode():
873
        return _C_ops.multiply(x, y)
J
Jiabin Yang 已提交
874 875 876 877 878 879 880 881 882
    else:
        if _in_legacy_dygraph():
            return _elementwise_op_in_dygraph(
                x, y, axis=axis, act=act, op_name=op_type)
        else:
            if x.dtype != y.dtype:
                raise TypeError(
                    'Input tensors must be same type, but received type of x: %s, type of y: %s '
                    % (x.dtype, y.dtype))
883

J
Jiabin Yang 已提交
884
            return _elementwise_op(LayerHelper(op_type, **locals()))
885

886
def maximum(x, y, name=None):
887
    """
W
Wei Shengyu 已提交
888
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
889

890 891
    .. math::
        out = max(x, y)
892

893 894
    Note:
        ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 4],
            #     [7, 8]]

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 2, 4],
            #     [3, 2, 4]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [ 2., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [  5.,   3., inf.]
936 937
    """
    op_type = 'elementwise_max'
938
    axis = -1
939
    act = None
940 941 942
    if in_dygraph_mode():
        return _C_ops.maximum(x, y)
    elif _in_legacy_dygraph():
943 944 945 946
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

947
def minimum(x, y, name=None):
948
    """
C
Chen Long 已提交
949
    Compare two tensors and return a new tensor containing the element-wise minima. The equation is:
950

951 952
    .. math::
        out = min(x, y)
953

954 955
    Note:
        ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
956 957 958 959 960 961 962

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
C
Chen Long 已提交
963
        Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.minimum(x, y)
            print(res)
            #       [[1, 2],
            #        [5, 6]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.minimum(x, y)
            print(res)
            #       [[[1, 0, 3],
            #         [1, 0, 3]]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.minimum(x, y)
            print(res)
            #       [ 1., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float64')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float64')
            res = paddle.minimum(x, y)
            print(res)
            #       [   1., -inf.,    5.]
997 998
    """
    op_type = 'elementwise_min'
999
    axis = -1
1000
    act = None
1001 1002 1003
    if in_dygraph_mode():
        return _C_ops.minimum(x, y)
    elif _in_legacy_dygraph():
1004 1005 1006
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))
1007

L
LJQ❤️ 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016
def fmax(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the maximum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmax(x, y)

1017 1018
    Note:
        ``paddle.fmax`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
L
LJQ❤️ 已提交
1019 1020

    Args:
1021 1022
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmax(x, y)
            print(res)
            #    [[3, 4],
            #     [7, 8]]

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmax(x, y)
            print(res)
            #    [[3, 2, 4],
            #     [3, 2, 4]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.fmax(x, y)
            print(res)
            #    [ 2., 3., 5.]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float32')
            res = paddle.fmax(x, y)
            print(res)
            #    [  5.,   3., inf.]
    """
    op_type = 'elementwise_fmax'
    axis = -1
    act = None
1064
    if in_dygraph_mode():
1065
        return _C_ops.fmax(x, y, axis)
1066
    if _in_legacy_dygraph():
L
LJQ❤️ 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

def fmin(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the minimum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmin(x, y)

1080 1081
    Note:
        ``paddle.fmin`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
L
LJQ❤️ 已提交
1082 1083

    Args:
1084 1085
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmin(x, y)
            print(res)
            #       [[1, 2],
            #        [5, 6]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmin(x, y)
            print(res)
            #       [[[1, 0, 3],
            #         [1, 0, 3]]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.fmin(x, y)
            print(res)
            #       [ 1., 3., 5.]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float64')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float64')
            res = paddle.fmin(x, y)
            print(res)
            #       [   1., -inf.,    5.]
    """
    op_type = 'elementwise_fmin'
    axis = -1
    act = None
1127
    if in_dygraph_mode():
1128
        return _C_ops.fmin(x, y, axis)
1129
    if _in_legacy_dygraph():
L
LJQ❤️ 已提交
1130 1131 1132 1133
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

Y
Yang Zhang 已提交
1134

1135
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
1136 1137 1138 1139
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
1140
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
1141 1142
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
1143
            Tensor with a single element, otherwise must be in the
1144 1145 1146 1147 1148 1149 1150
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
1151
            value is False.
1152
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1153 1154

    Returns:
1155
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
1156 1157
        if `x.dtype='bool'`, `x.dtype='int32'`, it's data type is `'int64'`, 
        otherwise it's data type is the same as `x`.
1158 1159 1160 1161 1162

    Examples:
        .. code-block:: python

            import paddle
1163

1164
            # x is a Tensor with following elements:
1165 1166 1167
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
1168 1169
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1170
            out1 = paddle.sum(x)  # [3.5]
1171 1172 1173
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
1174

1175
            # y is a Tensor with shape [2, 2, 2] and elements as below:
1176 1177 1178
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
1179 1180
            y = paddle.to_tensor([[[1, 2], [3, 4]], 
                                  [[5, 6], [7, 8]]])
1181 1182
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
            
            # x is a Tensor with following elements:
            #    [[True, True, True, True]
            #     [False, False, False, False]]
            # Each example is followed by the corresponding output tensor.
            x = paddle.to_tensor([[True, True, True, True],
                                  [False, False, False, False]])
            out7 = paddle.sum(x)  # [4]
            out8 = paddle.sum(x, axis=0)  # [1, 1, 1, 1]
            out9 = paddle.sum(x, axis=1)  # [4, 0]
1193
    """
1194 1195 1196 1197 1198
    if isinstance(axis, Variable):
        reduce_all_flag = True if axis.shape[0] == len(x.shape) else False
    else:
        if axis is not None and not isinstance(axis, (list, tuple)):
            axis = [axis]
1199

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
        if not axis:
            axis = []

        if len(axis) == 0:
            reduce_all_flag = True
        else:
            if len(axis) == len(x.shape):
                reduce_all_flag = True
            else:
                reduce_all_flag = False
1210

1211 1212 1213 1214
    dtype_flag = False
    if dtype is not None:
        dtype_flag = True
        dtype = convert_np_dtype_to_dtype_(dtype)
F
From00 已提交
1215 1216

    if in_dygraph_mode():
1217
        return _C_ops.sum(x, axis, dtype, keepdim)
F
From00 已提交
1218

1219 1220 1221 1222
    if not isinstance(axis, Variable):
        axis = axis if axis != None and axis != [] and axis != () else [0]
        if utils._contain_var(axis):
            axis = utils._convert_to_tensor_list(axis)
1223

F
From00 已提交
1224
    if _in_legacy_dygraph():
1225
        if dtype_flag:
1226
            return _legacy_C_ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
1227
                                       'reduce_all', reduce_all_flag, 'in_dtype',
1228
                                       x.dtype, 'out_dtype', dtype)
1229
        else:
1230
            return _legacy_C_ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
1231
                                       'reduce_all', reduce_all_flag)
W
wanghuancoder 已提交
1232 1233

    attrs = {
1234
        'dim': axis,
W
wanghuancoder 已提交
1235 1236 1237 1238
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }

1239 1240 1241
    if dtype_flag:
        attrs.update({
            'in_dtype': x.dtype,
1242
            'out_dtype': dtype
1243
        })
W
wanghuancoder 已提交
1244

1245
    check_variable_and_dtype(
1246
        x, 'x', ['bool', 'float16', 'float32', 'float64',
1247
                'int16', 'int32', 'int64', 'complex64', 'complex128',
1248 1249
                u'bool', u'float16', u'float32', u'float64',
                u'int32', u'int64', u'complex64', u'complex128'], 'sum')
1250

1251
    check_type(axis, 'axis', (int, list, tuple, type(None), Variable), 'sum')
1252

1253 1254 1255
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
        out = helper.create_variable_for_type_inference(
1256
            dtype=dtype)
1257
    else:
1258
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1259 1260
    helper.append_op(
        type='reduce_sum',
1261
        inputs={'X': x},
1262 1263 1264
        outputs={'Out': out},
        attrs=attrs)
    return out
1265

1266

W
wangguanqun 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
def nansum(x, axis=None, dtype=None, keepdim=False, name=None):
    """
    Computes the sum of tensor elements over the given axis, treating Not a Numbers (NaNs) as zero.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the nansum is performed. If
            :attr:`None`, nansum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
1284
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
wangguanqun 已提交
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325

    Returns:
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            # x is a Tensor with following elements:
            #    [[nan, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, -nan, 0.7]]
            # Each example is followed by the corresponding output tensor.
            x = np.array([[float('nan'), 0.3, 0.5, 0.9],
                            [0.1, 0.2, float('-nan'), 0.7]]).astype(np.float32)
            x = paddle.to_tensor(x)
            out1 = paddle.nansum(x)  # [2.7]
            out2 = paddle.nansum(x, axis=0)  # [0.1, 0.5, 0.5, 1.6]
            out3 = paddle.nansum(x, axis=-1)  # [1.7, 1.0]
            out4 = paddle.nansum(x, axis=1, keepdim=True)  # [[1.7], [1.0]]

            # y is a Tensor with shape [2, 2, 2] and elements as below:
            #      [[[1, nan], [3, 4]],
            #      [[5, 6], [-nan, 8]]]
            # Each example is followed by the corresponding output tensor.
            y = np.array([[[1, float('nan')], [3, 4]], 
                            [[5, 6], [float('-nan'), 8]]])
            y = paddle.to_tensor(y)
            out5 = paddle.nansum(y, axis=[1, 2]) # [8, 19]
            out6 = paddle.nansum(y, axis=[0, 1]) # [9, 18]
    """
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'nansum')
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'nansum')

    zero_tensor = paddle.zeros_like(x)
    tmp_tensor = paddle.where(isnan(x), zero_tensor, x)
    return sum(tmp_tensor, axis, dtype, keepdim, name)


1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
def nanmean(x, axis=None, keepdim=False, name=None):
    r"""
    Compute the arithmetic mean along the specified axis, ignoring NaNs.

    Args:
        x (Tensor): The input Tensor with data type uint16, float16, float32, float64.
        axis (int|list|tuple, optional):The axis along which to perform nanmean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), nanmean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, nanmean is
            calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of arithmetic mean along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:

        .. code-block:: python
            :name: code-example1

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                                  [0.1, 0.2, float('-nan'), 0.7]])
            out1 = paddle.nanmean(x)
            # [0.44999996]
            out2 = paddle.nanmean(x, axis=0)
            # [0.1, 0.25, 0.5, 0.79999995]
            out3 = paddle.nanmean(x, axis=0, keepdim=True)
            # [[0.1, 0.25, 0.5, 0.79999995]]
            out4 = paddle.nanmean(x, axis=1)
            # [0.56666666 0.33333334]
            out5 = paddle.nanmean(x, axis=1, keepdim=True)
            # [[0.56666666]
            #  [0.33333334]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
                                   [[5, 6], [float('-nan'), 8]]])
            out6 = paddle.nanmean(y, axis=[1, 2])
            # [2.66666675, 6.33333349]
            out7 = paddle.nanmean(y, axis=[0, 1])
            # [3., 6.]
    """
    if isinstance(axis, int):
        axis = [axis]
    check_variable_and_dtype(x, 'x/input',
                             ['uint16', 'float16', 'float32', 'float64'],
                             'nanmean' )
    if axis is not None:
        check_type(axis, 'axis/dim', (int, list, tuple), 'nanmean')

    cnt = paddle.sum(~paddle.isnan(x), axis = axis,keepdim=keepdim)
    return paddle.divide(paddle.nansum(x, axis=axis, keepdim=keepdim, name=name), cnt.astype(x.dtype))


1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
def count_nonzero(x, axis=None, keepdim=False, name=None):
    r"""
    Counts the number of non-zero values in the tensor x along the specified axis.

    Args:
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of count operation on the specified axis of input Tensor `x`, it's data type is `'int64'`.

