math.py 188.4 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
Y
Yang Zhang 已提交
17
import numpy as np
18

19 20 21 22 23
from paddle.common_ops_import import VarDesc
from paddle.common_ops_import import dygraph_only
from paddle.common_ops_import import templatedoc
from paddle.common_ops_import import dygraph_utils

24 25
from .manipulation import cast
from .creation import _complex_to_real_dtype
26
from .layer_function_generator import generate_layer_fn
27

28
import paddle
29
from ..static import Variable
30 31 32 33 34 35 36
from ..framework import (
    core,
    in_dygraph_mode,
    _non_static_mode,
    LayerHelper,
    _in_legacy_dygraph,
)
37
from ..fluid.framework import _in_legacy_dygraph
Z
zhiboniu 已提交
38
from ..framework import _varbase_creator, convert_np_dtype_to_dtype_
39 40 41 42 43 44
from ..fluid.data_feeder import (
    check_variable_and_dtype,
    check_type,
    check_dtype,
    convert_dtype,
)
45
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
46
from ..fluid.layers import utils
47 48

# TODO: define math functions
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
from .ops import abs  # noqa: F401
from .ops import acos  # noqa: F401
from .ops import asin  # noqa: F401
from .ops import ceil  # noqa: F401
from .ops import ceil_  # noqa: F401
from .ops import cos  # noqa: F401
from .ops import tan  # noqa: F401
from .ops import sinh  # noqa: F401
from .ops import cosh  # noqa: F401
from .ops import exp  # noqa: F401
from .ops import exp_  # noqa: F401
from .ops import expm1  # noqa: F401
from .ops import floor  # noqa: F401
from .ops import floor_  # noqa: F401
from .ops import reciprocal  # noqa: F401
from .ops import reciprocal_  # noqa: F401
from .ops import round  # noqa: F401
from .ops import round_  # noqa: F401
from .ops import rsqrt  # noqa: F401
from .ops import rsqrt_  # noqa: F401
from .ops import square  # noqa: F401
from .ops import atan  # noqa: F401
from .ops import erf  # noqa: F401
from .ops import sqrt  # noqa: F401
from .ops import sqrt_  # noqa: F401
from .ops import sin  # noqa: F401
from .ops import asinh  # noqa: F401
from .ops import acosh  # noqa: F401
from .ops import atanh  # noqa: F401
78

Z
zhiboniu 已提交
79
from ..fluid.layers import elementwise_sub
80
from paddle import _C_ops, _legacy_C_ops
81

82 83
__all__ = []

84 85 86 87 88 89 90 91 92 93 94 95 96
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

97

98 99
def log(x, name=None):
    r"""
C
Chen Long 已提交
100
    Calculates the natural log of the given input Tensor, element-wise.
101 102 103

    .. math::

104
        Out = \ln(x)
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The natural log of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python

            import paddle

            x = [[2,3,4], [7,8,9]]
            x = paddle.to_tensor(x, dtype='float32')
            res = paddle.log(x)
            # [[0.693147, 1.09861, 1.38629], [1.94591, 2.07944, 2.19722]]
    """
    if in_dygraph_mode():
        return _C_ops.log(x)
127 128
    if _in_legacy_dygraph():
        return _legacy_C_ops.log(x)
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log")
    inputs = {'X': [x]}
    helper = LayerHelper('log', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
    return out


def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)

    Args:
156 157 158 159 160 161
        x (Tensor): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
        scale (float|Tensor): The scale factor of the input, it should be a float number or a Tensor with shape [1] and data type as float32.
        bias (float): The bias to be put on the input.
        bias_after_scale (bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act (str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
162 163

    Returns:
C
Chen Long 已提交
164
        Tensor: Output Tensor of scale operator, with shape and data type same as input.
165 166 167

    Examples:
        .. code-block:: python
168

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
            # scale as a float32 number
            import paddle

            data = paddle.randn(shape=[2,3], dtype='float32')
            res = paddle.scale(data, scale=2.0, bias=1.0)

        .. code-block:: python

            # scale with parameter scale as a Tensor
            import paddle

            data = paddle.randn(shape=[2, 3], dtype='float32')
            factor = paddle.to_tensor([2], dtype='float32')
            res = paddle.scale(data, scale=factor, bias=1.0)

    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
187 188 189
        out = _C_ops.scale(x, scale, float(bias), bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out, act)
    elif _in_legacy_dygraph():
190
        _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
191 192 193 194 195 196 197 198 199
        out = _legacy_C_ops.scale(
            x,
            'scale',
            float(_scale),
            'bias',
            float(bias),
            'bias_after_scale',
            bias_after_scale,
        )
W
wanghuancoder 已提交
200
        return dygraph_utils._append_activation_in_dygraph(out, act)
201

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
    check_variable_and_dtype(
        x,
        "x",
        [
            'float16',
            'uint16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
        ],
        "scale",
    )
218 219 220 221 222 223 224 225 226 227 228 229
    inputs = {'X': [x]}
    attrs = {
        'bias': float(bias),
        'bias_after_scale': bias_after_scale,
    }
    if isinstance(scale, Variable):
        inputs['ScaleTensor'] = [scale]
    else:
        attrs['scale'] = float(scale)
    helper = LayerHelper('scale', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

230 231 232
    helper.append_op(
        type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
233 234 235 236 237 238 239 240 241
    return helper.append_activation(out)


def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
    """
    stanh activation.

    .. math::

242
        out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        scale_a (float, optional): The scale factor a of the input. Default is 0.67.
        scale_b (float, optional): The scale factor b of the output. Default is 1.7159.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = paddle.stanh(x, scale_a=0.67, scale_b=1.72) # [1.00616539, 1.49927628, 1.65933108, 1.70390463]

    """

    if _non_static_mode():
265
        return _legacy_C_ops.stanh(x, 'scale_a', scale_a, 'scale_b', scale_b)
266 267 268 269 270

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'stanh')

    helper = LayerHelper('stanh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
271 272 273 274 275 276
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a, 'scale_b': scale_b},
    )
277 278
    return out

279

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
def multiplex(inputs, index, name=None):
    """

    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.

    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .

    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .

    For Example:

            .. code-block:: text

                Given:

                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

                index = [[3],[0],[1],[2]]

                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]


    Args:
        inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
        index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
311
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
312

313 314 315 316 317 318 319 320
    Returns:
        Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64.

    Examples:

        .. code-block:: python

            import paddle
321

322 323 324 325
            img1 = paddle.to_tensor([[1, 2], [3, 4]], dtype=paddle.float32)
            img2 = paddle.to_tensor([[5, 6], [7, 8]], dtype=paddle.float32)
            inputs = [img1, img2]
            index = paddle.to_tensor([[1], [0]], dtype=paddle.int32)
326
            res = paddle.multiplex(inputs, index)
327
            print(res) # Tensor([[5., 6.], [3., 4.]], dtype=float32)
328 329

    """
330 331 332
    if in_dygraph_mode():
        return _C_ops.multiplex(inputs, index)
    elif _in_legacy_dygraph():
333
        return _legacy_C_ops.multiplex(index, inputs)
334

335 336 337 338 339
    helper = LayerHelper('multiplex', **locals())

    check_type(inputs, 'inputs', (list), 'multiplex')
    if len(inputs) < 2:
        raise ValueError(
340 341
            "inputs should be a list object with at least 2 elements."
        )
342
    for id, x in enumerate(inputs):
343 344 345 346 347 348
        check_variable_and_dtype(
            x,
            'input[' + str(id) + ']',
            ['float32', 'float64', 'int32', 'int64'],
            'multiplex',
        )
349 350 351
    check_variable_and_dtype(index, "index", ['int32', 'int64'], 'multiplex')

    out = helper.create_variable_for_type_inference(inputs[0].dtype)
352 353 354 355 356
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs, 'Ids': index},
        outputs={'Out': [out]},
    )
357 358
    return out

359

360 361 362 363 364 365
@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_scale`.
    """
366
    if in_dygraph_mode():
367
        return _C_ops.scale_(x, scale, float(bias), bias_after_scale)
368 369
    if _in_legacy_dygraph():
        _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
370 371 372 373 374 375 376 377 378
        return _legacy_C_ops.scale_(
            x,
            'scale',
            float(_scale),
            'bias',
            float(bias),
            'bias_after_scale',
            bias_after_scale,
        )
379 380


381
def pow(x, y, name=None):
382
    """
C
Chen Long 已提交
383
    Compute the power of Tensor elements. The equation is:
S
swtkiwi 已提交
384

385
    .. math::
386
        out = x^{y}
387

388 389
    Note:
        ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
390 391


392
    Args:
393
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
394
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
395
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
396

397
    Returns:
398
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
399 400 401

    Examples:

402
        ..  code-block:: python
403 404 405

            import paddle

406 407 408 409 410 411 412 413 414 415 416 417
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            # example 1: y is a float or int
            res = paddle.pow(x, 2)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
            res = paddle.pow(x, 2.5)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1.         , 5.65685415 , 15.58845711])

418
            # example 2: y is a Tensor
419
            y = paddle.to_tensor([2], dtype='float32')
420
            res = paddle.pow(x, y)
421 422 423
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
424 425

    """
426
    # in dynamic graph mode
427
    if in_dygraph_mode():
428
        if isinstance(y, (int, float)):
429
            return _C_ops.pow(x, y)
430
        elif isinstance(y, (paddle.Tensor, Variable)):
431
            return _C_ops.elementwise_pow(x, y)
432
        else:
433
            raise TypeError(
434 435
                'y must be scalar or tensor type, but received: %s ' % (y.dtype)
            )
436
    if _in_legacy_dygraph():
437
        if isinstance(y, (int, float)):
438
            return _legacy_C_ops.pow(x, 'factor', y)
439
        elif isinstance(y, (paddle.Tensor, Variable)):
440 441 442
            return _elementwise_op_in_dygraph(
                x, y, axis=-1, act=None, op_name='elementwise_pow'
            )
443
        else:
444
            raise TypeError(
445 446
                'y must be scalar or tensor type, but received: %s ' % (y.dtype)
            )
447 448 449 450 451 452
    # in static graph mode
    if isinstance(y, (int, float)):
        helper = LayerHelper('pow', **locals())
        inputs = {'X': x}
        attrs = {'factor': y}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
453 454 455
        helper.append_op(
            type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
456 457 458 459 460 461 462
        return out
    elif isinstance(y, (paddle.Tensor, Variable)):
        # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
        helper = LayerHelper('elementwise_pow', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
    else:
463 464 465
        raise TypeError(
            'y must be scalar or tensor type, but received: %s ' % (type(y))
        )
466 467


468
OP_NAMEMAPPING = {
469 470 471 472 473 474 475 476
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
477
    'elementwise_mod': 'remainder',
478
}
479

480

481
@dygraph_only
482 483 484
def _elementwise_op_in_dygraph(
    x, y, axis=-1, act=None, use_mkldnn=False, op_name=None
):
485
    def is_inplace(op_name):
486
        return op_name[-1] == "_"
487

488
    if op_name not in OP_NAMEMAPPING.keys() or axis != -1:
489
        op = getattr(_legacy_C_ops, op_name)
490
        out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
W
wanghuancoder 已提交
491 492
    else:
        if in_dygraph_mode():
493 494
            op = getattr(
                _C_ops,
495 496
                OP_NAMEMAPPING[op_name] if not is_inplace(op_name) else op_name,
            )
W
wanghuancoder 已提交
497 498 499
            out = op(x, y)

        if _in_legacy_dygraph():
500
            op = getattr(_legacy_C_ops, op_name)
W
wanghuancoder 已提交
501
            out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
502