    Examples:

        .. code-block:: python

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]])
            out1 = paddle.count_nonzero(x)
            # [3]
            out2 = paddle.count_nonzero(x, axis=0)
            # [0, 1, 2]
            out3 = paddle.count_nonzero(x, axis=0, keepdim=True)
            # [[0, 1, 2]]
            out4 = paddle.count_nonzero(x, axis=1)
            # [2, 1, 0]
            out5 = paddle.count_nonzero(x, axis=1, keepdim=True)
            #[[2],
            # [1],
            # [0]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]],
                                  [[0., 2.5, 2.6], [0., 0., 2.4], [2.1, 2.2, 2.3]]])
            out6 = paddle.count_nonzero(y, axis=[1, 2])
            # [3, 6]
            out7 = paddle.count_nonzero(y, axis=[0, 1])
            # [1, 3, 5]
    """


    if axis is not None:
        if isinstance(axis, int):
            axis = [axis]
        dims = len(x.shape)
        for i in range(len(axis)):
            if not isinstance(axis[i], int) or not (axis[i] < dims and axis[i] >= -dims):
                raise ValueError(
                    "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                )

    bool_tensor = paddle.cast(x, 'bool')
    int_tensor = paddle.cast(bool_tensor, 'int64')
    return paddle.sum(int_tensor, axis=axis, keepdim=keepdim, name=name)


1458
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
1459
def add_n(inputs, name=None):
1460
    """
1461
    Sum one or more Tensor of the input.
S
Steffy-zxf 已提交
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
    
    For example:

    .. code-block:: text
    
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
       
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
1496 1497

    Args:
1498
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
1499
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
1500
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1501 1502

    Returns:
S
Steffy-zxf 已提交
1503
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
1504 1505 1506

    Examples:
        .. code-block:: python
1507

1508 1509
            import paddle

S
Steffy-zxf 已提交
1510 1511 1512 1513 1514
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
            # [[8., 10., 12.], 
            #  [14., 16., 18.]]
1515
    """
1516 1517 1518
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
1519 1520
        for x in inputs:
            if not x.is_dense():
1521 1522
                return _legacy_C_ops.sum(inputs, 'use_mkldnn', False)
        return _C_ops.add_n(inputs)
1523
    if _in_legacy_dygraph():
S
Steffy-zxf 已提交
1524 1525
        if isinstance(inputs, Variable):
            inputs = [inputs]
1526
        return _legacy_C_ops.sum(inputs, 'use_mkldnn', False)
1527

S
Steffy-zxf 已提交
1528 1529
    helper = LayerHelper('add_n', **locals())
    check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
1530 1531 1532 1533
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
W
WangXi 已提交
1534
                   ['float16', 'float32', 'float64', 'int32', 'int64'], 'add_n')
1535 1536
    else:
        check_variable_and_dtype(inputs, "inputs", \
W
WangXi 已提交
1537
                ['float16', 'float32', 'float64', 'int32', 'int64'], 'add_n')
1538 1539


1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})

    return out


1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
    
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: The output Tensor of trunc.
    
    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand([2,2],'float32')
            print(input)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0.02331470, 0.42374918],
            #         [0.79647720, 0.74970269]])

            output = paddle.trunc(input)
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0., 0.],
            #         [0., 0.]]))
    '''
J
Jiabin Yang 已提交
1579
    if in_dygraph_mode():
1580
        return  _C_ops.trunc(input)
1581
    else:
J
Jiabin Yang 已提交
1582
        if _in_legacy_dygraph():
1583
            return _legacy_C_ops.trunc(input)
J
Jiabin Yang 已提交
1584 1585 1586
        else:
            inputs = {"X": input}
            attrs = {}
1587

J
Jiabin Yang 已提交
1588 1589 1590
            helper = LayerHelper("trunc", **locals())
            check_variable_and_dtype(input, 'X', ['int32', 'int64', 'float32', 'float64'], 'trunc')
            out = helper.create_variable_for_type_inference(dtype=input.dtype)
1591

J
Jiabin Yang 已提交
1592 1593 1594
            helper.append_op(
                type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": out})
            return out
1595 1596 1597



W
WuHaobo 已提交
1598
def mm(input, mat2, name=None):
1599
    """
S
swtkiwi 已提交
1600

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
1612
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
1613
        mat2 (Tensor): The input tensor which is a Tensor.
1614
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1615 1616

    Returns:
N
Noel 已提交
1617
        Tensor: The product Tensor.
1618

W
wawltor 已提交
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
    ::

        * example 1:

        input: [B, ..., M, K], mat2: [B, ..., K, N]
        out: [B, ..., M, N]

        * example 2:

        input: [B, M, K], mat2: [B, K, N]
        out: [B, M, N]

        * example 3:

        input: [B, M, K], mat2: [K, N]
        out: [B, M, N]

        * example 4:

        input: [M, K], mat2: [K, N]
        out: [M, N]

        * example 5:

        input: [B, M, K], mat2: [K]
        out: [B, M]

        * example 6:

        input: [K], mat2: [K]
        out: [1]

1651 1652 1653 1654
    Examples:
        .. code-block:: python

            import paddle
1655 1656 1657 1658 1659 1660 1661 1662
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
1663

1664
    """
1665
    if in_dygraph_mode():
1666
        return _C_ops.matmul(input, mat2, False, False)
1667
    elif paddle.in_dynamic_mode():
1668
        return _legacy_C_ops.matmul_v2(input, mat2)
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
1706
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
1707
    helper.append_op(
1708
        type='matmul_v2', inputs={'X': input,
1709 1710
                               'Y': mat2}, outputs={'Out': out})
    return out
1711

1712

Y
yaoxuefeng 已提交
1713
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
1714 1715 1716
    """
    **addmm**

1717
    Perform matrix multiplication for input $x$ and $y$.
1718 1719 1720 1721 1722 1723 1724 1725 1726
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
1727 1728 1729
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
1730 1731
        beta (float, optional): Coefficient of $input$, default is 1.
        alpha (float, optional): Coefficient of $x*y$, default is 1.
1732
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1733 1734

    Returns:
1735
        Tensor: The output Tensor of addmm.
1736 1737 1738

    Examples:
        ..  code-block:: python
Y
yaoxuefeng 已提交
1739
            
1740 1741
            import paddle

Y
yaoxuefeng 已提交
1742 1743 1744
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
1745

Y
yaoxuefeng 已提交
1746
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
1747

N
Noel 已提交
1748
            print(out)
1749 1750 1751
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
1752 1753 1754
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
1755 1756
    if not len(x_shape) == len(y_shape) == 2:
        raise ValueError("The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}".format(x_shape, y_shape))
Y
yaoxuefeng 已提交
1757 1758
    if x_shape[1] != y_shape[0]:
        raise ValueError("The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(x_shape, y_shape))
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
                raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
                raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
                raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
            raise ValueError("The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]".format(input_shape, x_shape[0], y_shape[1]))
    else:
        raise ValueError("The dimention of input should be 2 or 1 but receive input's shape: {}".format(input_shape))
Y
yaoxuefeng 已提交
1773 1774 1775



J
Jiabin Yang 已提交
1776
    if in_dygraph_mode():
1777
        return _C_ops.addmm( input, x, y, alpha, beta)
J
Jiabin Yang 已提交
1778 1779
    else:
        if _in_legacy_dygraph():
1780
            out = _legacy_C_ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
J
Jiabin Yang 已提交
1781 1782 1783 1784
            return out
        else:
            inputs = {'Input': input, "X": x, "Y": y}
            attrs = {'Alpha': alpha, 'Beta': beta}
1785

J
Jiabin Yang 已提交
1786 1787 1788 1789 1790
            helper = LayerHelper("addmm", **locals())
            check_variable_and_dtype(input, 'Input', ['float32', 'float64'], 'addmm')
            check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
            check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1791

J
Jiabin Yang 已提交
1792 1793 1794
            helper.append_op(
                type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out})
            return out
1795

S
seemingwang 已提交
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
def renorm(x, p, axis, max_norm):
    """
    **renorm**

    This operator is used to calculate the p-norm along the axis,
    suppose the input-shape on axis dimension has the value of T, then
    the tensor is split into T parts, the p-norm should be calculated for each
    part, if the p-norm for part i is larger than max-norm, then each element 
    in part i should be re-normalized at the same scale so that part-i' p-norm equals
    max-norm exactly, otherwise part-i stays unchanged.

    Args:
        x (Tensor): The input Tensor
        p (float): The power of the norm operation.
        axis (int): the dimension to slice the tensor.
        max-norm (float): the maximal norm limit.

    Returns:
        Tensor: the renorm Tensor.

    Examples:
        ..  code-block:: python
            
            import paddle
            input = [[[2.0,2,-2],[3,0.3,3]],[[2,-8,2],[3.1,3.7,3]]]
            x = paddle.to_tensor(input,dtype='float32')
            y = paddle.renorm(x, 1.0, 2, 2.05)
            print(y)        
    #        [[[ 0.40594056,  0.29285714, -0.41000000],
    #          [ 0.60891086,  0.04392857,  0.61500001]],
    #         [[ 0.40594056, -1.17142856,  0.41000000],
    #          [ 0.62920785,  0.54178572,  0.61500001]]])
    
    """
    input_shape = x.shape
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'renorm')
    if not axis < len(input_shape):
        raise ValueError("the axis:{} should be less then the shape's size {}:{}".format(axis,len(input_shape),input_shape))
    if not axis >=0:
        if not axis >= -1 * len(input_shape):
            raise ValueError("the axis:{} should not be less than -1 * length of input_shape:{}".format(axis,-1 * len(input_shape)))
        axis = axis + len(input_shape)
S
seemingwang 已提交
1838
    if in_dygraph_mode():
1839
        out = _C_ops.renorm(x, p, axis, max_norm)
S
seemingwang 已提交
1840 1841
        return out
    elif _in_legacy_dygraph():
1842
        out = _legacy_C_ops.renorm(x, 'p',p, 'axis',axis, 'max_norm', max_norm)
S
seemingwang 已提交
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
        return out

    inputs = {'X': x}
    attrs = {'p': p, 'axis': axis, 'max_norm':max_norm}

    helper = LayerHelper("renorm", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="renorm", inputs=inputs, attrs=attrs, outputs={"Out": out})
    return out

1855

Z
zhiboniu 已提交
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866

def inner(x, y, name=None):
    """

    Inner product of two input Tensor.
    
    Ordinary inner product for 1-D Tensors, in higher dimensions a sum product over the last axes.

    Args:
        x (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match y's.
        y (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match x's.
1867
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895

    Returns:
        Tensor: The inner-product Tensor, the output shape is x.shape[:-1] + y.shape[:-1].

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 7).reshape((2, 3)).astype('float32')
            y = paddle.arange(1, 10).reshape((3, 3)).astype('float32')
            out = paddle.inner(x, y)
            print(out)
            #        ([[14, 32, 50],
            #         [32, 77, 122]])


    """
    if x.size == 1 or y.size == 1:
        return multiply(x, y)
    else:
        xshape = x.shape
        yshape = y.shape
        dstshape = list(xshape[:-1])+list(yshape[:-1])
        if len(dstshape)==0:
            dstshape = [1]
        nx = x.reshape((-1, xshape[-1]))
        ny = y.reshape((-1, yshape[-1]))

1896
        if in_dygraph_mode():
1897
            return _C_ops.matmul(nx, ny.T, False, False).reshape(dstshape)
1898
        elif paddle.in_dynamic_mode():
1899
            return _legacy_C_ops.matmul_v2(nx, ny.T).reshape(dstshape)
Z
zhiboniu 已提交
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937

        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(val, name,
                                        ['float16', 'float32', 'float64'], 'inner')
            x_shape = list(xshape)
            y_shape = list(yshape)

            # check the inner 2 dimensions
            if x_shape[-1] != y_shape[-1]:
                if not ((x_shape[-1] == -1) or (y_shape[-1] == -1)):
                    raise ValueError(
                        "After performing an optional transpose, Input X's last dim should be "
                        "equal to Y's last dim for multiplication "
                        "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                        % (x_shape, y_shape))

        __check_input(nx, ny)

        helper = LayerHelper('inner', **locals())
        out = helper.create_variable_for_type_inference(dtype=nx.dtype)
        helper.append_op(
            type='matmul_v2', inputs={'X': nx,
                                'Y': ny.T}, outputs={'Out': out})
        return out.reshape(dstshape)


def outer(x, y, name=None):
    """

    Outer product of two Tensors.

    Input is flattened if not already 1-dimensional.