503 504 505
    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn
    )
506

507 508 509 510 511 512 513

def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

514 515
    out = helper.kwargs.get('out', None)

516 517 518
    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
519 520 521 522 523
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        original_op_type,
    )
524
    check_variable_and_dtype(
525 526 527 528 529
        y,
        'y',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        original_op_type,
    )
530 531 532 533

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
534 535 536 537 538

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
539 540 541 542 543 544 545 546 547 548
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False
            )

    helper.append_op(
        type=op_type,
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis, 'use_mkldnn': use_mkldnn},
    )
549 550 551
    return helper.append_activation(out)


Y
Yang Zhang 已提交
552
def add(x, y, name=None):
553
    """
554 555 556 557 558 559 560 561
    Elementwise Add Operator.
    Add two tensors element-wise
    The equation is:

    ..  math::

        Out=X+Y

562 563
    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.
564 565

    There are two cases for this operator:
566 567 568 569

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

570
    For case 2:
571 572

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
H
HongyuJia 已提交
573
    2. If $axis$ is -1 (default), $axis$=rank($X$)-rank($Y$).
574
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).
575 576 577 578

        For example:

        ..  code-block:: python
579

580 581 582 583 584 585
            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
586

587
    Args:
588 589 590
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
591 592

    Returns:
H
HongyuJia 已提交
593
        N-D Tensor. A location into which the result is stored. It's dimension equals with x.
594 595 596 597

    Examples:

        ..  code-block:: python
598

599
            import paddle
600

601 602 603 604
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.to_tensor([1, 5, 2], 'float64')
            z = paddle.add(x, y)
            print(z)  # [3., 8., 6. ]
605
    """
606

J
Jiabin Yang 已提交
607
    if in_dygraph_mode():
608
        return _C_ops.add(x, y)
J
Jiabin Yang 已提交
609 610
    else:
        if _in_legacy_dygraph():
611
            return _legacy_C_ops.elementwise_add(x, y)
J
Jiabin Yang 已提交
612 613
        else:
            return _elementwise_op(LayerHelper('elementwise_add', **locals()))
614 615


616 617 618 619 620 621 622 623 624 625 626
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_add`.
    """
    op_type = 'elementwise_add_'
    axis = -1

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
627
        raise ValueError(
628 629 630 631
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
632

633
    if in_dygraph_mode():
634
        return _C_ops.add_(x, y)
635
    else:
636
        out = _elementwise_op_in_dygraph(x, y, axis=axis, op_name=op_type)
637
        return out
638 639


640 641
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
642
    Substract two tensors element-wise. The equation is:
643 644 645 646

    .. math::
        out = x - y

647 648
    Note:
        ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
649 650 651 652 653 654 655 656 657 658 659 660

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
661

662 663 664 665 666 667
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[5, 6], [3, 4]])
            res = paddle.subtract(x, y)
            print(res)
668 669 670
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[-4, -4],
            #         [ 4,  4]])
671 672 673 674 675

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 0, 4])
            res = paddle.subtract(x, y)
            print(res)
676 677 678
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[ 0,  2, -1],
            #          [ 0,  2, -1]]])
679

680 681
            x = paddle.to_tensor([2, float('nan'), 5], dtype='float32')
            y = paddle.to_tensor([1, 4, float('nan')], dtype='float32')
682 683
            res = paddle.subtract(x, y)
            print(res)
684 685
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
686

687
            x = paddle.to_tensor([5, float('inf'), -float('inf')], dtype='float64')
688 689 690
            y = paddle.to_tensor([1, 4, 5], dtype='float64')
            res = paddle.subtract(x, y)
            print(res)
691 692
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 4.  ,  inf., -inf.])
693 694 695 696
    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
J
Jiabin Yang 已提交
697
    if in_dygraph_mode():
698
        return _C_ops.subtract(x, y)
J
Jiabin Yang 已提交
699 700
    else:
        if _in_legacy_dygraph():
701 702 703
            return _elementwise_op_in_dygraph(
                x, y, axis=axis, act=act, op_name=op_type
            )
J
Jiabin Yang 已提交
704 705
        else:
            return _elementwise_op(LayerHelper(op_type, **locals()))
706 707


708 709 710 711 712 713 714 715 716 717 718
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_subtract`.
    """
    axis = -1
    act = None

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
719
        raise ValueError(
720 721 722 723
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
724

725
    if in_dygraph_mode():
726
        return _C_ops.subtract_(x, y)
727
    else:
728 729 730
        out = _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_sub_'
        )
731
        return out
732 733


734
def divide(x, y, name=None):
735
    """
736
    Divide two tensors element-wise. The equation is:
737

738 739
    .. math::
        out = x / y
740

741 742
    Note:
        ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
743

744 745 746 747
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
748

749
    Returns:
750
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
751

752
    Examples:
753

754
        ..  code-block:: python
755

756
            import paddle
757

758 759
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
760
            z = paddle.divide(x, y)
761
            print(z)  # [2., 0.6, 2.]
762

763 764 765 766
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
J
Jiabin Yang 已提交
767
    if in_dygraph_mode():
768
        return _C_ops.divide(x, y)
J
Jiabin Yang 已提交
769 770
    else:
        if _in_legacy_dygraph():
771 772 773
            return _elementwise_op_in_dygraph(
                x, y, axis=axis, act=act, op_name=op_type
            )
J
Jiabin Yang 已提交
774 775
        else:
            return _elementwise_op(LayerHelper(op_type, **locals()))
776 777


778 779
def floor_divide(x, y, name=None):
    """
L
Lin Manhui 已提交
780
    Floor divide two tensors element-wise and rounds the quotinents to the nearest integer toward zero. The equation is:
781

782
    .. math::
L
Lin Manhui 已提交
783
        out = trunc(x / y)
784

785 786
    Note:
        ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
L
Lin Manhui 已提交
787
        Also note that the name ``floor_divide`` can be misleading, as the quotinents are actually rounded toward zero, not toward negative infinite.
788

789 790 791 792
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
793

794 795
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
796

797
    Examples:
798

799
        ..  code-block:: python
800

801
            import paddle
802

803 804
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
805
            z = paddle.floor_divide(x, y)
806
            print(z)  # [2, 0, 2, 2]
807

808 809 810
    """
    op_type = 'elementwise_floordiv'
    axis = -1
811 812 813
    if in_dygraph_mode():
        return _C_ops.floor_divide(x, y)
    elif _in_legacy_dygraph():
814
        return _elementwise_op_in_dygraph(x, y, axis=axis, op_name=op_type)
815

816
    return _elementwise_op(LayerHelper(op_type, **locals()))
817 818


819
def remainder(x, y, name=None):
820
    r"""
821 822 823
    Mod two tensors element-wise. The equation is:

    .. math::
824

825 826
        out = x \% y

827 828
    Note:
        ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
829 830

    Args:
831 832
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
833 834 835
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
836
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
837 838 839 840 841 842 843

    Examples:

        ..  code-block:: python

            import paddle

844 845
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
846
            z = paddle.remainder(x, y)
W
WangXi 已提交
847
            print(z)  # [0, 3, 2, 1]
848 849 850

    """
    op_type = 'elementwise_mod'
851
    axis = -1
852 853 854 855

    if in_dygraph_mode():
        return _C_ops.remainder(x, y)
    elif _in_legacy_dygraph():
856
        return _elementwise_op_in_dygraph(x, y, axis=axis, op_name=op_type)
857 858 859 860

    return _elementwise_op(LayerHelper(op_type, **locals()))


861 862 863 864 865 866 867 868 869 870 871 872
@inplace_apis_in_dygraph_only
def remainder_(x, y, name=None):
    r"""
    Inplace version of ``remainder`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_remainder`.
    """
    op_type = 'elementwise_mod_'
    axis = -1

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
873 874 875 876
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
877 878 879 880

    return _elementwise_op_in_dygraph(x, y, axis=axis, op_name=op_type)


881 882
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
883 884


885
def multiply(x, y, name=None):
886
    """
887
    multiply two tensors element-wise. The equation is:
888

889 890
    .. math::
        out = x * y
891

892 893
    Note:
        ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.
894

895
    Args:
W
will-jl944 已提交
896 897
        x (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
        y (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
898
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
899

900
    Returns:
901
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
902

903 904 905 906 907 908
    Examples:

        ..  code-block:: python

            import paddle

909 910
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
911
            res = paddle.multiply(x, y)
912
            print(res) # [[5, 12], [21, 32]]
913

914
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
915 916 917
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
918 919 920 921

    """
    op_type = 'elementwise_mul'
    act = None
922
    axis = -1
923

J
Jiabin Yang 已提交
924
    if in_dygraph_mode():
925
        return _C_ops.multiply(x, y)
J
Jiabin Yang 已提交
926 927
    else:
        if _in_legacy_dygraph():
928 929 930
            return _elementwise_op_in_dygraph(
                x, y, axis=axis, act=act, op_name=op_type
            )
J
Jiabin Yang 已提交
931 932 933 934
        else:
            if x.dtype != y.dtype:
                raise TypeError(
                    'Input tensors must be same type, but received type of x: %s, type of y: %s '
935 936
                    % (x.dtype, y.dtype)
                )
937

J
Jiabin Yang 已提交
938
            return _elementwise_op(LayerHelper(op_type, **locals()))
939

940

941
def maximum(x, y, name=None):
942
    """
W
Wei Shengyu 已提交
943
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
944

945 946
    .. math::
        out = max(x, y)
947

948 949
    Note:
        ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.maximum(x, y)
            print(res)
969 970 971
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 4],
            #         [7, 8]])
972 973 974 975 976

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.maximum(x, y)
            print(res)
977 978 979
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 2, 4],
            #         [3, 2, 4]])
980 981

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
982
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
983 984
            res = paddle.maximum(x, y)
            print(res)
985 986
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2. , nan, nan])
987

988 989
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
990 991
            res = paddle.maximum(x, y)
            print(res)
992 993
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [5.  , 3.  , inf.])
994 995
    """
    op_type = 'elementwise_max'
996
    axis = -1
997
    act = None
998 999 1000
    if in_dygraph_mode():
        return _C_ops.maximum(x, y)
    elif _in_legacy_dygraph():
1001 1002 1003
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type
        )
1004 1005
    return _elementwise_op(LayerHelper(op_type, **locals()))

1006

1007
def minimum(x, y, name=None):
1008
    """
C
Chen Long 已提交
1009
    Compare two tensors and return a new tensor containing the element-wise minima. The equation is:
1010

1011 1012
    .. math::
        out = min(x, y)
1013

1014 1015
    Note:
        ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
1016 1017 1018 1019 1020 1021 1022

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
C
Chen Long 已提交
1023
        Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.minimum(x, y)
            print(res)
1035 1036 1037
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 2],
            #         [5, 6]])
1038 1039 1040 1041 1042

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.minimum(x, y)
            print(res)
1043 1044 1045
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[1, 0, 3],
            #          [1, 0, 3]]])
1046 1047

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1048
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
1049 1050
            res = paddle.minimum(x, y)
            print(res)
1051 1052
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
1053

1054 1055
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
1056 1057
            res = paddle.minimum(x, y)
            print(res)
1058 1059
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 1.  , -inf.,  5.  ])
1060 1061
    """
    op_type = 'elementwise_min'
1062
    axis = -1
1063
    act = None
1064 1065 1066
    if in_dygraph_mode():
        return _C_ops.minimum(x, y)
    elif _in_legacy_dygraph():
1067 1068 1069
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type
        )
1070
    return _elementwise_op(LayerHelper(op_type, **locals()))
1071