    Args:
        x (Tensor): An N-D Tensor or a Scalar Tensor. 
        y (Tensor): An N-D Tensor or a Scalar Tensor. 
1938
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959

    Returns:
        Tensor: The outer-product Tensor.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 4).astype('float32')
            y = paddle.arange(1, 6).astype('float32')
            out = paddle.outer(x, y)
            print(out)
            #        ([[1, 2, 3, 4, 5],
            #         [2, 4, 6, 8, 10],
            #         [3, 6, 9, 12, 15]])


    """
    nx = x.reshape((-1, 1))
    ny = y.reshape((1, -1))

1960
    if in_dygraph_mode():
1961
        return _C_ops.matmul(nx, ny, False, False)
1962
    elif paddle.in_dynamic_mode():
1963
        return _legacy_C_ops.matmul_v2(nx, ny)
Z
zhiboniu 已提交
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'inner')

    __check_input(nx, ny)

    helper = LayerHelper('outer', **locals())
    out = helper.create_variable_for_type_inference(dtype=nx.dtype)
    helper.append_op(
        type='matmul_v2', inputs={'X': nx,
                               'Y': ny}, outputs={'Out': out})
    return out


1981
def logsumexp(x, axis=None, keepdim=False, name=None):
1982
    r"""
1983
    Calculates the log of the sum of exponentials of ``x`` along ``axis`` .
1984

1985
    .. math::
1986
       logsumexp(x) = \log\sum exp(x)
1987

1988
    Args:
S
Shang Zhizhou 已提交
1989 1990
        x (Tensor): The input Tensor with data type float32 or float64, which 
            have no more than 4 dimensions.
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2007

2008
    Returns:
2009 2010
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
2011

2012
    Examples:
2013

2014
    .. code-block:: python
2015

2016 2017
        import paddle

2018
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
2019 2020
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
2021 2022

    """
2023 2024 2025 2026 2027 2028 2029
    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]
2030

2031 2032 2033
    if in_dygraph_mode():
        if reduce_all:
            axis = range(len(x.shape))
2034
        return _C_ops.logsumexp(x, axis, keepdim, reduce_all)
2035
    if _in_legacy_dygraph():
2036
        return _legacy_C_ops.logsumexp(x, 'axis', axis, 'keepdim', keepdim, 'reduce_all', reduce_all)
2037

2038 2039 2040
    check_variable_and_dtype(x, 'x',
                             ['float32', 'float64'],
                             'logsumexp')
2041

2042
    helper = LayerHelper('logsumexp', **locals())
2043
    attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all':reduce_all}
2044 2045 2046 2047
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs)
    return out
2048

S
swtkiwi 已提交
2049

2050 2051
def inverse(x, name=None):
    """
2052 2053 2054 2055 2056
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
2057
        x (Tensor): The input tensor. The last two
2058 2059 2060
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
2061
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2062 2063

    Returns:
2064
        Tensor: A Tensor holds the inverse of x. The shape and data type
2065
                        is the same as x.
2066 2067 2068 2069 2070

    Examples:
        .. code-block:: python

            import paddle
2071 2072

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
2073 2074
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
2075 2076

    """
2077
    if in_dygraph_mode():
W
wanghuancoder 已提交
2078
        return _C_ops.inverse(x)
2079 2080
    elif paddle.in_dynamic_mode():
        return _legacy_C_ops.inverse(x)
2081

2082 2083
    def _check_input(x):
        check_variable_and_dtype(x, 'x',
2084
                                 ['float32', 'float64'], 'inverse')
2085
        if len(x.shape) < 2:
2086 2087 2088
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
2089 2090
                "x's shape: %s." % (len(x.shape), x.shape))
    _check_input(x)
2091
    helper = LayerHelper('inverse', **locals())
2092
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2093
    helper.append_op(
2094
        type='inverse', inputs={'Input': [x] }, outputs={'Output': [out]})
2095 2096
    return out

2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
def _get_reduce_axis(axis):
    """
    Internal function for max, min, amax and amin. 
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))
    reduce_all = True if axis == None or axis == [] else False
    if axis == None:
        axis = []
    return reduce_all, axis

2115 2116 2117 2118 2119
def _get_reduce_axis_with_tensor(axis):
    if isinstance(axis, Variable):
        return False, axis
    return _get_reduce_axis(axis)

T
Tao Luo 已提交
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
def _get_reduce_all_value(axis):
    """
    Internal function for max, min, amax and amin. 
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))

    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    return reduce_all, axis
2137

2138
def max(x, axis=None, keepdim=False, name=None):
2139
    """
S
swtkiwi 已提交
2140

2141
    Computes the maximum of tensor elements over the given axis.
2142

T
Tao Luo 已提交
2143 2144 2145 2146 2147 2148
    Note:
        The difference between max and amax is: If there are multiple maximum elements,
        amax evenly distributes gradient between these equal values, 
        while max propagates gradient to all of them.


2149
    Args:
2150 2151
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
2152
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
2153
            `x` and return a Tensor with a single element,
2154 2155
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2156
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2157
            output Tensor. The result tensor will have one fewer dimension
2158
            than the `x` unless :attr:`keepdim` is true, default
2159
            value is False.
2160
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2161 2162

    Returns:
2163
        Tensor, results of maximum on the specified axis of input tensor,
2164
        it's data type is the same as `x`.
2165 2166 2167

    Examples:
        .. code-block:: python
2168

2169
            import paddle
2170

N
Noel 已提交
2171
            # data_x is a Tensor with shape [2, 4]
2172
            # the axis is a int element
2173
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2174 2175
                                  [0.1, 0.2, 0.6, 0.7]], 
                                 dtype='float64', stop_gradient=False)
2176
            result1 = paddle.max(x)
2177 2178 2179 2180 2181
            result1.backward()
            print(result1, x.grad) 
            #[0.9], [[0., 0., 0., 1.], [0., 0., 0., 0.]]

            x.clear_grad()
2182
            result2 = paddle.max(x, axis=0)
2183 2184 2185 2186 2187
            result2.backward()
            print(result2, x.grad) 
            #[0.2, 0.3, 0.6, 0.9], [[1., 1., 0., 1.], [0., 0., 1., 0.]]

            x.clear_grad()
2188
            result3 = paddle.max(x, axis=-1)
2189 2190 2191 2192 2193
            result3.backward()
            print(result3, x.grad) 
            #[0.9, 0.7], [[0., 0., 0., 1.], [0., 0., 0., 1.]]

            x.clear_grad()
2194
            result4 = paddle.max(x, axis=1, keepdim=True)
2195 2196 2197
            result4.backward()
            print(result4, x.grad) 
            #[[0.9], [0.7]], [[0., 0., 0., 1.], [0., 0., 0., 1.]]
2198

N
Noel 已提交
2199
            # data_y is a Tensor with shape [2, 2, 2]
2200
            # the axis is list 
2201
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2202 2203
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2204
            result5 = paddle.max(y, axis=[1, 2])
2205 2206 2207 2208 2209
            result5.backward()
            print(result5, y.grad) 
            #[4., 8.], [[[0., 0.], [0., 1.]], [[0., 0.], [0., 1.]]]

            y.clear_grad()
2210
            result6 = paddle.max(y, axis=[0, 1])
2211 2212 2213
            result6.backward()
            print(result6, y.grad) 
            #[7., 8.], [[[0., 0.], [0., 0.]], [[0., 0.], [1., 1.]]]
2214 2215
    """

2216
    reduce_all, axis = _get_reduce_axis_with_tensor(axis)
2217
    if in_dygraph_mode():
2218
        return _C_ops.max(x, axis, keepdim)
2219
    if _in_legacy_dygraph():
2220
        return _legacy_C_ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
2221
                                   'reduce_all', reduce_all)
2222

2223
    helper = LayerHelper('max', **locals())
2224
    check_variable_and_dtype(
2225
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max')
2226 2227
    if not isinstance(axis, Variable) and utils._contain_var(axis):
        axis = utils._convert_to_tensor_list(axis)
2228

2229
    out = helper.create_variable_for_type_inference(
2230
            dtype=x.dtype)
2231 2232
    helper.append_op(
        type='reduce_max',
2233
        inputs={'X': x},
2234 2235
        outputs={'Out': out},
        attrs={
2236 2237
            'dim': axis,
            'keep_dim': keepdim,
2238 2239 2240 2241
            'reduce_all': reduce_all
        })
    return out

2242
def min(x, axis=None, keepdim=False, name=None):
2243
    """
S
swtkiwi 已提交
2244

2245
    Computes the minimum of tensor elements over the given axis
2246

T
Tao Luo 已提交
2247 2248 2249 2250 2251
    Note:
        The difference between min and amin is: If there are multiple minimum elements,
        amin evenly distributes gradient between these equal values, 
        while min propagates gradient to all of them.

2252
    Args:
2253 2254
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
2255
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
2256
            `x` and return a Tensor with a single element,
2257 2258
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2259
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2260
            output Tensor. The result tensor will have one fewer dimension
2261
            than the `x` unless :attr:`keepdim` is true, default
2262
            value is False.
2263
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2264

2265
    Returns:
2266
        Tensor, results of minimum on the specified axis of input tensor,
2267
        it's data type is the same as input's Tensor.
2268

2269 2270 2271
    Examples:
        .. code-block:: python

2272
            import paddle
2273

2274
            # data_x is a Tensor with shape [2, 4]
2275
            # the axis is a int element
2276
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2277 2278
                                  [0.1, 0.2, 0.6, 0.7]], 
                                 dtype='float64', stop_gradient=False)
2279
            result1 = paddle.min(x)
2280 2281 2282 2283 2284
            result1.backward()
            print(result1, x.grad) 
            #[0.1], [[0., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2285
            result2 = paddle.min(x, axis=0)
2286 2287 2288 2289 2290
            result2.backward()
            print(result2, x.grad) 
            #[0.1, 0.2, 0.5, 0.7], [[0., 0., 1., 0.], [1., 1., 0., 1.]]

            x.clear_grad()
2291
            result3 = paddle.min(x, axis=-1)
2292 2293 2294 2295 2296
            result3.backward()
            print(result3, x.grad) 
            #[0.2, 0.1], [[1., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2297
            result4 = paddle.min(x, axis=1, keepdim=True)
2298 2299 2300
            result4.backward()
            print(result4, x.grad) 
            #[[0.2], [0.1]], [[1., 0., 0., 0.], [1., 0., 0., 0.]]
2301

2302
            # data_y is a Tensor with shape [2, 2, 2]
2303
            # the axis is list 
2304
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2305 2306
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2307
            result5 = paddle.min(y, axis=[1, 2])
2308 2309 2310 2311 2312
            result5.backward()
            print(result5, y.grad) 
            #[1., 5.], [[[1., 0.], [0., 0.]], [[1., 0.], [0., 0.]]]

            y.clear_grad()
2313
            result6 = paddle.min(y, axis=[0, 1])
2314 2315 2316
            result6.backward()
            print(result6, y.grad) 
            #[1., 2.], [[[1., 1.], [0., 0.]], [[0., 0.], [0., 0.]]]
2317
    """
2318

2319
    reduce_all, axis = _get_reduce_axis_with_tensor(axis)
2320
    if in_dygraph_mode():
2321
        return _C_ops.min(x, axis, keepdim)
2322 2323

    if _in_legacy_dygraph():
2324
        return _legacy_C_ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
2325
                                   'reduce_all', reduce_all)
2326 2327 2328 2329

    helper = LayerHelper('min', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min')
2330 2331
    if not isinstance(axis, Variable) and utils._contain_var(axis):
        axis = utils._convert_to_tensor_list(axis)
2332 2333

    out = helper.create_variable_for_type_inference(
2334
            dtype=x.dtype)
2335 2336
    helper.append_op(
        type='reduce_min',
2337
        inputs={'X': x},
2338 2339
        outputs={'Out': out},
        attrs={
2340 2341
            'dim': axis,
            'keep_dim': keepdim,
2342 2343 2344 2345
            'reduce_all': reduce_all
        })
    return out

T
Tao Luo 已提交
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
def amax(x, axis=None, keepdim=False, name=None):
    """
    Computes the maximum of tensor elements over the given axis.

    Note:
        The difference between max and amax is: If there are multiple maximum elements,
        amax evenly distributes gradient between these equal values, 
        while max propagates gradient to all of them.