1072

L
LJQ❤️ 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081
def fmax(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the maximum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmax(x, y)

1082 1083
    Note:
        ``paddle.fmax`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
L
LJQ❤️ 已提交
1084 1085

    Args:
1086 1087
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmax(x, y)
            print(res)
1103 1104 1105
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 4],
            #         [7, 8]])
L
LJQ❤️ 已提交
1106 1107 1108 1109 1110

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmax(x, y)
            print(res)
1111 1112 1113
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 2, 4],
            #         [3, 2, 4]])
L
LJQ❤️ 已提交
1114 1115

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1116
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
L
LJQ❤️ 已提交
1117 1118
            res = paddle.fmax(x, y)
            print(res)
1119 1120
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2., 3., 5.])
L
LJQ❤️ 已提交
1121

1122 1123
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
L
LJQ❤️ 已提交
1124 1125
            res = paddle.fmax(x, y)
            print(res)
1126 1127
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [5.  , 3.  , inf.])
L
LJQ❤️ 已提交
1128 1129 1130 1131
    """
    op_type = 'elementwise_fmax'
    axis = -1
    act = None
1132
    if in_dygraph_mode():
1133
        return _C_ops.fmax(x, y, axis)
1134
    if _in_legacy_dygraph():
1135 1136 1137
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type
        )
L
LJQ❤️ 已提交
1138 1139
    return _elementwise_op(LayerHelper(op_type, **locals()))

1140

L
LJQ❤️ 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149
def fmin(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the minimum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmin(x, y)

1150 1151
    Note:
        ``paddle.fmin`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
L
LJQ❤️ 已提交
1152 1153

    Args:
1154 1155
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmin(x, y)
            print(res)
1171 1172 1173
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 2],
            #         [5, 6]])
L
LJQ❤️ 已提交
1174 1175 1176 1177 1178

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmin(x, y)
            print(res)
1179 1180 1181
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[1, 0, 3],
            #          [1, 0, 3]]])
L
LJQ❤️ 已提交
1182 1183

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1184
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
L
LJQ❤️ 已提交
1185 1186
            res = paddle.fmin(x, y)
            print(res)
1187 1188
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1., 3., 5.])
L
LJQ❤️ 已提交
1189

1190 1191
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
L
LJQ❤️ 已提交
1192 1193
            res = paddle.fmin(x, y)
            print(res)
1194 1195
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 1.  , -inf.,  5.  ])
L
LJQ❤️ 已提交
1196 1197 1198 1199
    """
    op_type = 'elementwise_fmin'
    axis = -1
    act = None
1200
    if in_dygraph_mode():
1201
        return _C_ops.fmin(x, y, axis)
1202
    if _in_legacy_dygraph():
1203 1204 1205
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type
        )
L
LJQ❤️ 已提交
1206 1207
    return _elementwise_op(LayerHelper(op_type, **locals()))

Y
Yang Zhang 已提交
1208

1209
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
1210 1211 1212 1213
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
1214
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
1215 1216
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
1217
            Tensor with a single element, otherwise must be in the
1218 1219 1220 1221 1222 1223 1224
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
1225
            value is False.
1226
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1227 1228

    Returns:
1229
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
1230
        if `x.dtype='bool'`, `x.dtype='int32'`, it's data type is `'int64'`,
1231
        otherwise it's data type is the same as `x`.
1232 1233 1234 1235 1236

    Examples:
        .. code-block:: python

            import paddle
1237

1238
            # x is a Tensor with following elements:
1239 1240 1241
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
1242 1243
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1244
            out1 = paddle.sum(x)  # [3.5]
1245 1246 1247
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
1248

1249
            # y is a Tensor with shape [2, 2, 2] and elements as below:
1250 1251 1252
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
1253
            y = paddle.to_tensor([[[1, 2], [3, 4]],
1254
                                  [[5, 6], [7, 8]]])
1255 1256
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
1257

1258 1259 1260 1261 1262 1263 1264 1265 1266
            # x is a Tensor with following elements:
            #    [[True, True, True, True]
            #     [False, False, False, False]]
            # Each example is followed by the corresponding output tensor.
            x = paddle.to_tensor([[True, True, True, True],
                                  [False, False, False, False]])
            out7 = paddle.sum(x)  # [4]
            out8 = paddle.sum(x, axis=0)  # [1, 1, 1, 1]
            out9 = paddle.sum(x, axis=1)  # [4, 0]
1267
    """
1268
    reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
1269

1270 1271 1272 1273
    dtype_flag = False
    if dtype is not None:
        dtype_flag = True
        dtype = convert_np_dtype_to_dtype_(dtype)
F
From00 已提交
1274 1275

    if in_dygraph_mode():
1276
        return _C_ops.sum(x, axis, dtype, keepdim)
F
From00 已提交
1277 1278

    if _in_legacy_dygraph():
1279
        if dtype_flag:
1280 1281 1282 1283 1284 1285 1286
            return _legacy_C_ops.reduce_sum(
                x,
                'dim',
                axis,
                'keep_dim',
                keepdim,
                'reduce_all',
1287
                reduce_all,
1288 1289 1290 1291 1292
                'in_dtype',
                x.dtype,
                'out_dtype',
                dtype,
            )
1293
        else:
1294 1295 1296 1297 1298 1299 1300
            return _legacy_C_ops.reduce_sum(
                x,
                'dim',
                axis,
                'keep_dim',
                keepdim,
                'reduce_all',
1301
                reduce_all,
1302
            )
W
wanghuancoder 已提交
1303

1304
    attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
W
wanghuancoder 已提交
1305

1306
    if dtype_flag:
1307
        attrs.update({'in_dtype': x.dtype, 'out_dtype': dtype})
W
wanghuancoder 已提交
1308

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int16',
            'int32',
            'int64',
            'complex64',
            'complex128',
            u'bool',
            u'float16',
            u'float32',
            u'float64',
            u'int32',
            u'int64',
            u'complex64',
            u'complex128',
        ],
        'sum',
    )
1333

1334
    check_type(axis, 'axis', (int, list, tuple, type(None), Variable), 'sum')
1335

1336 1337
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
1338
        out = helper.create_variable_for_type_inference(dtype=dtype)
1339
    else:
1340
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1341 1342 1343
    helper.append_op(
        type='reduce_sum', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
    )
1344
    return out
1345

1346

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
def nan_to_num(x, nan=0.0, posinf=None, neginf=None, name=None):
    """
    Replaces NaN, positive infinity, and negative infinity values in input tensor.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        nan (float, optional): the value to replace NaNs with. Default is 0.
        posinf (float, optional): if a Number, the value to replace positive infinity values with. If None, positive infinity values are replaced with the greatest finite value representable by input’s dtype. Default is None.
        neginf (float, optional): if a Number, the value to replace negative infinity values with. If None, negative infinity values are replaced with the lowest finite value representable by input’s dtype. Default is None.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of nan_to_num operation input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([float('nan'), 0.3, float('+inf'), float('-inf')], dtype='float32')
            out1 = paddle.nan_to_num(x)  # [0, 0.3, 3.4028235e+38, -3.4028235e+38]
            out2 = paddle.nan_to_num(x, nan=1)  # [1, 0.3, 3.4028235e+38, -3.4028235e+38]
            out3 = paddle.nan_to_num(x, posinf=5)  # [0, 0.3, 5, -3.4028235e+38]
            out4 = paddle.nan_to_num(x, nan=10, neginf=-99)  # [10, 0.3, 3.4028235e+38, -99]
    """
    # NOTE(tiancaishaonvjituizi): it seems that paddle handles the dtype of python float number
    # incorrectly, so we have to explicitly contruct tensors here
    posinf_value = paddle.full_like(x, float("+inf"))
    neginf_value = paddle.full_like(x, float("-inf"))
    nan = paddle.full_like(x, nan)
    assert x.dtype in [paddle.float32, paddle.float64]
    is_float32 = x.dtype == paddle.float32
    if posinf is None:
        posinf = (
            np.finfo(np.float32).max if is_float32 else np.finfo(np.float64).max
        )
    posinf = paddle.full_like(x, posinf)
    if neginf is None:
        neginf = (
            np.finfo(np.float32).min if is_float32 else np.finfo(np.float64).min
        )
    neginf = paddle.full_like(x, neginf)
    x = paddle.where(paddle.isnan(x), nan, x)
    x = paddle.where(x == posinf_value, posinf, x)
    x = paddle.where(x == neginf_value, neginf, x)
    return x


W
wangguanqun 已提交
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
def nansum(x, axis=None, dtype=None, keepdim=False, name=None):
    """
    Computes the sum of tensor elements over the given axis, treating Not a Numbers (NaNs) as zero.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the nansum is performed. If
            :attr:`None`, nansum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
1412
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
wangguanqun 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425

    Returns:
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,

    Examples:
        .. code-block:: python

            import paddle

            # x is a Tensor with following elements:
            #    [[nan, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, -nan, 0.7]]
            # Each example is followed by the corresponding output tensor.
1426 1427
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                            [0.1, 0.2, float('-nan'), 0.7]],dtype="float32")
W
wangguanqun 已提交
1428 1429 1430 1431 1432 1433 1434 1435 1436
            out1 = paddle.nansum(x)  # [2.7]
            out2 = paddle.nansum(x, axis=0)  # [0.1, 0.5, 0.5, 1.6]
            out3 = paddle.nansum(x, axis=-1)  # [1.7, 1.0]
            out4 = paddle.nansum(x, axis=1, keepdim=True)  # [[1.7], [1.0]]

            # y is a Tensor with shape [2, 2, 2] and elements as below:
            #      [[[1, nan], [3, 4]],
            #      [[5, 6], [-nan, 8]]]
            # Each example is followed by the corresponding output tensor.
1437
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
W
wangguanqun 已提交
1438 1439 1440 1441
                            [[5, 6], [float('-nan'), 8]]])
            out5 = paddle.nansum(y, axis=[1, 2]) # [8, 19]
            out6 = paddle.nansum(y, axis=[0, 1]) # [9, 18]
    """
1442 1443 1444
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'nansum'
    )
W
wangguanqun 已提交
1445 1446 1447 1448 1449 1450 1451
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'nansum')

    zero_tensor = paddle.zeros_like(x)
    tmp_tensor = paddle.where(isnan(x), zero_tensor, x)
    return sum(tmp_tensor, axis, dtype, keepdim, name)


1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
def nanmean(x, axis=None, keepdim=False, name=None):
    r"""
    Compute the arithmetic mean along the specified axis, ignoring NaNs.

    Args:
        x (Tensor): The input Tensor with data type uint16, float16, float32, float64.
        axis (int|list|tuple, optional):The axis along which to perform nanmean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), nanmean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, nanmean is
            calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of arithmetic mean along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:

        .. code-block:: python
            :name: code-example1

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                                  [0.1, 0.2, float('-nan'), 0.7]])
            out1 = paddle.nanmean(x)
            # [0.44999996]
            out2 = paddle.nanmean(x, axis=0)
            # [0.1, 0.25, 0.5, 0.79999995]
            out3 = paddle.nanmean(x, axis=0, keepdim=True)
            # [[0.1, 0.25, 0.5, 0.79999995]]
            out4 = paddle.nanmean(x, axis=1)
            # [0.56666666 0.33333334]
            out5 = paddle.nanmean(x, axis=1, keepdim=True)
            # [[0.56666666]
            #  [0.33333334]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
                                   [[5, 6], [float('-nan'), 8]]])
            out6 = paddle.nanmean(y, axis=[1, 2])
            # [2.66666675, 6.33333349]
            out7 = paddle.nanmean(y, axis=[0, 1])
            # [3., 6.]
    """
    if isinstance(axis, int):
        axis = [axis]
1509 1510 1511
    check_variable_and_dtype(
        x, 'x/input', ['uint16', 'float16', 'float32', 'float64'], 'nanmean'
    )
1512 1513 1514
    if axis is not None:
        check_type(axis, 'axis/dim', (int, list, tuple), 'nanmean')

1515 1516 1517
    cnt = paddle.sum(~paddle.isnan(x), axis=axis, keepdim=keepdim)
    return paddle.divide(
        paddle.nansum(x, axis=axis, keepdim=keepdim, name=name),
1518 1519
        cnt.astype(x.dtype),
    )
1520 1521


1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
def count_nonzero(x, axis=None, keepdim=False, name=None):
    r"""
    Counts the number of non-zero values in the tensor x along the specified axis.

    Args:
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of count operation on the specified axis of input Tensor `x`, it's data type is `'int64'`.

    Examples:

        .. code-block:: python

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]])
            out1 = paddle.count_nonzero(x)
            # [3]
            out2 = paddle.count_nonzero(x, axis=0)
            # [0, 1, 2]
            out3 = paddle.count_nonzero(x, axis=0, keepdim=True)
            # [[0, 1, 2]]
            out4 = paddle.count_nonzero(x, axis=1)
            # [2, 1, 0]
            out5 = paddle.count_nonzero(x, axis=1, keepdim=True)
            #[[2],
            # [1],
            # [0]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]],
                                  [[0., 2.5, 2.6], [0., 0., 2.4], [2.1, 2.2, 2.3]]])
            out6 = paddle.count_nonzero(y, axis=[1, 2])
            # [3, 6]
            out7 = paddle.count_nonzero(y, axis=[0, 1])
            # [1, 3, 5]
    """

    if axis is not None:
        if isinstance(axis, int):
            axis = [axis]
        dims = len(x.shape)
        for i in range(len(axis)):
1576 1577 1578
            if not isinstance(axis[i], int) or not (
                axis[i] < dims and axis[i] >= -dims
            ):
1579 1580 1581 1582 1583 1584 1585 1586 1587
                raise ValueError(
                    "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                )

    bool_tensor = paddle.cast(x, 'bool')
    int_tensor = paddle.cast(bool_tensor, 'int64')
    return paddle.sum(int_tensor, axis=axis, keepdim=keepdim, name=name)


1588
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
1589
def add_n(inputs, name=None):
1590
    """
1591
    Sum one or more Tensor of the input.
1592

S
Steffy-zxf 已提交
1593 1594 1595
    For example:

    .. code-block:: text
1596

S
Steffy-zxf 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
1610

S
Steffy-zxf 已提交
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
1626 1627

    Args:
1628
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
1629
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
1630
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1631 1632

    Returns:
S
Steffy-zxf 已提交
1633
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
1634 1635 1636

    Examples:
        .. code-block:: python
1637

1638 1639
            import paddle

S
Steffy-zxf 已提交
1640 1641 1642
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
1643
            # [[8., 10., 12.],
S
Steffy-zxf 已提交
1644
            #  [14., 16., 18.]]
1645
    """
1646 1647 1648
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
1649
        return _C_ops.add_n(inputs)
1650
    if _in_legacy_dygraph():
S
Steffy-zxf 已提交
1651 1652
        if isinstance(inputs, Variable):
            inputs = [inputs]
1653
        return _legacy_C_ops.sum(inputs, 'use_mkldnn', False)
1654

S
Steffy-zxf 已提交
1655 1656
    helper = LayerHelper('add_n', **locals())
    check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
1657 1658 1659
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
1660 1661 1662 1663 1664 1665
                check_variable_and_dtype(
                    input,
                    "inputs",
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'add_n',
                )
1666
    else:
1667 1668 1669 1670 1671 1672
        check_variable_and_dtype(
            inputs,
            "inputs",
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'add_n',
        )
1673

1674
    out = helper.create_variable_for_type_inference(
1675 1676 1677 1678 1679 1680 1681 1682
        dtype=helper.input_dtype('inputs')
    )
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False},
    )
1683 1684 1685 1686

    return out


1687 1688 1689
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
1690

1691 1692 1693
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1694

1695 1696
    Returns:
        Tensor: The output Tensor of trunc.
1697

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand([2,2],'float32')
            print(input)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0.02331470, 0.42374918],
            #         [0.79647720, 0.74970269]])

            output = paddle.trunc(input)
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0., 0.],
            #         [0., 0.]]))
    '''
J
Jiabin Yang 已提交
1715
    if in_dygraph_mode():
1716
        return _C_ops.trunc(input)
1717
    else:
J
Jiabin Yang 已提交
1718
        if _in_legacy_dygraph():
1719
            return _legacy_C_ops.trunc(input)
J
Jiabin Yang 已提交
1720 1721 1722
        else:
            inputs = {"X": input}
            attrs = {}
1723

J
Jiabin Yang 已提交
1724
            helper = LayerHelper("trunc", **locals())
1725 1726 1727
            check_variable_and_dtype(
                input, 'X', ['int32', 'int64', 'float32', 'float64'], 'trunc'
            )
J
Jiabin Yang 已提交
1728
            out = helper.create_variable_for_type_inference(dtype=input.dtype)
1729

1730 1731 1732
            helper.append_op(
                type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": out}
            )
J
Jiabin Yang 已提交
1733
            return out
1734 1735


W
WuHaobo 已提交
1736
def mm(input, mat2, name=None):
1737
    """
S
swtkiwi 已提交
1738

1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
1750
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
1751
        mat2 (Tensor): The input tensor which is a Tensor.
1752
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1753 1754

    Returns:
N
Noel 已提交
1755
        Tensor: The product Tensor.
1756

W
wawltor 已提交
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
    ::

        * example 1:

        input: [B, ..., M, K], mat2: [B, ..., K, N]
        out: [B, ..., M, N]

        * example 2:

        input: [B, M, K], mat2: [B, K, N]
        out: [B, M, N]

        * example 3:

        input: [B, M, K], mat2: [K, N]
        out: [B, M, N]

        * example 4:

        input: [M, K], mat2: [K, N]
        out: [M, N]

        * example 5:

        input: [B, M, K], mat2: [K]
        out: [B, M]

        * example 6:

        input: [K], mat2: [K]
        out: [1]

1789 1790 1791 1792
    Examples:
        .. code-block:: python

            import paddle
1793 1794 1795 1796 1797 1798 1799 1800
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
1801

1802
    """
1803
    if in_dygraph_mode():
1804
        return _C_ops.matmul(input, mat2, False, False)
1805
    elif paddle.in_dynamic_mode():
1806
        return _legacy_C_ops.matmul_v2(input, mat2)
1807 1808 1809 1810

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
1811 1812 1813
            check_variable_and_dtype(
                val, name, ['float16', 'float32', 'float64'], 'mm'
            )
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
1828 1829
                    % (x_shape, y_shape)
                )
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
1841 1842
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape)
                    )
1843 1844 1845 1846

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
1847
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
1848 1849 1850
    helper.append_op(
        type='matmul_v2', inputs={'X': input, 'Y': mat2}, outputs={'Out': out}
    )
1851
    return out
1852

1853

Y
yaoxuefeng 已提交
1854
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
1855 1856 1857
    """
    **addmm**

1858
    Perform matrix multiplication for input $x$ and $y$.
1859 1860 1861 1862 1863 1864 1865 1866 1867
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
1868 1869 1870
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
1871 1872
        beta (float, optional): Coefficient of $input$, default is 1.
        alpha (float, optional): Coefficient of $x*y$, default is 1.
1873
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1874 1875

    Returns:
1876
        Tensor: The output Tensor of addmm.
1877 1878 1879

    Examples:
        ..  code-block:: python
1880

1881 1882
            import paddle

Y
yaoxuefeng 已提交
1883 1884 1885
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
1886

Y
yaoxuefeng 已提交
1887
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
1888

N
Noel 已提交
1889
            print(out)
1890 1891 1892
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
1893 1894 1895
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
1896
    if not len(x_shape) == len(y_shape) == 2:
1897
        raise ValueError(
1898 1899 1900 1901
            "The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
Y
yaoxuefeng 已提交
1902
    if x_shape[1] != y_shape[0]:
1903
        raise ValueError(
1904 1905 1906 1907
            "The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(
                x_shape, y_shape
            )
        )
1908 1909 1910
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
1911
                raise ValueError(
1912 1913 1914 1915
                    "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(
                        input_shape[0]
                    )
                )
1916
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
1917
                raise ValueError(
1918 1919 1920 1921
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
1922 1923
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
1924
                raise ValueError(
1925 1926 1927 1928
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
1929 1930
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
1931
            raise ValueError(
1932 1933 1934 1935
                "The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]".format(
                    input_shape, x_shape[0], y_shape[1]
                )
            )
1936
    else:
1937
        raise ValueError(
1938 1939 1940 1941
            "The dimention of input should be 2 or 1 but receive input's shape: {}".format(
                input_shape
            )
        )
Y
yaoxuefeng 已提交
1942

J
Jiabin Yang 已提交
1943
    if in_dygraph_mode():
1944
        return _C_ops.addmm(input, x, y, beta, alpha)
J
Jiabin Yang 已提交
1945 1946
    else:
        if _in_legacy_dygraph():
1947
            out = _legacy_C_ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
J
Jiabin Yang 已提交
1948 1949 1950 1951
            return out
        else:
            inputs = {'Input': input, "X": x, "Y": y}
            attrs = {'Alpha': alpha, 'Beta': beta}
1952

J
Jiabin Yang 已提交
1953
            helper = LayerHelper("addmm", **locals())
1954 1955 1956
            check_variable_and_dtype(
                input, 'Input', ['float32', 'float64'], 'addmm'
            )
J
Jiabin Yang 已提交
1957 1958 1959
            check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
            check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1960

1961 1962 1963
            helper.append_op(
                type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out}
            )
J
Jiabin Yang 已提交
1964
            return out
1965

1966

S
seemingwang 已提交
1967 1968 1969 1970 1971 1972 1973
def renorm(x, p, axis, max_norm):
    """
    **renorm**

    This operator is used to calculate the p-norm along the axis,
    suppose the input-shape on axis dimension has the value of T, then
    the tensor is split into T parts, the p-norm should be calculated for each
1974
    part, if the p-norm for part i is larger than max-norm, then each element
S
seemingwang 已提交
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
    in part i should be re-normalized at the same scale so that part-i' p-norm equals
    max-norm exactly, otherwise part-i stays unchanged.

    Args:
        x (Tensor): The input Tensor
        p (float): The power of the norm operation.
        axis (int): the dimension to slice the tensor.
        max-norm (float): the maximal norm limit.

    Returns:
        Tensor: the renorm Tensor.