    Args:
2356
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2357
            the dimension is no more than 4.
2358
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
T
Tao Luo 已提交
2359 2360 2361 2362
            If :attr:`None`, compute the maximum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2363
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2364 2365 2366
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2367
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382

    Returns:
        Tensor, results of maximum on the specified axis of input tensor,
        it's data type is the same as `x`.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple maximum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.1, 0.9, 0.9, 0.9],
                                  [0.9, 0.9, 0.6, 0.7]], 
                                 dtype='float64', stop_gradient=False)
T
Tao Luo 已提交
2383 2384 2385 2386 2387
            # There are 5 maximum elements: 
            # 1) amax evenly distributes gradient between these equal values, 
            #    thus the corresponding gradients are 1/5=0.2;
            # 2) while max propagates gradient to all of them, 
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2388 2389 2390 2391 2392
            result1 = paddle.amax(x)
            result1.backward()
            print(result1, x.grad) 
            #[0.9], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2393 2394 2395 2396 2397 2398 2399 2400
            x.clear_grad()
            result1_max = paddle.max(x)
            result1_max.backward()
            print(result1_max, x.grad) 
            #[0.9], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
            x.clear_grad()
            result2 = paddle.amax(x, axis=0)
            result2.backward()
            print(result2, x.grad) 
            #[0.9, 0.9, 0.9, 0.9], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amax(x, axis=-1)
            result3.backward()
            print(result3, x.grad) 
            #[0.9, 0.9], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amax(x, axis=1, keepdim=True)
            result4.backward()
            print(result4, x.grad) 
            #[[0.9], [0.9]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
            # the axis is list 
            y = paddle.to_tensor([[[0.1, 0.9], [0.9, 0.9]],
                                  [[0.9, 0.9], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amax(y, axis=[1, 2])
            result5.backward()
            print(result5, y.grad) 
            #[0.9., 0.9], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amax(y, axis=[0, 1])
            result6.backward()
            print(result6, y.grad) 
            #[0.9., 0.9], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """

2436
    reduce_all, axis = _get_reduce_axis(axis)
2437
    if in_dygraph_mode():
2438
        return _C_ops.amax(x,  axis,  keepdim)
2439
    if _in_legacy_dygraph():
2440
        return _legacy_C_ops.reduce_amax(x, 'dim', axis, 'keep_dim', keepdim, 'reduce_all', reduce_all)
T
Tao Luo 已提交
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469

    helper = LayerHelper('amax', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amax')

    out = helper.create_variable_for_type_inference(
            dtype=x.dtype)
    helper.append_op(
        type='reduce_amax',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all
        })
    return out

def amin(x, axis=None, keepdim=False, name=None):
    """

    Computes the minimum of tensor elements over the given axis

    Note:
        The difference between min and amin is: If there are multiple minimum elements,
        amin evenly distributes gradient between these equal values, 
        while min propagates gradient to all of them.

    Args:
2470
        x (Tensor): A tensor, the data type is float32, float64, int32, int64, 
2471
            the dimension is no more than 4.
2472
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
T
Tao Luo 已提交
2473 2474 2475 2476
            If :attr:`None`, compute the minimum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2477
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2478 2479 2480
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2481
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496

    Returns:
        Tensor, results of minimum on the specified axis of input tensor,
        it's data type is the same as input's Tensor.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple minimum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.2, 0.1, 0.1, 0.1],
                                  [0.1, 0.1, 0.6, 0.7]], 
                                 dtype='float64', stop_gradient=False)
T
Tao Luo 已提交
2497 2498 2499 2500 2501
            # There are 5 minimum elements: 
            # 1) amin evenly distributes gradient between these equal values, 
            #    thus the corresponding gradients are 1/5=0.2;
            # 2) while min propagates gradient to all of them, 
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2502 2503 2504 2505 2506
            result1 = paddle.amin(x)
            result1.backward()
            print(result1, x.grad) 
            #[0.1], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2507 2508 2509 2510 2511 2512 2513 2514
            x.clear_grad()
            result1_min = paddle.min(x)
            result1_min.backward()
            print(result1_min, x.grad) 
            #[0.1], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
            x.clear_grad()
            result2 = paddle.amin(x, axis=0)
            result2.backward()
            print(result2, x.grad) 
            #[0.1, 0.1, 0.1, 0.1], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amin(x, axis=-1)
            result3.backward()
            print(result3, x.grad) 
            #[0.1, 0.1], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amin(x, axis=1, keepdim=True)
            result4.backward()
            print(result4, x.grad) 
            #[[0.1], [0.1]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
            # the axis is list 
            y = paddle.to_tensor([[[0.2, 0.1], [0.1, 0.1]],
                                  [[0.1, 0.1], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amin(y, axis=[1, 2])
            result5.backward()
            print(result5, y.grad) 
            #[0.1., 0.1], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amin(y, axis=[0, 1])
            result6.backward()
            print(result6, y.grad) 
            #[0.1., 0.1], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """

2550
    reduce_all, axis = _get_reduce_axis( axis )
2551
    if in_dygraph_mode():
2552
        return _C_ops.amin(x, axis, keepdim)
2553
    elif _in_legacy_dygraph():
2554
        return _legacy_C_ops.reduce_amin(x, 'dim', axis, 'keep_dim', keepdim, 'reduce_all', reduce_all)
T
Tao Luo 已提交
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
    helper = LayerHelper('amin', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amin')

    out = helper.create_variable_for_type_inference(
            dtype=x.dtype)
    helper.append_op(
        type='reduce_amin',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all
        })
    return out

W
WuHaobo 已提交
2572
def log1p(x, name=None):
2573
    r"""
2574
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
2575

2576
    .. math::
2577
        Out = \ln(x+1)
S
Steffy-zxf 已提交
2578

2579
    Args:
S
Steffy-zxf 已提交
2580
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
2581 2582
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
        
2583
    Returns:
S
Steffy-zxf 已提交
2584
        Tensor, the natural log of the input Tensor computed element-wise.
2585

2586 2587
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
2588

2589
            import paddle
S
Steffy-zxf 已提交
2590 2591 2592 2593

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
2594 2595
    """

2596
    if in_dygraph_mode():
W
wanghuancoder 已提交
2597
        return _C_ops.log1p(x)
2598 2599
    if _in_legacy_dygraph():
        return _legacy_C_ops.log1p(x)
2600 2601 2602 2603 2604

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
2605
    out = helper.create_variable_for_type_inference(dtype)
2606 2607
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
2608

J
joejiong 已提交
2609
def log2(x, name=None):
2610
    r"""
J
joejiong 已提交
2611 2612 2613 2614
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

2615
        Out = \log_2x
J
joejiong 已提交
2616 2617 2618

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2619
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
2647
    if in_dygraph_mode():
W
wanghuancoder 已提交
2648
        return _C_ops.log2(x)
2649 2650
    if _in_legacy_dygraph():
        return _legacy_C_ops.log2(x)
J
joejiong 已提交
2651 2652 2653 2654 2655 2656 2657 2658

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log2")
    inputs = {'X': [x]}
    helper = LayerHelper('log2', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
    return out
W
WuHaobo 已提交
2659

J
joejiong 已提交
2660 2661

def log10(x, name=None):
2662
    r"""
J
joejiong 已提交
2663 2664 2665 2666
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

2667
        Out = \log_10_x
J
joejiong 已提交
2668 2669 2670

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2671
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
2699
    if in_dygraph_mode():
W
wanghuancoder 已提交
2700
        return _C_ops.log10(x)
2701 2702
    if _in_legacy_dygraph():
        return _legacy_C_ops.log10(x)
J
joejiong 已提交
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log10")
    inputs = {'X': [x]}
    helper = LayerHelper('log10', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
    return out


Y
Yang Zhang 已提交
2713
def clip(x, min=None, max=None, name=None):
2714
    """
Y
Yang Zhang 已提交
2715
    This operator clip all elements in input into the range [ min, max ] and return
2716 2717 2718 2719
    a resulting tensor as the following equation:

    .. math::

2720
        Out = MIN(MAX(x, min), max)
2721 2722

    Args:
2723
        x (Tensor): An N-D Tensor with data type float32, float64, int32 or int64.
2724
        min (float|int|Tensor, optional): The lower bound with type ``float`` , ``int`` or a ``Tensor``
2725
            with shape [1] and type ``int32``, ``float32``, ``float64``.
2726
        max (float|int|Tensor, optional): The upper bound with type ``float``, ``int`` or a ``Tensor``
2727
            with shape [1] and type ``int32``, ``float32``, ``float64``.
2728
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2729 2730

    Returns:
Y
Yang Zhang 已提交
2731
        Tensor: A Tensor with the same data type and data shape as input.
2732 2733 2734 2735 2736

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
2737

2738
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
2739 2740
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
2741
            print(out1)
Y
Yang Zhang 已提交
2742 2743
            # [[3.5, 3.5]
            # [4.5, 5.0]]
2744
            print(out2)
Y
Yang Zhang 已提交
2745 2746
            # [[2.5, 3.5]
            # [[4.5, 6.4]
2747 2748
    """

2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
2759

C
chentianyu03 已提交
2760 2761 2762 2763 2764 2765 2766
    if in_dygraph_mode():
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
        min = min_ if min is None else min
        max = max_ if max is None else max
2767
        return _C_ops.clip(x, min, max)
C
chentianyu03 已提交
2768 2769

    if _in_legacy_dygraph():
2770 2771 2772 2773
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
2774 2775
        min = min_ if min is None else min
        max = max_ if max is None else max
2776
        return _legacy_C_ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
2777

2778
    if min is not None:
Y
Yang Zhang 已提交
2779
        check_type(min, 'min', (float, int, Variable), 'clip')
2780 2781
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
2782
                        'clip', '(When the type of min in clip is Variable.)')
2783
    if max is not None:
Y
Yang Zhang 已提交
2784
        check_type(max, 'max', (float, int, Variable), 'clip')
2785 2786
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
2787
                        'clip', '(When the type of max in clip is Variable.)')
2788

2789
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], 'clip')
Y
Yang Zhang 已提交
2790 2791

    inputs = {'X': x}
2792
    attrs = {'min': min_, 'max': max_}
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
2806
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
2807
    output = helper.create_variable_for_type_inference(
Y
Yang Zhang 已提交
2808
        dtype=helper.input_dtype('x'))
2809 2810 2811 2812
    helper.append_op(
        type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs)

    return output
F
Feiyu Chan 已提交
2813

W
WuHaobo 已提交
2814

2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_clip`.
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
        min = min.numpy().item(0)
    if isinstance(max, Variable):
        max = max.numpy().item(0)
    min = fmin if min is None else min
    max = fmax if max is None else max
C
chentianyu03 已提交
2829 2830

    if in_dygraph_mode():
2831
        return _C_ops.clip_(x, min, max)
C
chentianyu03 已提交
2832 2833

    if _in_legacy_dygraph():
2834
        return _legacy_C_ops.clip_(x, "min", min, "max", max)
2835 2836 2837



2838
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
2839
    """
S
swtkiwi 已提交
2840

2841
    Computes the sum along diagonals of the input tensor x.
2842 2843

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
2844

2845
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
2846
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
2847
    of the input tensor x.
L
Li Fuchen 已提交
2848

2849
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
2850 2851 2852 2853

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
2854
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
2855

L
Li Fuchen 已提交
2856
    Args:
2857 2858 2859 2860 2861
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
L
Li Fuchen 已提交
2862 2863

    Returns:
2864
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
2865 2866 2867 2868 2869

    Examples:
        .. code-block:: python

            import paddle
2870

2871 2872 2873
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
2874 2875 2876
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
2877
    """
Z
zyfncg 已提交
2878
    def __check_input(x, offset, axis1, axis2):
2879
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
2880 2881 2882
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

2883
        input_shape = list(x.shape)
L
Li Fuchen 已提交
2884
        assert len(input_shape) >= 2,                     \
2885 2886
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
2887 2888
                len(input_shape)

2889 2890
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
2891

X
XiangGao 已提交
2892
        assert ((0 <= axis1_) and (axis1_ < len(input_shape))),     \
2893 2894
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
2895

X
XiangGao 已提交
2896
        assert ((0 <= axis2_) and (axis2_ < len(input_shape))),   \
2897 2898
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
2899 2900


2901 2902 2903
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
2904

H
hong 已提交
2905
    if in_dygraph_mode():
2906
        return _C_ops.trace( x, offset, axis1, axis2 )
H
hong 已提交
2907 2908

    if _in_legacy_dygraph():
2909
        return _legacy_C_ops.trace(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)
X
XiangGao 已提交
2910

Z
zyfncg 已提交
2911
    __check_input(x, offset, axis1, axis2)
L
Li Fuchen 已提交
2912

Z
zyfncg 已提交
2913
    helper = LayerHelper('trace', **locals())
2914
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
2915 2916 2917

    helper.append_op(
        type='trace',
2918
        inputs={'Input': [x]},
L
Li Fuchen 已提交
2919
        attrs={'offset': offset,
2920 2921
               'axis1': axis1,
               'axis2': axis2},
L
Li Fuchen 已提交
2922 2923 2924
        outputs={'Out': [out]})
    return out

2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
    """
    This OP computes the diagonals of the input tensor x.

    If ``x`` is 2D, returns the diagonal.
    If ``x`` has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2. 
    By default, the 2D planes formed by the first and second axis of the input tensor x.

    The argument ``offset`` determines where diagonals are taken from input tensor x:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
    
    Args:
2940 2941 2942 2943 2944
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989

    Returns:
        Tensor: a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([2,2,3],'float32')
            print(x)
            # Tensor(shape=[2, 2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[[0.45661032, 0.03751532, 0.90191704],
            #          [0.43760979, 0.86177313, 0.65221709]],

            #         [[0.17020577, 0.00259554, 0.28954273],
            #          [0.51795638, 0.27325270, 0.18117726]]])

            out1 = paddle.diagonal(x)
            print(out1)
            #Tensor(shape=[3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.51795638],
            #        [0.03751532, 0.27325270],
            #        [0.90191704, 0.18117726]])

            out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1)
            print(out2)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])

            out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1)
            print(out3)
            #Tensor(shape=[3, 1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.43760979],
            #        [0.86177313],
            #        [0.65221709]])

            out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2)
            print(out4)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])
            
    """
J
Jiabin Yang 已提交
2990
    if in_dygraph_mode():
2991
        return _C_ops.diagonal(x, offset, axis1, axis2)
J
Jiabin Yang 已提交
2992 2993
    else:
        if _in_legacy_dygraph():
2994
            return _legacy_C_ops.diagonal(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)
W
wanghuancoder 已提交
2995

Z
zyfncg 已提交
2996
    def __check_input(x, offset, axis1, axis2):
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
        check_dtype(x.dtype, 'Input',
                    ['bool', 'int32', 'int64', 'float16', 'float32', 'float64'],
                    'diagonal')

        input_shape = list(x.shape)
        assert len(input_shape) >= 2,                     \
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
                len(input_shape)

        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2

        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)

        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)

        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)

Z
zyfncg 已提交
3022
    __check_input(x, offset, axis1, axis2)
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
    helper = LayerHelper('diagonal', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='diagonal',
        inputs={'Input': [x]},
        attrs={'offset': offset,
               'axis1': axis1,
               'axis2': axis2},
               outputs={'Out': [out]})
    return out


F
Feiyu Chan 已提交
3036
@templatedoc(op_type="kron")
W
WuHaobo 已提交
3037
def kron(x, y, name=None):
S
swtkiwi 已提交
3038 3039
    """

3040
    ${comment}
F
Feiyu Chan 已提交
3041 3042

    Args:
3043 3044
        x (Tensor): the fist operand of kron op, data type: float16, float32, float64, int32 or int64.
        y (Tensor): the second operand of kron op, data type: float16, float32, float64, int32 or int64. Its data type should be the same with x.
3045
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
F
Feiyu Chan 已提交
3046 3047

    Returns:
3048
        Tensor: The output of kron, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
3049 3050 3051

    Examples:
        .. code-block:: python
3052

3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
3064
    """
3065
    if _in_legacy_dygraph():
3066
        return _legacy_C_ops.kron(x, y)
3067
    if in_dygraph_mode():
3068
        return _C_ops.kron(x, y)
F
Feiyu Chan 已提交
3069 3070 3071 3072
    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

W
WuHaobo 已提交
3073
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
3074 3075
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
3076 3077 3078 3079


def cumsum(x, axis=None, dtype=None, name=None):
    """
3080 3081
    The cumulative sum of the elements along a given axis. 
    
3082 3083
    Note:
        The first element of the result is the same as the first element of the input. 
3084 3085

    Args:
3086
        x (Tensor): The input tensor needed to be cumsumed.
3087 3088 3089 3090 3091
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3092
        Tensor, the result of cumsum operator. 
3093 3094 3095 3096 3097

    Examples:
        .. code-block:: python
            
            import paddle
3098 3099 3100
            
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
            
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
3117
            # paddle.float64
3118 3119 3120 3121 3122 3123
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3124
        x = cast(x, dtype)
3125

H
hong 已提交
3126
    if in_dygraph_mode():
3127
        if axis is None: axis = -1
3128
        return _C_ops.cumsum(x, axis, flatten, False, False)
H
hong 已提交
3129
    if _in_legacy_dygraph():
3130
        if axis is None:
3131
            return _legacy_C_ops.cumsum(x, 'flatten', flatten)
3132
        else:
3133
            return _legacy_C_ops.cumsum(x, 'axis', axis, 'flatten', flatten)
3134 3135 3136 3137 3138 3139 3140 3141 3142

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
3143

3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201

def logcumsumexp(x, axis=None, dtype=None, name=None):
    r"""
    The logarithm of the cumulative summation of the exponentiation of the elements along a given axis. 

    For summation index j given by `axis` and other indices i, the result is

    .. math::

        logcumsumexp(x)_{ij} = log \sum_{i=0}^{j}exp(x_{ij})
    
    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor.
        axis (int, optional): The dimension to do the operation along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the result of logcumsumexp operator. 

    Examples:
        .. code-block:: python
            
            import paddle
            
            data = paddle.arange(12, dtype='float64')
            data = paddle.reshape(data, (3, 4))

            y = paddle.logcumsumexp(data)
            # [ 0.         1.3132617  2.4076061  3.4401898  4.4519143  5.4561934
            #   6.4577627  7.4583397  8.458551   9.45863   10.458658  11.458669 ]

            y = paddle.logcumsumexp(data, axis=0)
            # [[ 0.        1.        2.        3.      ]
            #  [ 4.01815   5.01815   6.01815   7.01815 ]
            #  [ 8.018479  9.018479 10.018479 11.018479]]
            
            y = paddle.logcumsumexp(data, axis=-1)
            # [[ 0.         1.3132617  2.4076061  3.4401898]
            #  [ 4.         5.3132615  6.407606   7.44019  ]
            #  [ 8.         9.313262  10.407606  11.440189 ]]

            y = paddle.logcumsumexp(data, dtype='float64')
            print(y.dtype)
            # paddle.float64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = cast(x, dtype)

    if in_dygraph_mode():
        if axis is None: axis = -1
3202
        return _C_ops.logcumsumexp(x, axis, flatten, False, False)
3203 3204
    if _in_legacy_dygraph():
        if axis is None:
3205
            return _legacy_C_ops.logcumsumexp(x, 'flatten', flatten)
3206
        else:
3207
            return _legacy_C_ops.logcumsumexp(x, 'axis', axis, 'flatten', flatten)
3208 3209 3210 3211 3212 3213 3214 3215 3216

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "logcumsumexp")

    helper = LayerHelper('logcumsumexp', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='logcumsumexp', inputs={'X': x}, outputs={'Out': out}, attrs={'axis': axis, 'flatten': flatten})
    return out


H
hlygit66666 已提交
3217 3218 3219 3220
def cumprod(x, dim=None, dtype=None, name=None):
    """
    Compute the cumulative product of the input tensor x along a given dimension dim.

3221 3222
    Note:
        The first element of the result is the same as the first element of the input.
H
hlygit66666 已提交
3223 3224 3225 3226 3227

    Args:
        x (Tensor): the input tensor need to be cumproded.
        dim (int): the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank), where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64, complex64, complex128. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
H
hlygit66666 已提交
3228
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
H
hlygit66666 已提交
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264

    Returns:
        Tensor, the result of cumprod operator.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
            # [[ 0  1  2  3 ]
            #  [ 4  5  6  7 ]
            #  [ 8  9  10 11]]

            y = paddle.cumprod(data, dim=0)
            # [[ 0  1   2   3]
            #  [ 0  5  12  21]
            #  [ 0 45 120 231]]

            y = paddle.cumprod(data, dim=-1)
            # [[ 0   0   0    0]
            #  [ 4  20 120  840]
            #  [ 8  72 720 7920]]

            y = paddle.cumprod(data, dim=1, dtype='float64')
            # [[ 0.   0.   0.    0.]
            #  [ 4.  20. 120.  840.]
            #  [ 8.  72. 720. 7920.]]

            print(y.dtype)
            # paddle.float64

    """

    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3265
        x = cast(x, dtype)
H
hlygit66666 已提交
3266

3267
    if in_dygraph_mode():
3268
        return _C_ops.cumprod(x, dim)
3269
    if _in_legacy_dygraph():
3270
        return _legacy_C_ops.cumprod(x, 'dim', dim)
H
hlygit66666 已提交
3271 3272 3273 3274 3275 3276 3277 3278 3279

    check_variable_and_dtype(x, "x", ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'], 'cumprod')
    check_type(dim, 'dim', int, 'cumprod')

    helper = LayerHelper('cumprod', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='cumprod', inputs={'X': x}, outputs={'Out': out}, attrs={'dim': dim})
    return out

J
Jack Zhou 已提交
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
3296

3297
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3298
            out = paddle.isfinite(x)
N
Noel 已提交
3299
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
3300
    """
H
hong 已提交
3301
    if in_dygraph_mode():
3302
        return _C_ops.isfinite( x )
H
hong 已提交
3303
    if _in_legacy_dygraph():
3304
        return _legacy_C_ops.isfinite_v2(x)
J
Jack Zhou 已提交
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
    helper = LayerHelper("isfinite_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite')
    out = helper.create_variable_for_type_inference('bool')
    helper.append_op(type="isfinite_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3327

3328
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3329
            out = paddle.isinf(x)
N
Noel 已提交
3330
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
3331
    """
H
hong 已提交
3332
    if in_dygraph_mode():
3333
        return _C_ops.isinf( x )
H
hong 已提交
3334
    if _in_legacy_dygraph():
3335
        return _legacy_C_ops.isinf_v2(x)
J
Jack Zhou 已提交
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
    helper = LayerHelper("isinf_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3358
            
3359
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3360
            out = paddle.isnan(x)
N
Noel 已提交
3361
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
3362
    """
H
hong 已提交
3363
    if in_dygraph_mode():
3364
        return _C_ops.isnan( x )
H
hong 已提交
3365 3366

    if _in_legacy_dygraph():
3367
        return _legacy_C_ops.isnan_v2(x)
J
Jack Zhou 已提交
3368 3369 3370 3371 3372 3373 3374
    helper = LayerHelper("isnan_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
    return out


G
guofei 已提交
3375 3376 3377 3378 3379
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
3380 3381
        x (Tensor): The input tensor, its data type should be float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`, 
G
guofei 已提交
3382 3383 3384
            multiply all elements of `x` and return a Tensor with a single element, 
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`, 
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
3385 3386
        keepdim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result 
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
3387
        dtype (str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64, 
G
guofei 已提交
3388 3389 3390
            int32, int64. If specified, the input tensor is casted to dtype before operator performed. 
            This is very useful for avoiding data type overflows. The default value is None, the dtype 
            of output is the same as input Tensor `x`.
3391
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
G
guofei 已提交
3392 3393 3394

    Returns:
        Tensor, result of product on the specified dim of input tensor.
J
Jack Zhou 已提交
3395
    
G
guofei 已提交
3396 3397 3398 3399 3400 3401
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
3402 3403
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
            out1 = paddle.prod(x)
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
3420 3421
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod')
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3432
            x = cast(x, dtype)
G
guofei 已提交
3433

3434
    dim = axis
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
    if isinstance(dim, Variable):
        reduce_all = True if axis.shape[0] == len(x.shape) else False
    else:
        if dim is not None and not isinstance(dim, list):
            if isinstance(dim, tuple):
                dim = list(dim)
            elif isinstance(dim, int):
                dim = [dim]
            else:
                raise TypeError(
                    "The type of axis must be int, list or tuple, but received {}".
                    format(type(dim)))
3447

3448 3449 3450
        reduce_all = True if dim is None or len(dim) == 0 or len(dim) == len(x.shape) else False
        if dim is None or len(dim) == 0:
            dim = [0]
3451

3452
    if in_dygraph_mode():
3453
        return _C_ops.reduce_prod(x, dim, keepdim, reduce_all)
3454
    if _in_legacy_dygraph():
3455
        return _legacy_C_ops.reduce_prod(
3456
            x, 'dim', dim, 'keep_dim', keepdim, 'reduce_all', reduce_all)
3457 3458 3459

    helper = LayerHelper('reduce_prod', **locals())
    check_variable_and_dtype(
3460
        x, 'x/input', ['float32', 'float64', 'int32', 'int64'], 'reduce_prod')
3461
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
3462 3463
    if not isinstance(dim, Variable) and utils._contain_var(dim):
        dim = utils._convert_to_tensor_list(dim)
3464 3465
    helper.append_op(
        type='reduce_prod',
3466
        inputs={'X': x},
3467 3468
        outputs={'Out': out},
        attrs={
3469 3470 3471
            'dim': dim,
            'keep_dim': keepdim,
            'reduce_all': reduce_all
3472 3473
        })
    return out
W
WangXi 已提交
3474 3475 3476 3477


def sign(x, name=None):
    """
3478
    Returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
W
WangXi 已提交
3479 3480

    Args:
3481 3482
        x (Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
WangXi 已提交
3483 3484 3485 3486 3487 3488 3489 3490 3491

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

3492
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
3493 3494 3495
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
H
hong 已提交
3496
    if in_dygraph_mode():
3497
        return _C_ops.sign(x)
H
hong 已提交
3498 3499

    if _in_legacy_dygraph():
3500
        return _legacy_C_ops.sign(x)
W
WangXi 已提交
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sign')
    helper = LayerHelper("sign", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out


def tanh(x, name=None):
3512
    r"""
W
WangXi 已提交
3513 3514 3515
    Tanh Activation Operator.