    Examples:
        ..  code-block:: python
1989

S
seemingwang 已提交
1990 1991 1992 1993
            import paddle
            input = [[[2.0,2,-2],[3,0.3,3]],[[2,-8,2],[3.1,3.7,3]]]
            x = paddle.to_tensor(input,dtype='float32')
            y = paddle.renorm(x, 1.0, 2, 2.05)
1994
            print(y)
S
seemingwang 已提交
1995 1996 1997 1998
    #        [[[ 0.40594056,  0.29285714, -0.41000000],
    #          [ 0.60891086,  0.04392857,  0.61500001]],
    #         [[ 0.40594056, -1.17142856,  0.41000000],
    #          [ 0.62920785,  0.54178572,  0.61500001]]])
1999

S
seemingwang 已提交
2000 2001 2002 2003
    """
    input_shape = x.shape
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'renorm')
    if not axis < len(input_shape):
2004 2005
        raise ValueError(
            "the axis:{} should be less then the shape's size {}:{}".format(
2006 2007 2008
                axis, len(input_shape), input_shape
            )
        )
2009
    if not axis >= 0:
S
seemingwang 已提交
2010
        if not axis >= -1 * len(input_shape):
2011
            raise ValueError(
2012 2013 2014 2015
                "the axis:{} should not be less than -1 * length of input_shape:{}".format(
                    axis, -1 * len(input_shape)
                )
            )
S
seemingwang 已提交
2016
        axis = axis + len(input_shape)
S
seemingwang 已提交
2017
    if in_dygraph_mode():
2018
        out = _C_ops.renorm(x, p, axis, max_norm)
S
seemingwang 已提交
2019 2020
        return out
    elif _in_legacy_dygraph():
2021 2022 2023
        out = _legacy_C_ops.renorm(
            x, 'p', p, 'axis', axis, 'max_norm', max_norm
        )
S
seemingwang 已提交
2024 2025 2026
        return out

    inputs = {'X': x}
2027
    attrs = {'p': p, 'axis': axis, 'max_norm': max_norm}
S
seemingwang 已提交
2028 2029 2030 2031

    helper = LayerHelper("renorm", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

2032 2033 2034
    helper.append_op(
        type="renorm", inputs=inputs, attrs=attrs, outputs={"Out": out}
    )
S
seemingwang 已提交
2035 2036
    return out

2037

Z
zhiboniu 已提交
2038 2039 2040 2041
def inner(x, y, name=None):
    """

    Inner product of two input Tensor.
2042

Z
zhiboniu 已提交
2043 2044 2045 2046 2047
    Ordinary inner product for 1-D Tensors, in higher dimensions a sum product over the last axes.

    Args:
        x (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match y's.
        y (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match x's.
2048
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070

    Returns:
        Tensor: The inner-product Tensor, the output shape is x.shape[:-1] + y.shape[:-1].

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 7).reshape((2, 3)).astype('float32')
            y = paddle.arange(1, 10).reshape((3, 3)).astype('float32')
            out = paddle.inner(x, y)
            print(out)
            #        ([[14, 32, 50],
            #         [32, 77, 122]])


    """
    if x.size == 1 or y.size == 1:
        return multiply(x, y)
    else:
        xshape = x.shape
        yshape = y.shape
2071 2072
        dstshape = list(xshape[:-1]) + list(yshape[:-1])
        if len(dstshape) == 0:
Z
zhiboniu 已提交
2073 2074 2075 2076
            dstshape = [1]
        nx = x.reshape((-1, xshape[-1]))
        ny = y.reshape((-1, yshape[-1]))

2077
        if in_dygraph_mode():
2078
            return _C_ops.matmul(nx, ny.T, False, False).reshape(dstshape)
2079
        elif paddle.in_dynamic_mode():
2080
            return _legacy_C_ops.matmul_v2(nx, ny.T).reshape(dstshape)
Z
zhiboniu 已提交
2081 2082 2083 2084

        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
2085 2086 2087
                check_variable_and_dtype(
                    val, name, ['float16', 'float32', 'float64'], 'inner'
                )
Z
zhiboniu 已提交
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
            x_shape = list(xshape)
            y_shape = list(yshape)

            # check the inner 2 dimensions
            if x_shape[-1] != y_shape[-1]:
                if not ((x_shape[-1] == -1) or (y_shape[-1] == -1)):
                    raise ValueError(
                        "After performing an optional transpose, Input X's last dim should be "
                        "equal to Y's last dim for multiplication "
                        "prerequisites. But received X's shape: %s, Y's shape: %s\n"
2098 2099
                        % (x_shape, y_shape)
                    )
Z
zhiboniu 已提交
2100 2101 2102 2103 2104

        __check_input(nx, ny)

        helper = LayerHelper('inner', **locals())
        out = helper.create_variable_for_type_inference(dtype=nx.dtype)
2105 2106 2107
        helper.append_op(
            type='matmul_v2', inputs={'X': nx, 'Y': ny.T}, outputs={'Out': out}
        )
Z
zhiboniu 已提交
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
        return out.reshape(dstshape)


def outer(x, y, name=None):
    """

    Outer product of two Tensors.

    Input is flattened if not already 1-dimensional.

    Args:
2119 2120
        x (Tensor): An N-D Tensor or a Scalar Tensor.
        y (Tensor): An N-D Tensor or a Scalar Tensor.
2121
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142

    Returns:
        Tensor: The outer-product Tensor.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 4).astype('float32')
            y = paddle.arange(1, 6).astype('float32')
            out = paddle.outer(x, y)
            print(out)
            #        ([[1, 2, 3, 4, 5],
            #         [2, 4, 6, 8, 10],
            #         [3, 6, 9, 12, 15]])


    """
    nx = x.reshape((-1, 1))
    ny = y.reshape((1, -1))

2143
    if in_dygraph_mode():
2144
        return _C_ops.matmul(nx, ny, False, False)
2145
    elif paddle.in_dynamic_mode():
2146
        return _legacy_C_ops.matmul_v2(nx, ny)
Z
zhiboniu 已提交
2147 2148 2149 2150

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
2151 2152 2153
            check_variable_and_dtype(
                val, name, ['float16', 'float32', 'float64'], 'inner'
            )
Z
zhiboniu 已提交
2154 2155 2156 2157 2158

    __check_input(nx, ny)

    helper = LayerHelper('outer', **locals())
    out = helper.create_variable_for_type_inference(dtype=nx.dtype)
2159 2160 2161
    helper.append_op(
        type='matmul_v2', inputs={'X': nx, 'Y': ny}, outputs={'Out': out}
    )
Z
zhiboniu 已提交
2162 2163 2164
    return out


2165
def logsumexp(x, axis=None, keepdim=False, name=None):
2166
    r"""
2167
    Calculates the log of the sum of exponentials of ``x`` along ``axis`` .
2168

2169
    .. math::
2170
       logsumexp(x) = \log\sum exp(x)
2171

2172
    Args:
2173
        x (Tensor): The input Tensor with data type float32 or float64, which
S
Shang Zhizhou 已提交
2174
            have no more than 4 dimensions.
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2191

2192
    Returns:
2193 2194
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
2195

2196
    Examples:
2197

2198
    .. code-block:: python
2199

2200 2201
        import paddle

2202
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
2203 2204
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
2205 2206

    """
2207 2208
    if isinstance(axis, int):
        axis = [axis]
2209 2210 2211 2212 2213
    reduce_all = (
        True
        if axis is None or len(axis) == 0 or len(axis) == len(x.shape)
        else False
    )
2214 2215
    if axis is None or len(axis) == 0:
        axis = [0]
2216

2217 2218 2219
    if in_dygraph_mode():
        if reduce_all:
            axis = range(len(x.shape))
2220
        return _C_ops.logsumexp(x, axis, keepdim, reduce_all)
2221
    if _in_legacy_dygraph():
2222 2223 2224
        return _legacy_C_ops.logsumexp(
            x, 'axis', axis, 'keepdim', keepdim, 'reduce_all', reduce_all
        )
2225

2226
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'logsumexp')
2227

2228
    helper = LayerHelper('logsumexp', **locals())
2229
    attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all': reduce_all}
2230
    out = helper.create_variable_for_type_inference(x.dtype)
2231 2232 2233
    helper.append_op(
        type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
    )
2234
    return out
2235

S
swtkiwi 已提交
2236

2237 2238
def inverse(x, name=None):
    """
2239 2240 2241 2242 2243
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
2244
        x (Tensor): The input tensor. The last two
2245 2246 2247
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
2248
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2249 2250

    Returns:
2251
        Tensor: A Tensor holds the inverse of x. The shape and data type
2252
                        is the same as x.
2253 2254 2255 2256 2257

    Examples:
        .. code-block:: python

            import paddle
2258 2259

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
2260 2261
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
2262 2263

    """
2264
    if in_dygraph_mode():
W
wanghuancoder 已提交
2265
        return _C_ops.inverse(x)
2266 2267
    elif paddle.in_dynamic_mode():
        return _legacy_C_ops.inverse(x)
2268

2269
    def _check_input(x):
2270
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'inverse')
2271
        if len(x.shape) < 2:
2272 2273 2274
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
2275 2276
                "x's shape: %s." % (len(x.shape), x.shape)
            )
2277

2278
    _check_input(x)
2279
    helper = LayerHelper('inverse', **locals())
2280
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2281 2282 2283
    helper.append_op(
        type='inverse', inputs={'Input': [x]}, outputs={'Output': [out]}
    )
2284 2285
    return out

2286

2287
def _get_reduce_axis(axis, x):
2288
    """
2289
    Internal function for max, min, amax and amin.
2290 2291 2292
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
2293
        if isinstance(axis, (tuple, range)):
2294 2295
            axis = list(axis)
        elif isinstance(axis, int):
2296
            axis = [axis]
2297 2298
        else:
            raise TypeError(
2299 2300 2301 2302
                "The type of axis must be int, list or tuple, but received {}".format(
                    type(axis)
                )
            )
2303
    if axis is None:
2304
        axis = []
2305 2306 2307 2308
    if axis == [] or len(axis) == len(x.shape):
        reduce_all = True
    else:
        reduce_all = False
2309 2310
    return reduce_all, axis

2311

2312
def _get_reduce_axis_with_tensor(axis, x):
2313
    if isinstance(axis, Variable):
2314 2315
        if axis.shape[0] == len(x.shape):
            reduce_all = True
T
Tao Luo 已提交
2316
        else:
2317 2318 2319 2320 2321
            reduce_all = False
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        if utils._contain_var(axis):
            axis = utils._convert_to_tensor_list(axis)
T
Tao Luo 已提交
2322
    return reduce_all, axis
2323

2324

2325
def max(x, axis=None, keepdim=False, name=None):
2326
    """
S
swtkiwi 已提交
2327

2328
    Computes the maximum of tensor elements over the given axis.
2329

T
Tao Luo 已提交
2330 2331
    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2332
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2333 2334 2335
        while max propagates gradient to all of them.