    .. math::
3516
        out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

3531
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
3532
            out = paddle.tanh(x)
N
Noel 已提交
3533
            print(out)
W
WangXi 已提交
3534 3535
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
H
hong 已提交
3536
    if in_dygraph_mode():
3537
        return _C_ops.tanh( x )
H
hong 已提交
3538 3539

    if _in_legacy_dygraph():
3540
        return _legacy_C_ops.tanh(x)
W
WangXi 已提交
3541 3542

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanh')
S
ShenLiang 已提交
3543
    check_type(x, 'x', (Variable), 'tanh')
W
WangXi 已提交
3544 3545 3546 3547
    helper = LayerHelper('tanh', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
    return out
S
Steffy-zxf 已提交
3548

3549
@inplace_apis_in_dygraph_only
3550 3551 3552 3553 3554
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
3555
    if in_dygraph_mode():
3556 3557
        return _C_ops.tanh_( x )
    return _legacy_C_ops.tanh_(x)
3558 3559


S
Steffy-zxf 已提交
3560 3561
def increment(x, value=1.0, name=None):
    """
3562
    The API is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
S
Steffy-zxf 已提交
3563 3564 3565 3566
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
3567
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
S
Steffy-zxf 已提交
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
H
hong 已提交
3583
    if in_dygraph_mode():
3584
        return _C_ops.increment_(x, value)
H
hong 已提交
3585 3586

    if _in_legacy_dygraph():
3587
        return _legacy_C_ops.increment(x, 'step', value)
S
Steffy-zxf 已提交
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
    helper = LayerHelper("increment", **locals())
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
        outputs={'Out': [x]},
        attrs={'step': float(value)})
    return x
3598 3599 3600 3601


def all(x, axis=None, keepdim=False, name=None):
    """
3602
    Computes the ``logical and`` of tensor elements over the given dimension.
3603 3604 3605 3606 3607

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3608
            Tensor with a single element, otherwise must be in the
3609 3610 3611 3612 3613 3614
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3615
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3616 3617 3618 3619 3620 3621 3622 3623

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3624

N
Noel 已提交
3625
            # x is a bool Tensor with following elements:
3626 3627
            #    [[True, False]
            #     [True, True]]
C
Chen Long 已提交
3628
            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
3629
            print(x)
S
syyxsxx 已提交
3630
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3631

3632 3633 3634
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
C
Chen Long 已提交
3635

3636 3637 3638
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
C
Chen Long 已提交
3639 3640

            # keepdim=False, out3 should be [False, True], out.shape should be (2,)
3641 3642
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
C
Chen Long 已提交
3643 3644 3645

            # keepdim=True, out4 should be [[False], [True]], out.shape should be (2,1)
            out4 = paddle.all(x, axis=1, keepdim=True) # [[False], [True]]
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

3660 3661 3662
    if in_dygraph_mode():
        if reduce_all_flag:
            axis = range(len(x.shape))
3663
        return _C_ops.all(x, axis, keepdim)
3664 3665

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3666
        axis = axis if axis != None and axis != [] else [0]
3667
        return _legacy_C_ops.reduce_all(x, 'dim', axis, 'keep_dim', keepdim,
W
wanghuancoder 已提交
3668 3669
                                       'reduce_all', reduce_all_flag)

3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    check_variable_and_dtype(x, 'x', ['bool'], 'all')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')

    helper = LayerHelper('all', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_all',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out


def any(x, axis=None, keepdim=False, name=None):
    """
C
Chen Long 已提交
3692
    Computes the ``logical or`` of tensor elements over the given dimension, and return the result.
3693 3694 3695 3696 3697

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3698
            Tensor with a single element, otherwise must be in the
3699 3700 3701 3702 3703 3704
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3705
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3706 3707 3708 3709 3710 3711 3712 3713

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3714 3715 3716

            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
            x = paddle.assign(x)
3717
            print(x)
S
syyxsxx 已提交
3718
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3719 3720 3721 3722
            # x is a bool Tensor with following elements:
            #    [[True, False]
            #     [True, True]]

3723 3724 3725
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
C
Chen Long 已提交
3726

3727 3728
            # out2 should be [True, True]
            out2 = paddle.any(x, axis=0)  # [True, True]
3729
            print(out2)
C
Chen Long 已提交
3730 3731

            # keepdim=False, out3 should be [True, True], out.shape should be (2,)
3732
            out3 = paddle.any(x, axis=-1)  # [True, True]
3733
            print(out3)
C
Chen Long 已提交
3734 3735 3736 3737

            # keepdim=True, result should be [[True], [True]], out.shape should be (2,1)
            out4 = paddle.any(x, axis=1, keepdim=True)  # [[True], [True]]
            print(out4) 
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

3751 3752 3753
    if in_dygraph_mode():
        if reduce_all_flag:
            axis = range(len(x.shape))
3754
        return _C_ops.any(x, axis, keepdim)
3755 3756

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3757
        axis = axis if axis != None and axis != [] else [0]
3758
        return _legacy_C_ops.reduce_any(x, 'dim', axis, 'keep_dim', keepdim,
W
wanghuancoder 已提交
3759 3760
                                       'reduce_all', reduce_all_flag)

3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }

    check_variable_and_dtype(x, 'x', ['bool'], 'any')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')

    helper = LayerHelper('any', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_any',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out
L
Leo Chen 已提交
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806

def broadcast_shape(x_shape, y_shape):
    """
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape, please refer to :ref:`user_guide_broadcasting` for more details.

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
        

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
            
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)
3807 3808 3809 3810 3811 3812

def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
C
Chen Long 已提交
3813
        x (Tensor): The input Tensor which hold the complex numbers. 
3814
            Optional data types are: complex64, complex128, float32, float64, int32 or int64.
3815
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3816 3817

    Returns:
C
Chen Long 已提交
3818
        out (Tensor): The conjugate of input. The shape and data type is the same with input. If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.
3819 3820 3821 3822 3823

    Examples:
        .. code-block:: python

          import paddle
C
Chen Long 已提交
3824
          
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
          data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1+1j), (2+2j), (3+3j)],
          #        [(4+4j), (5+5j), (6+6j)]])

          conj_data=paddle.conj(data)
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1-1j), (2-2j), (3-3j)],
          #        [(4-4j), (5-5j), (6-6j)]])

    """
H
hong 已提交
3836
    if in_dygraph_mode():
3837
        return _C_ops.conj(x)
H
hong 已提交
3838

Z
zhiboniu 已提交
3839
    if paddle.in_dynamic_mode():
3840
        return _legacy_C_ops.conj(x)
3841 3842 3843 3844 3845 3846 3847 3848 3849

    check_variable_and_dtype(x, "x", ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'], 'conj')

    helper = LayerHelper('conj', **locals())
    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())

    helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
    return out
3850

Z
zyfncg 已提交
3851 3852 3853 3854 3855 3856 3857 3858 3859
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
3860
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zyfncg 已提交
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            res = paddle.digamma(data)
            print(res)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[-0.57721591,  0.03648996],
            #        [ nan       ,  5.32286835]])
    """

J
Jiabin Yang 已提交
3877
    if in_dygraph_mode():
3878
        return _C_ops.digamma(x)
J
Jiabin Yang 已提交
3879 3880
    else:
        if _in_legacy_dygraph():
3881
            return _legacy_C_ops.digamma(x)
Z
zyfncg 已提交
3882 3883 3884 3885 3886 3887 3888

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'digamma')
    helper = LayerHelper('digamma', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
    return out

3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915
def lgamma(x, name=None):
    r"""
    Calculates the lgamma of the given input tensor, element-wise.

    This operator performs elementwise lgamma for input $X$.
    :math:`out = log\Gamma(x)`


    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the lgamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.lgamma(x)
            print(out)
            # [1.31452441, 1.76149750, 2.25271273, 1.09579802]
    """
    if in_dygraph_mode():
        return _C_ops.lgamma(x)
3916 3917
    elif _in_legacy_dygraph():
        return _legacy_C_ops.lgamma(x)
3918 3919 3920 3921 3922 3923 3924 3925

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'lgamma')
    helper = LayerHelper('lgamma', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='lgamma', inputs={'X': x}, outputs={'Out': out})
    return out


3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.neg(x)
            print(out)
            # [0.4 0.2 -0.1 -0.3]
    """

Z
zhiboniu 已提交
3948
    return scale(x, scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name)
R
ronnywang 已提交
3949

3950
def atan2(x, y, name=None):
R
ronnywang 已提交
3951
    r"""
3952
    Element-wise arctangent of x/y with consideration of the quadrant.
R
ronnywang 已提交
3953 3954 3955 3956

    Equation:
        .. math::

3957 3958 3959 3960 3961 3962 3963 3964
            atan2(x,y)=\left\{\begin{matrix}
            & tan^{-1}(\frac{x}{y}) & y > 0 \\
            & tan^{-1}(\frac{x}{y}) + \pi & x>=0, y < 0 \\
            & tan^{-1}(\frac{x}{y}) - \pi & x<0, y < 0 \\
            & +\frac{\pi}{2} & x>0, y = 0 \\
            & -\frac{\pi}{2} & x<0, y = 0 \\
            &\text{undefined} & x=0, y = 0
            \end{matrix}\right.
R
ronnywang 已提交
3965 3966

    Args:
3967 3968
        x (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
        y (Tensor): An N-D Tensor, must have the same type as `x`.
R
ronnywang 已提交
3969 3970 3971 3972 3973 3974 3975 3976
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).

    Examples:
        .. code-block:: python

3977
            import paddle
R
ronnywang 已提交
3978

3979 3980 3981
            x = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  1,  1, -1])
R
ronnywang 已提交
3982

3983 3984 3985
            y = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  -1,  1, 1])
R
ronnywang 已提交
3986

3987 3988 3989
            out = paddle.atan2(x, y)
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-2.35619450,  2.35619450,  0.78539819, -0.78539819])
R
ronnywang 已提交
3990 3991 3992

    """

J
Jiabin Yang 已提交
3993
    if in_dygraph_mode():
3994
        return _C_ops.atan2( x, y)
R
ronnywang 已提交
3995
    else:
J
Jiabin Yang 已提交
3996
        if _in_legacy_dygraph():
3997
            return _legacy_C_ops.atan2(x, y)
J
Jiabin Yang 已提交
3998 3999 4000
        else:
            check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float16', 'float32', 'float64'], 'atan2')
            check_variable_and_dtype(y, 'y', ['int32', 'int64', 'float16', 'float32', 'float64'], 'atan2')
R
ronnywang 已提交
4001

J
Jiabin Yang 已提交
4002 4003 4004 4005 4006 4007
            helper = LayerHelper('atan2', **locals())
            inputs = {'X1' : x, 'X2' : y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                    type='atan2', inputs=inputs, outputs={'Out': out})
            return out
A
andyjpaddle 已提交
4008

W
wangzhen38 已提交
4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
def logit(x, eps=None, name=None):
    r"""
    This function generates a new tensor with the logit of the elements of input x. x is clamped to [eps, 1-eps] when eps is not zero. When eps is zero and x < 0 or x > 1, the function will yields NaN.

    .. math::
 
        logit(x) = ln(\frac{x}{1 - x})

    where

    .. math::

        x_i=
            \left\{\begin{array}{rcl}
                x_i & &\text{if } eps == Default \\
                eps & &\text{if } x_i < eps \\
                x_i & &\text{if } eps <= x_i <= 1-eps \\
                1-eps & &\text{if } x_i > 1-eps
            \end{array}\right.

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        eps (float, optional):  the epsilon for input clamp bound. Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out(Tensor): A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0.2635, 0.0106, 0.2780, 0.2097, 0.8095])
            out1 = paddle.logit(x)
            print(out1)
            # [-1.0277, -4.5365, -0.9544, -1.3269,  1.4468]  

    """

    if eps == None:
        eps = 0.0
4052
    if _in_legacy_dygraph():
4053
        return _legacy_C_ops.logit(x, 'eps', eps)
4054
    if in_dygraph_mode():
4055
        return _C_ops.logit(x, eps)
W
wangzhen38 已提交
4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'logit')
    helper = LayerHelper("logit", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logit',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'eps': eps})
    return out

4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
def lerp(x, y, weight, name=None):
    r"""
    Does a linear interpolation between x and y based on weight.

    Equation:
        .. math::

            lerp(x, y, weight) = x + weight * (y - x).

    Args:
4076 4077 4078
        x (Tensor): An N-D Tensor with starting points, the data type is float32, float64.
        y (Tensor): An N-D Tensor with ending points, the data type is float32, float64.
        weight (float|Tensor): The weight for the interpolation formula. When weight is Tensor, the data type is float32, float64.
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

            import paddle
            
            x = paddle.arange(1., 5., dtype='float32')
            y = paddle.empty([4], dtype='float32')
            y.fill_(10.)
4092
            out = paddle.lerp(x, y, 0.5)
4093
            # out: [5.5, 6., 6.5, 7.]
4094 4095

    """
H
hong 已提交
4096
    if in_dygraph_mode():
4097
        check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
H
hong 已提交
4098 4099 4100
        if isinstance(weight, float):
            weight = paddle.to_tensor(weight, dtype=x.dtype)

4101
        return _C_ops.lerp( x, y, weight)
H
hong 已提交
4102
    if _in_legacy_dygraph():
4103 4104
        if isinstance(weight, float):
            weight = paddle.to_tensor(weight, dtype=x.dtype)
4105
        return _legacy_C_ops.lerp(x, y, weight)
4106

4107 4108 4109
    if isinstance(weight, float):
        weight = paddle.full(shape=[1], fill_value=weight, dtype=x.dtype)

4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'lerp')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'lerp')
    check_variable_and_dtype(weight, 'weight', ['float32', 'float64'], 'lerp')

    helper = LayerHelper('lerp', **locals())
    inputs = {'X': x, 'Y': y, 'Weight': weight}
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='lerp', inputs=inputs, outputs={'Out': out})
    return out

@inplace_apis_in_dygraph_only
def lerp_(x, y, weight, name=None):
    r"""
    Inplace version of ``lerp`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_lerp`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
    if isinstance(weight, float):
        weight = paddle.to_tensor([weight], dtype=x.dtype)
    elif isinstance(weight, (paddle.Tensor, Variable)):
        out_shape = broadcast_shape(out_shape, weight.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))
4134
    if in_dygraph_mode():
4135 4136
        return _C_ops.lerp_( x, y, weight)
    return _legacy_C_ops.lerp_(x, y, weight)
4137

W
wuhuanzhou 已提交
4138 4139
def erfinv(x, name=None):
    r"""
4140
    The inverse error function of x.
W
wuhuanzhou 已提交
4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163

    Equation:
        .. math::

            erfinv(erf(x)) = x.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

            import paddle
            
            x = paddle.to_tensor([0, 0.5, -1.], dtype="float32")
            out = paddle.erfinv(x)
            # out: [0, 0.4769, -inf]

    """
H
hong 已提交
4164
    if in_dygraph_mode():
4165
        return _C_ops.erfinv( x )
H
hong 已提交
4166

W
wuhuanzhou 已提交
4167 4168
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'erfinv')

Z
zhiboniu 已提交
4169
    if paddle.in_dynamic_mode():
4170
        return _legacy_C_ops.erfinv(x)
W
wuhuanzhou 已提交
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183

    helper = LayerHelper('erfinv', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='erfinv', inputs={'X': x}, outputs={'Out': out})
    return out

@inplace_apis_in_dygraph_only
def erfinv_(x, name=None):
    r"""
    Inplace version of ``erfinv`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_erfinv`.
    """
    check_type(x, 'x', (paddle.Tensor, Variable), 'erfinv')
4184
    if in_dygraph_mode():
4185 4186
        return _C_ops.erfinv_( x )
    return _legacy_C_ops.erfinv_(x)
W
wuhuanzhou 已提交
4187

4188
def rad2deg(x, name=None):
4189
    r"""
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
    Convert each of the elements of input x from angles in radians to degrees.
    
    Equation:
        .. math::

            rad2deg(x)=180/ \pi * x

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
            x1 = paddle.to_tensor([3.142, -3.142, 6.283, -6.283, 1.570, -1.570])
            result1 = paddle.rad2deg(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [180.02334595, -180.02334595,  359.98937988, -359.98937988,
            #           9.95437622 , -89.95437622])

            x2 = paddle.to_tensor(np.pi/2)
            result2 = paddle.rad2deg(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [90.])
                     
            x3 = paddle.to_tensor(1)
            result3 = paddle.rad2deg(x3)
            print(result3)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [57.29578018])
    """
    rad2deg_scale = 180 / np.pi
4230 4231 4232
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4233
        return _C_ops.scale(x, rad2deg_scale, 0.0, True)
4234
    elif paddle.in_dynamic_mode():
4235 4236
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4237
        return _legacy_C_ops.scale(x, 'scale', rad2deg_scale)
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251
    else:
        check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float32', 'float64'], 'rad2deg')
        helper = LayerHelper('rad2deg', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            out_cast = helper.create_variable_for_type_inference(dtype=paddle.float32)
            helper.append_op(
                    type='cast', inputs={'X':x}, outputs={'Out': out_cast}, attrs={'in_dtype': x.dtype,'out_dtype': paddle.float32})
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
        helper.append_op(
            type='scale', inputs={'X':out_cast}, outputs={'Out': out}, attrs={'scale': rad2deg_scale})
        return out

def deg2rad(x, name=None):
4252
    r"""
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286
    Convert each of the elements of input x from degrees to angles in radians.
    
    Equation:
        .. math::

            deg2rad(x)=\pi * x / 180

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
            x1 = paddle.to_tensor([180.0, -180.0, 360.0, -360.0, 90.0, -90.0])
            result1 = paddle.deg2rad(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274, -3.14159274,  6.28318548, -6.28318548,  1.57079637,
            #           -1.57079637])

            x2 = paddle.to_tensor(180)
            result2 = paddle.deg2rad(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274])
    """
    deg2rad_scale = np.pi / 180.0
4287 4288 4289
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4290
        return _C_ops.scale(x, deg2rad_scale, 0.0, True)
4291
    elif paddle.in_dynamic_mode():
4292 4293
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4294
        return _legacy_C_ops.scale(x, 'scale', deg2rad_scale)
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
    else:
        check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float32', 'float64'], 'deg2rad')
        helper = LayerHelper('deg2rad', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            out_cast = helper.create_variable_for_type_inference(dtype=paddle.float32)
            helper.append_op(
                    type='cast', inputs={'X':x}, outputs={'Out': out_cast}, attrs={'in_dtype': x.dtype,'out_dtype': paddle.float32})
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
        helper.append_op(
            type='scale', inputs={'X':out_cast}, outputs={'Out': out}, attrs={'scale': deg2rad_scale})
        return out
A
andyjpaddle 已提交
4307

T
Tao Luo 已提交
4308 4309 4310 4311 4312 4313 4314 4315
def gcd(x, y, name=None):
    """
    Computes the element-wise greatest common divisor (GCD) of input |x| and |y|.
    Both x and y must have integer types.
    
    Note:
        gcd(0,0)=0, gcd(0, y)=|y|

T
Tao Luo 已提交
4316 4317
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4318
    Args:
T
Tao Luo 已提交
4319 4320
        x (Tensor): An N-D Tensor, the data type is int32,int64. 
        y (Tensor): An N-D Tensor, the data type is int32,int64. 
T
Tao Luo 已提交
4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
            
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.gcd(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])

T
Tao Luo 已提交
4337
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
            paddle.gcd(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20, 1 , 2 , 1 , 4 , 5])

            x4 = paddle.to_tensor(0)
            paddle.gcd(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20])

            paddle.gcd(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
            
            x5 = paddle.to_tensor(-20)
            paddle.gcd(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])
    """
    shape = paddle.broadcast_shape(x.shape, y.shape)
    x = paddle.broadcast_to(x, shape)
    y = paddle.broadcast_to(y, shape)
    x = paddle.abs(x)
    y = paddle.abs(y)

    def _gcd_cond_fn(x, y):
        return paddle.any(y != 0)

    def _gcd_body_fn(x, y):
        # paddle.mod will raise an error when any element of y is 0. To avoid
        # that, we change those zeros to ones. Their values don't matter because
        # they won't be used.
        y_not_equal_0 = (y != 0)
        y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype))
        x, y = (paddle.where(y_not_equal_0, y, x),
                  paddle.where(y_not_equal_0, paddle.mod(x, y_safe),paddle.zeros(y.shape, y.dtype)))
        return (paddle.where(x < y, y, x), paddle.where(x < y, x, y))

Z
zhiboniu 已提交
4375
    if paddle.in_dynamic_mode():
T
Tao Luo 已提交
4376 4377 4378 4379 4380
        while _gcd_cond_fn(x, y):
            x, y = _gcd_body_fn(x, y)

        return x
    else:
T
Tao Luo 已提交
4381 4382
        check_variable_and_dtype(x, 'x', ['int32', 'int64'], 'gcd')
        check_variable_and_dtype(y, 'y', ['int32', 'int64'], 'gcd')
T
Tao Luo 已提交
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
        out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y])
        return out

def lcm(x, y, name=None):
    """
    Computes the element-wise least common multiple (LCM) of input |x| and |y|.
    Both x and y must have integer types.
    
    Note:
        lcm(0,0)=0, lcm(0, y)=0

T
Tao Luo 已提交
4394 4395
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4396
    Args:
T
Tao Luo 已提交
4397 4398
        x (Tensor): An N-D Tensor, the data type is int32,int64. 
        y (Tensor): An N-D Tensor, the data type is int32,int64. 
T
Tao Luo 已提交
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
            
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.lcm(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])

T
Tao Luo 已提交
4415
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
            paddle.lcm(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0, 20, 20, 60, 20, 20])

            x4 = paddle.to_tensor(0)
            paddle.lcm(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])

            paddle.lcm(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
            
            x5 = paddle.to_tensor(-20)
            paddle.lcm(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])
    """
    d = paddle.gcd(x, y)
    # paddle.mod will raise an error when any element of y is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    d_equal_0 = paddle.equal(d, 0)
    d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d)
    out = paddle.where(d_equal_0, paddle.zeros(d.shape, d.dtype), paddle.abs(x * y) // d_safe)
    return out

A
andyjpaddle 已提交
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
    r"""
    Computes the n-th forward difference along the given axis.
    The first-order differences is computed by using the following formula: 

    .. math::

        out[i] = x[i+1] - x[i]
    
    Higher-order differences are computed by using paddle.diff() recursively. 
    Only n=1 is currently supported.

    Args:
4456 4457
        x (Tensor): The input tensor to compute the forward difference on
        n (int, optional): The number of times to recursively compute the difference. 
A
andyjpaddle 已提交
4458
                          Only support n=1. Default:1
4459 4460
        axis (int, optional): The axis to compute the difference along. Default:-1
        prepend (Tensor, optional): The tensor to prepend to input along axis before computing the difference.
A
andyjpaddle 已提交
4461 4462
                                   It's dimensions must be equivalent to that of x, 
                                   and its shapes must match x's shape except on axis.
4463
        append (Tensor, optional): The tensor to append to input along axis before computing the difference, 
A
andyjpaddle 已提交
4464 4465
                                   It's dimensions must be equivalent to that of x, 
                                   and its shapes must match x's shape except on axis.
4466
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
A
andyjpaddle 已提交
4467 4468 4469 4470 4471 4472 4473 4474
    
    Returns:
        Tensor: The output tensor with same dtype with x.