2336
    Args:
2337 2338
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
2339
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
2340
            `x` and return a Tensor with a single element,
2341 2342
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2343
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2344
            output Tensor. The result tensor will have one fewer dimension
2345
            than the `x` unless :attr:`keepdim` is true, default
2346
            value is False.
2347
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2348 2349

    Returns:
2350
        Tensor, results of maximum on the specified axis of input tensor,
2351
        it's data type is the same as `x`.
2352 2353 2354

    Examples:
        .. code-block:: python
2355

2356
            import paddle
2357

N
Noel 已提交
2358
            # data_x is a Tensor with shape [2, 4]
2359
            # the axis is a int element
2360
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2361
                                  [0.1, 0.2, 0.6, 0.7]],
2362
                                 dtype='float64', stop_gradient=False)
2363
            result1 = paddle.max(x)
2364
            result1.backward()
2365
            print(result1, x.grad)
2366 2367 2368
            #[0.9], [[0., 0., 0., 1.], [0., 0., 0., 0.]]

            x.clear_grad()
2369
            result2 = paddle.max(x, axis=0)
2370
            result2.backward()
2371
            print(result2, x.grad)
2372 2373 2374
            #[0.2, 0.3, 0.6, 0.9], [[1., 1., 0., 1.], [0., 0., 1., 0.]]

            x.clear_grad()
2375
            result3 = paddle.max(x, axis=-1)
2376
            result3.backward()
2377
            print(result3, x.grad)
2378 2379 2380
            #[0.9, 0.7], [[0., 0., 0., 1.], [0., 0., 0., 1.]]

            x.clear_grad()
2381
            result4 = paddle.max(x, axis=1, keepdim=True)
2382
            result4.backward()
2383
            print(result4, x.grad)
2384
            #[[0.9], [0.7]], [[0., 0., 0., 1.], [0., 0., 0., 1.]]
2385

N
Noel 已提交
2386
            # data_y is a Tensor with shape [2, 2, 2]
2387
            # the axis is list
2388
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2389 2390
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2391
            result5 = paddle.max(y, axis=[1, 2])
2392
            result5.backward()
2393
            print(result5, y.grad)
2394 2395 2396
            #[4., 8.], [[[0., 0.], [0., 1.]], [[0., 0.], [0., 1.]]]

            y.clear_grad()
2397
            result6 = paddle.max(y, axis=[0, 1])
2398
            result6.backward()
2399
            print(result6, y.grad)
2400
            #[7., 8.], [[[0., 0.], [0., 0.]], [[0., 0.], [1., 1.]]]
2401 2402
    """

2403
    reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
2404
    if in_dygraph_mode():
2405
        return _C_ops.max(x, axis, keepdim)
2406
    if _in_legacy_dygraph():
2407 2408 2409
        return _legacy_C_ops.reduce_max(
            x, 'dim', axis, 'keep_dim', keepdim, 'reduce_all', reduce_all
        )
2410

2411
    helper = LayerHelper('max', **locals())
2412 2413 2414
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max'
    )
2415 2416
    if not isinstance(axis, Variable) and utils._contain_var(axis):
        axis = utils._convert_to_tensor_list(axis)
2417

2418
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2419 2420 2421 2422 2423 2424
    helper.append_op(
        type='reduce_max',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
    )
2425 2426
    return out

2427

2428
def min(x, axis=None, keepdim=False, name=None):
2429
    """
S
swtkiwi 已提交
2430

2431
    Computes the minimum of tensor elements over the given axis
2432

T
Tao Luo 已提交
2433 2434
    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2435
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2436 2437
        while min propagates gradient to all of them.

2438
    Args:
2439 2440
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
2441
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
2442
            `x` and return a Tensor with a single element,
2443 2444
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2445
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2446
            output Tensor. The result tensor will have one fewer dimension
2447
            than the `x` unless :attr:`keepdim` is true, default
2448
            value is False.
2449
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2450

2451
    Returns:
2452
        Tensor, results of minimum on the specified axis of input tensor,
2453
        it's data type is the same as input's Tensor.
2454

2455 2456 2457
    Examples:
        .. code-block:: python

2458
            import paddle
2459

2460
            # data_x is a Tensor with shape [2, 4]
2461
            # the axis is a int element
2462
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2463
                                  [0.1, 0.2, 0.6, 0.7]],
2464
                                 dtype='float64', stop_gradient=False)
2465
            result1 = paddle.min(x)
2466
            result1.backward()
2467
            print(result1, x.grad)
2468 2469 2470
            #[0.1], [[0., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2471
            result2 = paddle.min(x, axis=0)
2472
            result2.backward()
2473
            print(result2, x.grad)
2474 2475 2476
            #[0.1, 0.2, 0.5, 0.7], [[0., 0., 1., 0.], [1., 1., 0., 1.]]

            x.clear_grad()
2477
            result3 = paddle.min(x, axis=-1)
2478
            result3.backward()
2479
            print(result3, x.grad)
2480 2481 2482
            #[0.2, 0.1], [[1., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2483
            result4 = paddle.min(x, axis=1, keepdim=True)
2484
            result4.backward()
2485
            print(result4, x.grad)
2486
            #[[0.2], [0.1]], [[1., 0., 0., 0.], [1., 0., 0., 0.]]
2487

2488
            # data_y is a Tensor with shape [2, 2, 2]
2489
            # the axis is list
2490
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2491 2492
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2493
            result5 = paddle.min(y, axis=[1, 2])
2494
            result5.backward()
2495
            print(result5, y.grad)
2496 2497 2498
            #[1., 5.], [[[1., 0.], [0., 0.]], [[1., 0.], [0., 0.]]]

            y.clear_grad()
2499
            result6 = paddle.min(y, axis=[0, 1])
2500
            result6.backward()
2501
            print(result6, y.grad)
2502
            #[1., 2.], [[[1., 1.], [0., 0.]], [[0., 0.], [0., 0.]]]
2503
    """
2504

2505
    reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
2506
    if in_dygraph_mode():
2507
        return _C_ops.min(x, axis, keepdim)
2508 2509

    if _in_legacy_dygraph():
2510 2511 2512
        return _legacy_C_ops.reduce_min(
            x, 'dim', axis, 'keep_dim', keepdim, 'reduce_all', reduce_all
        )
2513 2514

    helper = LayerHelper('min', **locals())
2515 2516 2517
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min'
    )
2518 2519
    if not isinstance(axis, Variable) and utils._contain_var(axis):
        axis = utils._convert_to_tensor_list(axis)
2520

2521
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2522 2523 2524 2525 2526 2527
    helper.append_op(
        type='reduce_min',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
    )
2528 2529
    return out

2530

T
Tao Luo 已提交
2531 2532 2533 2534 2535 2536
def amax(x, axis=None, keepdim=False, name=None):
    """
    Computes the maximum of tensor elements over the given axis.

    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2537
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2538 2539 2540
        while max propagates gradient to all of them.

    Args:
2541
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2542
            the dimension is no more than 4.
2543
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
T
Tao Luo 已提交
2544 2545 2546 2547
            If :attr:`None`, compute the maximum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2548
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2549 2550 2551
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2552
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565

    Returns:
        Tensor, results of maximum on the specified axis of input tensor,
        it's data type is the same as `x`.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple maximum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.1, 0.9, 0.9, 0.9],
2566
                                  [0.9, 0.9, 0.6, 0.7]],
T
Tao Luo 已提交
2567
                                 dtype='float64', stop_gradient=False)
2568 2569
            # There are 5 maximum elements:
            # 1) amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2570
            #    thus the corresponding gradients are 1/5=0.2;
2571
            # 2) while max propagates gradient to all of them,
T
Tao Luo 已提交
2572
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2573 2574
            result1 = paddle.amax(x)
            result1.backward()
2575
            print(result1, x.grad)
T
Tao Luo 已提交
2576 2577
            #[0.9], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2578 2579 2580
            x.clear_grad()
            result1_max = paddle.max(x)
            result1_max.backward()
2581
            print(result1_max, x.grad)
T
Tao Luo 已提交
2582 2583 2584 2585
            #[0.9], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2586 2587 2588
            x.clear_grad()
            result2 = paddle.amax(x, axis=0)
            result2.backward()
2589
            print(result2, x.grad)
T
Tao Luo 已提交
2590 2591 2592 2593 2594
            #[0.9, 0.9, 0.9, 0.9], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amax(x, axis=-1)
            result3.backward()
2595
            print(result3, x.grad)
T
Tao Luo 已提交
2596 2597 2598 2599 2600
            #[0.9, 0.9], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amax(x, axis=1, keepdim=True)
            result4.backward()
2601
            print(result4, x.grad)
T
Tao Luo 已提交
2602 2603 2604
            #[[0.9], [0.9]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
2605
            # the axis is list
T
Tao Luo 已提交
2606 2607 2608 2609 2610
            y = paddle.to_tensor([[[0.1, 0.9], [0.9, 0.9]],
                                  [[0.9, 0.9], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amax(y, axis=[1, 2])
            result5.backward()
2611
            print(result5, y.grad)
T
Tao Luo 已提交
2612 2613 2614 2615 2616
            #[0.9., 0.9], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amax(y, axis=[0, 1])
            result6.backward()
2617
            print(result6, y.grad)
T
Tao Luo 已提交
2618 2619 2620
            #[0.9., 0.9], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """

2621
    reduce_all, axis = _get_reduce_axis(axis, x)
2622
    if in_dygraph_mode():
2623
        return _C_ops.amax(x, axis, keepdim)
2624
    if _in_legacy_dygraph():
2625 2626 2627
        return _legacy_C_ops.reduce_amax(
            x, 'dim', axis, 'keep_dim', keepdim, 'reduce_all', reduce_all
        )
T
Tao Luo 已提交
2628 2629

    helper = LayerHelper('amax', **locals())
2630 2631 2632
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amax'
    )
T
Tao Luo 已提交
2633

2634
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2635 2636 2637 2638 2639 2640
    helper.append_op(
        type='reduce_amax',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
    )
T
Tao Luo 已提交
2641 2642
    return out

2643

T
Tao Luo 已提交
2644 2645 2646 2647 2648 2649 2650
def amin(x, axis=None, keepdim=False, name=None):
    """

    Computes the minimum of tensor elements over the given axis

    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2651
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2652 2653 2654
        while min propagates gradient to all of them.

    Args:
2655
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2656
            the dimension is no more than 4.
2657
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
T
Tao Luo 已提交
2658 2659 2660 2661
            If :attr:`None`, compute the minimum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2662
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2663 2664 2665
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2666
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679

    Returns:
        Tensor, results of minimum on the specified axis of input tensor,
        it's data type is the same as input's Tensor.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple minimum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.2, 0.1, 0.1, 0.1],
2680
                                  [0.1, 0.1, 0.6, 0.7]],
T
Tao Luo 已提交
2681
                                 dtype='float64', stop_gradient=False)
2682 2683
            # There are 5 minimum elements:
            # 1) amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2684
            #    thus the corresponding gradients are 1/5=0.2;
2685
            # 2) while min propagates gradient to all of them,
T
Tao Luo 已提交
2686
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2687 2688
            result1 = paddle.amin(x)
            result1.backward()
2689
            print(result1, x.grad)
T
Tao Luo 已提交
2690 2691
            #[0.1], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2692 2693 2694
            x.clear_grad()
            result1_min = paddle.min(x)
            result1_min.backward()
2695
            print(result1_min, x.grad)
T
Tao Luo 已提交
2696 2697 2698 2699
            #[0.1], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2700 2701 2702
            x.clear_grad()
            result2 = paddle.amin(x, axis=0)
            result2.backward()
2703
            print(result2, x.grad)
T
Tao Luo 已提交
2704 2705 2706 2707 2708
            #[0.1, 0.1, 0.1, 0.1], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amin(x, axis=-1)
            result3.backward()
2709
            print(result3, x.grad)
T
Tao Luo 已提交
2710 2711 2712 2713 2714
            #[0.1, 0.1], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amin(x, axis=1, keepdim=True)
            result4.backward()
2715
            print(result4, x.grad)
T
Tao Luo 已提交
2716 2717 2718
            #[[0.1], [0.1]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
2719
            # the axis is list
T
Tao Luo 已提交
2720 2721 2722 2723 2724
            y = paddle.to_tensor([[[0.2, 0.1], [0.1, 0.1]],
                                  [[0.1, 0.1], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amin(y, axis=[1, 2])
            result5.backward()
2725
            print(result5, y.grad)
T
Tao Luo 已提交
2726 2727 2728 2729 2730
            #[0.1., 0.1], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amin(y, axis=[0, 1])
            result6.backward()
2731
            print(result6, y.grad)
T
Tao Luo 已提交
2732 2733 2734
            #[0.1., 0.1], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """

2735
    reduce_all, axis = _get_reduce_axis(axis, x)
2736
    if in_dygraph_mode():
2737
        return _C_ops.amin(x, axis, keepdim)
2738
    elif _in_legacy_dygraph():
2739 2740 2741
        return _legacy_C_ops.reduce_amin(
            x, 'dim', axis, 'keep_dim', keepdim, 'reduce_all', reduce_all
        )
T
Tao Luo 已提交
2742
    helper = LayerHelper('amin', **locals())
2743 2744 2745
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amin'
    )
T
Tao Luo 已提交
2746

2747
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2748 2749 2750 2751 2752 2753
    helper.append_op(
        type='reduce_amin',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
    )
T
Tao Luo 已提交
2754 2755
    return out

2756

W
WuHaobo 已提交
2757
def log1p(x, name=None):
2758
    r"""
2759
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
2760

2761
    .. math::
2762
        Out = \ln(x+1)
S
Steffy-zxf 已提交
2763

2764
    Args:
S
Steffy-zxf 已提交
2765
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
2766
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2767

2768
    Returns:
S
Steffy-zxf 已提交
2769
        Tensor, the natural log of the input Tensor computed element-wise.
2770

2771 2772
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
2773

2774
            import paddle
S
Steffy-zxf 已提交
2775 2776 2777 2778

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
2779 2780
    """

2781
    if in_dygraph_mode():
W
wanghuancoder 已提交
2782
        return _C_ops.log1p(x)
2783 2784
    if _in_legacy_dygraph():
        return _legacy_C_ops.log1p(x)
2785 2786 2787 2788 2789

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
2790
    out = helper.create_variable_for_type_inference(dtype)
2791 2792
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
2793

2794

J
joejiong 已提交
2795
def log2(x, name=None):
2796
    r"""
J
joejiong 已提交
2797 2798 2799 2800
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

2801
        Out = \log_2x
J
joejiong 已提交
2802 2803 2804

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2805
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2806 2807 2808 2809 2810 2811 2812 2813


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
2814

J
joejiong 已提交
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
2833
    if in_dygraph_mode():
W
wanghuancoder 已提交
2834
        return _C_ops.log2(x)
2835 2836
    if _in_legacy_dygraph():
        return _legacy_C_ops.log2(x)
J
joejiong 已提交
2837 2838 2839 2840 2841 2842 2843 2844

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log2")
    inputs = {'X': [x]}
    helper = LayerHelper('log2', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
    return out
W
WuHaobo 已提交
2845

J
joejiong 已提交
2846 2847

def log10(x, name=None):
2848
    r"""
J
joejiong 已提交
2849 2850 2851 2852
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

2853
        Out = \log_10_x
J
joejiong 已提交
2854 2855 2856

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2857
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2858 2859 2860 2861 2862 2863 2864 2865


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
2866

J
joejiong 已提交
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
2885
    if in_dygraph_mode():
W
wanghuancoder 已提交
2886
        return _C_ops.log10(x)
2887 2888
    if _in_legacy_dygraph():
        return _legacy_C_ops.log10(x)
J
joejiong 已提交
2889 2890 2891 2892 2893 2894 2895 2896 2897 2898

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log10")
    inputs = {'X': [x]}
    helper = LayerHelper('log10', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
    return out


Y
Yang Zhang 已提交
2899
def clip(x, min=None, max=None, name=None):
2900
    """
Y
Yang Zhang 已提交
2901
    This operator clip all elements in input into the range [ min, max ] and return
2902 2903 2904 2905
    a resulting tensor as the following equation:

    .. math::

2906
        Out = MIN(MAX(x, min), max)
2907 2908

    Args:
2909
        x (Tensor): An N-D Tensor with data type float32, float64, int32 or int64.
2910
        min (float|int|Tensor, optional): The lower bound with type ``float`` , ``int`` or a ``Tensor``
2911
            with shape [1] and type ``int32``, ``float32``, ``float64``.
2912
        max (float|int|Tensor, optional): The upper bound with type ``float``, ``int`` or a ``Tensor``
2913
            with shape [1] and type ``int32``, ``float32``, ``float64``.
2914
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2915 2916

    Returns:
Y
Yang Zhang 已提交
2917
        Tensor: A Tensor with the same data type and data shape as input.
2918 2919 2920 2921 2922

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
2923

2924
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
2925 2926
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
2927
            print(out1)
Y
Yang Zhang 已提交
2928 2929
            # [[3.5, 3.5]
            # [4.5, 5.0]]
2930
            print(out2)
Y
Yang Zhang 已提交
2931 2932
            # [[2.5, 3.5]
            # [[4.5, 6.4]
2933 2934
    """

2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
2945

C
chentianyu03 已提交
2946 2947 2948 2949 2950 2951 2952
    if in_dygraph_mode():
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
        min = min_ if min is None else min
        max = max_ if max is None else max
2953
        return _C_ops.clip(x, min, max)
C
chentianyu03 已提交
2954 2955

    if _in_legacy_dygraph():
2956 2957 2958 2959
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
2960 2961
        min = min_ if min is None else min
        max = max_ if max is None else max
2962
        return _legacy_C_ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
2963

2964
    if min is not None:
Y
Yang Zhang 已提交
2965
        check_type(min, 'min', (float, int, Variable), 'clip')
2966
        if isinstance(min, Variable):
2967 2968 2969 2970 2971 2972 2973
            check_dtype(
                min.dtype,
                'min',
                ['float32', 'float64', 'int32'],
                'clip',
                '(When the type of min in clip is Variable.)',
            )
2974
    if max is not None:
Y
Yang Zhang 已提交
2975
        check_type(max, 'max', (float, int, Variable), 'clip')
2976
        if isinstance(max, Variable):
2977 2978 2979 2980 2981 2982 2983
            check_dtype(
                max.dtype,
                'max',
                ['float32', 'float64', 'int32'],
                'clip',
                '(When the type of max in clip is Variable.)',
            )
2984

2985 2986 2987
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'clip'
    )
Y
Yang Zhang 已提交
2988 2989

    inputs = {'X': x}
2990
    attrs = {'min': min_, 'max': max_}
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
3004
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
3005
    output = helper.create_variable_for_type_inference(
3006 3007 3008 3009 3010
        dtype=helper.input_dtype('x')
    )
    helper.append_op(
        type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs
    )
3011 3012

    return output
F
Feiyu Chan 已提交
3013

W
WuHaobo 已提交
3014

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_clip`.
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
        min = min.numpy().item(0)
    if isinstance(max, Variable):
        max = max.numpy().item(0)
    min = fmin if min is None else min
    max = fmax if max is None else max
C
chentianyu03 已提交
3029 3030

    if in_dygraph_mode():
3031
        return _C_ops.clip_(x, min, max)
C
chentianyu03 已提交
3032 3033

    if _in_legacy_dygraph():
3034
        return _legacy_C_ops.clip_(x, "min", min, "max", max)
3035 3036


3037
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
3038
    """
S
swtkiwi 已提交
3039

3040
    Computes the sum along diagonals of the input tensor x.
3041 3042

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
3043

3044
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
3045
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
3046
    of the input tensor x.
L
Li Fuchen 已提交
3047

3048
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
3049 3050 3051 3052

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
3053
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
3054

L
Li Fuchen 已提交
3055
    Args:
3056 3057 3058 3059 3060
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
L
Li Fuchen 已提交
3061 3062

    Returns:
3063
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
3064 3065 3066 3067 3068

    Examples:
        .. code-block:: python

            import paddle
3069

3070 3071 3072
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
3073 3074 3075
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
3076
    """
3077

Z
zyfncg 已提交
3078
    def __check_input(x, offset, axis1, axis2):
3079 3080 3081 3082 3083 3084
        check_dtype(
            x.dtype,
            'Input',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'trace',
        )
L
Li Fuchen 已提交
3085

3086
        input_shape = list(x.shape)
3087 3088 3089 3090
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "But received Input x's dimensional: %s.\n" % len(input_shape)
        )
L
Li Fuchen 已提交
3091

3092 3093
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
3094

3095 3096
        assert (0 <= axis1_) and (axis1_ < len(input_shape)), (
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3097
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
3098
        )
L
Li Fuchen 已提交
3099

3100 3101
        assert (0 <= axis2_) and (axis2_ < len(input_shape)), (
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3102
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
3103
        )
L
Li Fuchen 已提交
3104

3105 3106 3107 3108
        assert axis1_ != axis2_, (
            "axis1 and axis2 cannot be the same axis."
            "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
        )
L
Li Fuchen 已提交
3109

H
hong 已提交
3110
    if in_dygraph_mode():
3111
        return _C_ops.trace(x, offset, axis1, axis2)
H
hong 已提交
3112 3113

    if _in_legacy_dygraph():
3114 3115 3116
        return _legacy_C_ops.trace(
            x, 'offset', offset, 'axis1', axis1, 'axis2', axis2
        )
X
XiangGao 已提交
3117

Z
zyfncg 已提交
3118
    __check_input(x, offset, axis1, axis2)
L
Li Fuchen 已提交
3119

Z
zyfncg 已提交
3120
    helper = LayerHelper('trace', **locals())
3121
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
3122

3123 3124 3125 3126 3127 3128
    helper.append_op(
        type='trace',
        inputs={'Input': [x]},
        attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
        outputs={'Out': [out]},
    )
L
Li Fuchen 已提交
3129 3130
    return out

3131

3132 3133 3134 3135 3136
def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
    """
    This OP computes the diagonals of the input tensor x.

    If ``x`` is 2D, returns the diagonal.
3137
    If ``x`` has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2.
3138 3139 3140 3141 3142 3143 3144
    By default, the 2D planes formed by the first and second axis of the input tensor x.