    Examples:
        .. code-block:: python

            import paddle
4475

A
andyjpaddle 已提交
4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
            x = paddle.to_tensor([1, 4, 5, 2])
            out = paddle.diff(x)
            print(out)
            # out:
            # [3, 1, -3]

            y = paddle.to_tensor([7, 9])
            out = paddle.diff(x, append=y)
            print(out)
            # out: 
            # [3, 1, -3, 5, 2]

            z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            out = paddle.diff(z, axis=0)
            print(out)
            # out:
            # [[3, 3, 3]]
            out = paddle.diff(z, axis=1)
            print(out)
            # out:
            # [[1, 1], [1, 1]]
    """

    if axis < 0:
        axis = axis + len(x.shape)
    if axis > len(x.shape):
        axis = len(x.shape)
    if axis < 0:
        axis = 0
    dtype = x.dtype
    axes = [axis]
    infer_flags = list(1 for i in range(len(axes)))
4508
    if in_dygraph_mode():
A
andyjpaddle 已提交
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
4521
            new_input = _C_ops.concat(input_list, axis)
A
andyjpaddle 已提交
4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
4534
        input_front = _C_ops.slice(new_input, axes, starts_1, ends_1, infer_flags,
4535
                                            [])
A
andyjpaddle 已提交
4536 4537 4538 4539
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
4540
        input_back = _C_ops.slice(new_input, axes, starts_2, ends_2, infer_flags,
4541
                                            [])
4542 4543

        if x.dtype == paddle.bool:
4544
            return _C_ops.logical_xor(input_back, input_front)
4545
        else:
4546
            return _C_ops.subtract(input_back, input_front)
4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
    elif _in_legacy_dygraph():
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
            new_input = _varbase_creator()
4561
            _legacy_C_ops.concat(input_list, new_input, 'axis', axis)
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
4574
        input_front = _legacy_C_ops.slice(new_input, None, None, None, None, 'axes', axes, \
4575 4576 4577 4578 4579
                'infer_flags', infer_flags, *attrs_1)
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
4580
        input_back = _legacy_C_ops.slice(new_input, None, None, None, None, 'axes', axes, \
4581
                'infer_flags', infer_flags, *attrs_2)
A
andyjpaddle 已提交
4582 4583

        if x.dtype == paddle.bool:
4584
            return _legacy_C_ops.logical_xor(input_back, input_front)
A
andyjpaddle 已提交
4585
        else:
4586
            return elementwise_sub(input_back, input_front, axis=axis)
A
andyjpaddle 已提交
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64', 'bool', 'int32', 'int64'], 'diff')
        check_type(axis, 'axis', (int), 'diff')
        helper = LayerHelper('diff', **locals())
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True

        if has_pend:
            new_input = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='concat', inputs={'X': input_list}, outputs={'Out': [new_input]}, attrs={'axis': axis}
            )
        else:
            new_input = x

        dim_len = new_input.shape[axis]
        attrs_1 = {'axes': axes}
        starts_1 = [0]
        ends_1 = [dim_len - 1]
        attrs_1['starts'] = starts_1
        attrs_1['ends'] = ends_1
        input_front = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='slice', inputs={'Input': new_input}, attrs=attrs_1, outputs={'Out': input_front}
        )
        attrs_2 = {'axes': axes}
        starts_2 = [1]
        ends_2 = [dim_len]
        attrs_2['starts'] = starts_2
        attrs_2['ends'] = ends_2
        input_back = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='slice', inputs={'Input': new_input}, attrs=attrs_2, outputs={'Out': input_back}
        )

        if dtype == paddle.bool:
            out = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='logical_xor', inputs={"X": input_back, "Y": input_front}, outputs={"Out": out}
            )
        else:
Z
zhiboniu 已提交
4637
            out = elementwise_sub(input_back, input_front, axis=axis)
A
andyjpaddle 已提交
4638 4639

        return out
F
Feiyu Chan 已提交
4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655

def angle(x, name=None):
    r"""
    Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while 
    for negative real numbers, the angle is :math:`\pi`.

    Equation:
        .. math::

            angle(x)=arctan2(x.imag, x.real)

    Args:
        x (Tensor): An N-D Tensor, the data type is complex64, complex128, or float32, float64 .
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4656
        Tensor: An N-D Tensor of real data type with the same precision as that of x's data type.
F
Feiyu Chan 已提交
4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32')
            y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32')
            z = x + 1j * y
            print(z.numpy())
            # [[-2.-2.j -2.-1.j -2.+0.j -2.+1.j]
            #  [-1.-2.j -1.-1.j -1.+0.j -1.+1.j]
            #  [ 0.-2.j  0.-1.j  0.+0.j  0.+1.j]
            #  [ 1.-2.j  1.-1.j  1.+0.j  1.+1.j]]

            theta = paddle.angle(z)
            print(theta.numpy())
            # [[-2.3561945 -2.6779451  3.1415927  2.6779451]
            #  [-2.0344439 -2.3561945  3.1415927  2.3561945]
            #  [-1.5707964 -1.5707964  0.         1.5707964]
            #  [-1.1071488 -0.7853982  0.         0.7853982]]
    """

W
WangZhen 已提交
4680
    if in_dygraph_mode():
F
Feiyu Chan 已提交
4681
        return _C_ops.angle(x)
4682 4683
    elif paddle.in_dynamic_mode():
        return _legacy_C_ops.angle(x)
F
Feiyu Chan 已提交
4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694

    check_variable_and_dtype(x, 'x',
        ['float32', 'float64', 'complex64', 'complex128'], 'angle')
    op_type = "angle"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
        dtype=_complex_to_real_dtype(x.dtype))
    outputs = {"Out": out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
4695

4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
def heaviside(x, y, name=None):
    """
    Computes the Heaviside step function determined by corresponding element in y for each element in x. The equation is

    .. math::
        heaviside(x, y)=
            \left\{
                \\begin{array}{lcl}
                0,& &\\text{if} \ x < 0, \\\\
                y,& &\\text{if} \ x = 0, \\\\
                1,& &\\text{if} \ x > 0.
                \end{array}
            \\right.

4710
    Note:
4711 4712 4713
        ``paddle.heaviside`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.

    Args:
4714 4715
        x (Tensor): The input tensor of Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
        y (Tensor): The tensor that determines a Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x and y have different shapes and are broadcastable, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-0.5, 0, 0.5])
            y = paddle.to_tensor([0.1])
            paddle.heaviside(x, y)
            #    [0.        , 0.10000000, 1.        ]
            x = paddle.to_tensor([[-0.5, 0, 0.5], [-0.5, 0.5, 0]])
            y = paddle.to_tensor([0.1, 0.2, 0.3])
            paddle.heaviside(x, y)
            #    [[0.        , 0.20000000, 1.        ],
            #     [0.        , 1.        , 0.30000001]]
     """
    op_type = 'elementwise_heaviside'
    axis = -1
    act = None
    if _non_static_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

4743 4744 4745 4746 4747 4748
def frac(x, name=None):
    """
    This API is used to return the fractional portion of each element in input.

    Args:
        x (Tensor): The input tensor, which data type should be int32, int64, float32, float64.
4749
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4750 4751 4752 4753 4754

    Returns:
        Tensor: The output Tensor of frac.

    Examples:
4755
        .. code-block:: python
4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778

            import paddle
            import numpy as np

            input = paddle.rand([3, 3], 'float32')
            print(input.numpy())
            # [[ 1.2203873  -1.0035421  -0.35193074]
            #  [-0.00928353  0.58917075 -0.8407828 ]
            #  [-1.5131804   0.5850153  -0.17597814]]

            output = paddle.frac(input)
            print(output.numpy())
            # [[ 0.22038734 -0.00354207 -0.35193074]
            #  [-0.00928353  0.58917075 -0.8407828 ]
            #  [-0.5131804   0.5850153  -0.17597814]]
    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
    if x.dtype not in [paddle.int32, paddle.int64, paddle.float32, paddle.float64]:
        raise TypeError(
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}".format(x.dtype))
    if in_dygraph_mode():
4779 4780
        y = _C_ops.trunc(x)
        return _C_ops.subtract(x, y)
4781 4782
    else:
        if _in_legacy_dygraph():
4783
            y = _legacy_C_ops.trunc(x)
4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
            return _elementwise_op_in_dygraph(
                x, y, axis=axis, act=act, op_name=op_type)
        else:
            inputs = {"X": x}
            attrs = {}

            helper = LayerHelper("trunc", **locals())
            check_variable_and_dtype(x, "X", ['int32', 'int64', 'float32', 'float64'], 'trunc')
            y = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": y})
            return _elementwise_op(LayerHelper(op_type, **locals()))
4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836

def sgn(x, name=None):
    """
    For complex tensor, this API returns a new tensor whose elements have the same angles as the corresponding
    elements of input and absolute values of one.
    For other float dtype tensor,
    this API returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero, same as paddle.sign.

    Args:
        x (Tensor): The input tensor, which data type should be float16, float32, float64, complex64, complex128.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A sign Tensor for real input, or normalized Tensor for complex input, shape and data type are same as input.

    Examples:
        .. code-block:: Python

            import paddle

            x = paddle.to_tensor([[3 + 4j, 7 - 24j, 0, 1 + 2j], [6 + 8j, 3, 0, -2]])
            print(paddle.sgn(x))
            #[[0.6+0.8j       0.28-0.96j      0.+0.j      0.4472136+0.8944272j]
            # [0.6+0.8j       1.+0.j          0.+0.j      -1.+0.j]]

    """
    if x.dtype not in [paddle.float16, paddle.float32, paddle.float64, paddle.complex64, paddle.complex128]:
        raise TypeError(
            "The data type of input must be one of ['float16', 'float32', 'float64', 'complex64', 'complex128'], but got {}"
                .format(x.dtype))
    if paddle.is_complex(x):
        expand_x = paddle.as_real(x)
        x_abs = paddle.abs(x)
        x_abs = paddle.unsqueeze(x_abs, axis=-1)
        output = expand_x / x_abs
        zeros = paddle.zeros_like(output)
        output = paddle.where(paddle.isnan(output), zeros, output)

        return paddle.as_complex(output)
    else:
        return paddle.sign(x)
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938

def take(x, index, mode='raise', name=None):
    """
    Returns a new tensor with the elements of input tensor x at the given index.
    The input tensor is treated as if it were viewed as a 1-D tensor.
    The result takes the same shape as the index.

    Args:
        x (Tensor): An N-D Tensor, its data type should be int32, int64, float32, float64.
        index (Tensor): An N-D Tensor, its data type should be int32, int64.
        mode (str, optional): Specifies how out-of-bounds index will behave. the candicates are ``'raise'``, ``'wrap'`` and ``'clip'``.

            - ``'raise'``: raise an error (default);
            - ``'wrap'``: wrap around;
            - ``'clip'``: clip to the range. ``'clip'`` mode means that all indices that are too large are replaced by the index that addresses the last element. Note that this disables indexing with negative numbers.

        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Tensor with the same shape as index, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x_int = paddle.arange(0, 12).reshape([3, 4])
            x_float = x_int.astype(paddle.float64)

            idx_pos = paddle.arange(4, 10).reshape([2, 3])  # positive index
            idx_neg = paddle.arange(-2, 4).reshape([2, 3])  # negative index
            idx_err = paddle.arange(-2, 13).reshape([3, 5])  # index out of range

            paddle.take(x_int, idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_neg)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 ],
            #         [1 , 2 , 3 ]])

            paddle.take(x_float, idx_pos)
            # Tensor(shape=[2, 3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[4., 5., 6.],
            #         [7., 8., 9.]])

            x_int.take(idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_err, mode='wrap')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 0 ]])

            paddle.take(x_int, idx_err, mode='clip')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 11]])

    """
    if mode not in ['raise', 'wrap', 'clip']:
        raise ValueError(
            "'mode' in 'take' should be 'raise', 'wrap', 'clip', but received {}.".format(mode))

    if paddle.in_dynamic_mode():
        if not isinstance(index, (paddle.Tensor, Variable)):
            raise TypeError(
                "The type of 'index' must be Tensor, but got {}".format(type(index)))
        if index.dtype not in [paddle.int32, paddle.int64]:
            raise TypeError(
                "The data type of 'index' must be one of ['int32', 'int64'], but got {}".format(
                    index.dtype))

    else:
        check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'take')

    input_1d = x.flatten()
    index_1d = index.flatten()
    max_index = input_1d.shape[-1]

    if mode == 'raise':
        # This processing enables 'take' to handle negative indexes within the correct range.
        index_1d = paddle.where(index_1d < 0, index_1d + max_index, index_1d)
    elif mode == 'wrap':
        # The out of range indices are constrained by taking the remainder.
        index_1d = paddle.where(index_1d < 0,
                                index_1d % max_index, index_1d)
        index_1d = paddle.where(index_1d >= max_index,
                                index_1d % max_index, index_1d)
    elif mode == 'clip':
        # 'clip' mode disables indexing with negative numbers.
        index_1d = clip(index_1d, 0, max_index - 1)

    out = input_1d.index_select(index_1d).reshape(index.shape)

    return out