    The argument ``offset`` determines where diagonals are taken from input tensor x:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
3145

3146
    Args:
3147 3148 3149 3150 3151
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194

    Returns:
        Tensor: a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([2,2,3],'float32')
            print(x)
            # Tensor(shape=[2, 2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[[0.45661032, 0.03751532, 0.90191704],
            #          [0.43760979, 0.86177313, 0.65221709]],

            #         [[0.17020577, 0.00259554, 0.28954273],
            #          [0.51795638, 0.27325270, 0.18117726]]])

            out1 = paddle.diagonal(x)
            print(out1)
            #Tensor(shape=[3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.51795638],
            #        [0.03751532, 0.27325270],
            #        [0.90191704, 0.18117726]])

            out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1)
            print(out2)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])

            out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1)
            print(out3)
            #Tensor(shape=[3, 1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.43760979],
            #        [0.86177313],
            #        [0.65221709]])

            out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2)
            print(out4)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])
3195

3196
    """
J
Jiabin Yang 已提交
3197
    if in_dygraph_mode():
3198
        return _C_ops.diagonal(x, offset, axis1, axis2)
J
Jiabin Yang 已提交
3199 3200
    else:
        if _in_legacy_dygraph():
3201 3202 3203
            return _legacy_C_ops.diagonal(
                x, 'offset', offset, 'axis1', axis1, 'axis2', axis2
            )
W
wanghuancoder 已提交
3204

Z
zyfncg 已提交
3205
    def __check_input(x, offset, axis1, axis2):
3206 3207 3208 3209 3210 3211
        check_dtype(
            x.dtype,
            'Input',
            ['bool', 'int32', 'int64', 'float16', 'float32', 'float64'],
            'diagonal',
        )
3212 3213

        input_shape = list(x.shape)
3214 3215 3216 3217
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "But received Input x's dimensional: %s.\n" % len(input_shape)
        )
3218 3219 3220 3221

        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2

3222 3223
        assert axis1_ < len(input_shape), (
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3224
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
3225
        )
3226

3227 3228
        assert axis2_ < len(input_shape), (
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3229
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
3230
        )
3231

3232 3233 3234 3235
        assert axis1_ != axis2_, (
            "axis1 and axis2 cannot be the same axis."
            "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
        )
3236

Z
zyfncg 已提交
3237
    __check_input(x, offset, axis1, axis2)
3238 3239 3240
    helper = LayerHelper('diagonal', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3241 3242 3243 3244 3245 3246
    helper.append_op(
        type='diagonal',
        inputs={'Input': [x]},
        attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
        outputs={'Out': [out]},
    )
3247 3248 3249
    return out


F
Feiyu Chan 已提交
3250
@templatedoc(op_type="kron")
W
WuHaobo 已提交
3251
def kron(x, y, name=None):
S
swtkiwi 已提交
3252 3253
    """

3254
    ${comment}
F
Feiyu Chan 已提交
3255 3256

    Args:
3257 3258
        x (Tensor): the fist operand of kron op, data type: float16, float32, float64, int32 or int64.
        y (Tensor): the second operand of kron op, data type: float16, float32, float64, int32 or int64. Its data type should be the same with x.
3259
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
F
Feiyu Chan 已提交
3260 3261

    Returns:
3262
        Tensor: The output of kron, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
3263 3264 3265

    Examples:
        .. code-block:: python
3266

3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
3278
    """
3279
    if _in_legacy_dygraph():
3280
        return _legacy_C_ops.kron(x, y)
3281
    if in_dygraph_mode():
3282
        return _C_ops.kron(x, y)
F
Feiyu Chan 已提交
3283
    helper = LayerHelper('kron', **locals())
3284
    check_variable_and_dtype(
3285 3286
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
    )
3287
    check_variable_and_dtype(
3288 3289
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
    )
F
Feiyu Chan 已提交
3290

W
WuHaobo 已提交
3291
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
3292 3293
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
3294 3295 3296 3297


def cumsum(x, axis=None, dtype=None, name=None):
    """
3298 3299
    The cumulative sum of the elements along a given axis.

3300
    Note:
3301
        The first element of the result is the same as the first element of the input.
3302 3303

    Args:
3304
        x (Tensor): The input tensor needed to be cumsumed.
3305
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3306
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3307 3308 3309
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3310
        Tensor, the result of cumsum operator.
3311 3312 3313

    Examples:
        .. code-block:: python
3314

3315
            import paddle
3316

3317 3318
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
3319 3320 3321 3322 3323 3324 3325 3326

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
3327

3328 3329 3330 3331 3332 3333 3334
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
3335
            # paddle.float64
3336 3337 3338 3339 3340 3341
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3342
        x = cast(x, dtype)
3343

H
hong 已提交
3344
    if in_dygraph_mode():
3345 3346
        if axis is None:
            axis = -1
3347
        return _C_ops.cumsum(x, axis, flatten, False, False)
H
hong 已提交
3348
    if _in_legacy_dygraph():
3349
        if axis is None:
3350
            return _legacy_C_ops.cumsum(x, 'flatten', flatten)
3351
        else:
3352
            return _legacy_C_ops.cumsum(x, 'axis', axis, 'flatten', flatten)
3353 3354 3355 3356 3357 3358 3359 3360 3361

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
3362

3363 3364 3365

def logcumsumexp(x, axis=None, dtype=None, name=None):
    r"""
3366
    The logarithm of the cumulative summation of the exponentiation of the elements along a given axis.
3367 3368 3369 3370 3371 3372

    For summation index j given by `axis` and other indices i, the result is

    .. math::

        logcumsumexp(x)_{ij} = log \sum_{i=0}^{j}exp(x_{ij})
3373

3374 3375 3376 3377 3378 3379
    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor.
        axis (int, optional): The dimension to do the operation along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3380
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3381 3382 3383
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3384
        Tensor, the result of logcumsumexp operator.
3385 3386 3387

    Examples:
        .. code-block:: python
3388

3389
            import paddle
3390

3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
            data = paddle.arange(12, dtype='float64')
            data = paddle.reshape(data, (3, 4))

            y = paddle.logcumsumexp(data)
            # [ 0.         1.3132617  2.4076061  3.4401898  4.4519143  5.4561934
            #   6.4577627  7.4583397  8.458551   9.45863   10.458658  11.458669 ]

            y = paddle.logcumsumexp(data, axis=0)
            # [[ 0.        1.        2.        3.      ]
            #  [ 4.01815   5.01815   6.01815   7.01815 ]
            #  [ 8.018479  9.018479 10.018479 11.018479]]
3402

3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
            y = paddle.logcumsumexp(data, axis=-1)
            # [[ 0.         1.3132617  2.4076061  3.4401898]
            #  [ 4.         5.3132615  6.407606   7.44019  ]
            #  [ 8.         9.313262  10.407606  11.440189 ]]

            y = paddle.logcumsumexp(data, dtype='float64')
            print(y.dtype)
            # paddle.float64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = cast(x, dtype)

    if in_dygraph_mode():
3420 3421
        if axis is None:
            axis = -1
3422
        return _C_ops.logcumsumexp(x, axis, flatten, False, False)
3423 3424
    if _in_legacy_dygraph():
        if axis is None:
3425
            return _legacy_C_ops.logcumsumexp(x, 'flatten', flatten)
3426
        else:
3427 3428 3429
            return _legacy_C_ops.logcumsumexp(
                x, 'axis', axis, 'flatten', flatten
            )
3430

3431 3432 3433
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], "logcumsumexp"
    )
3434 3435 3436

    helper = LayerHelper('logcumsumexp', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
3437 3438 3439 3440 3441 3442
    helper.append_op(
        type='logcumsumexp',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'axis': axis, 'flatten': flatten},
    )
3443 3444 3445
    return out


H
hlygit66666 已提交
3446 3447 3448 3449
def cumprod(x, dim=None, dtype=None, name=None):
    """
    Compute the cumulative product of the input tensor x along a given dimension dim.

3450 3451
    Note:
        The first element of the result is the same as the first element of the input.
H
hlygit66666 已提交
3452 3453 3454 3455 3456

    Args:
        x (Tensor): the input tensor need to be cumproded.
        dim (int): the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank), where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64, complex64, complex128. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
H
hlygit66666 已提交
3457
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
H
hlygit66666 已提交
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493

    Returns:
        Tensor, the result of cumprod operator.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
            # [[ 0  1  2  3 ]
            #  [ 4  5  6  7 ]
            #  [ 8  9  10 11]]

            y = paddle.cumprod(data, dim=0)
            # [[ 0  1   2   3]
            #  [ 0  5  12  21]
            #  [ 0 45 120 231]]

            y = paddle.cumprod(data, dim=-1)
            # [[ 0   0   0    0]
            #  [ 4  20 120  840]
            #  [ 8  72 720 7920]]

            y = paddle.cumprod(data, dim=1, dtype='float64')
            # [[ 0.   0.   0.    0.]
            #  [ 4.  20. 120.  840.]
            #  [ 8.  72. 720. 7920.]]

            print(y.dtype)
            # paddle.float64

    """

    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3494
        x = cast(x, dtype)
H
hlygit66666 已提交
3495

3496
    if in_dygraph_mode():
3497
        return _C_ops.cumprod(x, dim)
3498
    if _in_legacy_dygraph():
3499
        return _legacy_C_ops.cumprod(x, 'dim', dim)
H
hlygit66666 已提交
3500

3501
    check_variable_and_dtype(
3502 3503
        x,
        "x",
3504
        ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'],
3505 3506
        'cumprod',
    )
H
hlygit66666 已提交
3507 3508 3509 3510
    check_type(dim, 'dim', int, 'cumprod')

    helper = LayerHelper('cumprod', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
3511 3512 3513 3514 3515 3516
    helper.append_op(
        type='cumprod',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'dim': dim},
    )
H
hlygit66666 已提交
3517 3518
    return out

3519

J
Jack Zhou 已提交
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
3536

3537
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3538
            out = paddle.isfinite(x)
N
Noel 已提交
3539
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
3540
    """
H
hong 已提交
3541
    if in_dygraph_mode():
3542
        return _C_ops.isfinite(x)
H
hong 已提交
3543
    if _in_legacy_dygraph():
3544
        return _legacy_C_ops.isfinite_v2(x)
J
Jack Zhou 已提交
3545
    helper = LayerHelper("isfinite_v2", **locals())
3546
    check_variable_and_dtype(
3547 3548
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite'
    )
J
Jack Zhou 已提交
3549 3550 3551 3552
    out = helper.create_variable_for_type_inference('bool')
    helper.append_op(type="isfinite_v2", inputs={"X": x}, outputs={"Out": out})
    return out

3553

J
Jack Zhou 已提交
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3570

3571
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3572
            out = paddle.isinf(x)
N
Noel 已提交
3573
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
3574
    """
H
hong 已提交
3575
    if in_dygraph_mode():
3576
        return _C_ops.isinf(x)
H
hong 已提交
3577
    if _in_legacy_dygraph():
3578
        return _legacy_C_ops.isinf_v2(x)
J
Jack Zhou 已提交
3579
    helper = LayerHelper("isinf_v2", **locals())
3580
    check_variable_and_dtype(
3581 3582
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf'
    )
J
Jack Zhou 已提交
3583 3584 3585 3586
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
    return out

3587

J
Jack Zhou 已提交
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
3604

3605
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3606
            out = paddle.isnan(x)
N
Noel 已提交
3607
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
3608
    """
H
hong 已提交
3609
    if in_dygraph_mode():
3610
        return _C_ops.isnan(x)
H
hong 已提交
3611 3612

    if _in_legacy_dygraph():
3613
        return _legacy_C_ops.isnan_v2(x)
J
Jack Zhou 已提交
3614
    helper = LayerHelper("isnan_v2", **locals())
3615
    check_variable_and_dtype(
3616 3617
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan'
    )
J
Jack Zhou 已提交
3618 3619 3620 3621 3622
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
    return out


G
guofei 已提交
3623 3624 3625 3626 3627
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
3628
        x (Tensor): The input tensor, its data type should be float32, float64, int32, int64.
3629 3630 3631
        axis (int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`,
            multiply all elements of `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`,
G
guofei 已提交
3632
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
3633
        keepdim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result
3634
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
3635 3636 3637
        dtype (str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64,
            int32, int64. If specified, the input tensor is casted to dtype before operator performed.
            This is very useful for avoiding data type overflows. The default value is None, the dtype
G
guofei 已提交
3638
            of output is the same as input Tensor `x`.
3639
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
G
guofei 已提交
3640 3641 3642

    Returns:
        Tensor, result of product on the specified dim of input tensor.
3643

G
guofei 已提交
3644 3645 3646 3647 3648 3649
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
3650 3651
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
            out1 = paddle.prod(x)
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
3668 3669
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
3670 3671 3672 3673 3674 3675 3676 3677
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
3678 3679 3680
        check_dtype(
            dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod'
        )
G
guofei 已提交
3681
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3682
            x = cast(x, dtype)
G
guofei 已提交
3683

3684
    dim = axis
3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
    if isinstance(dim, Variable):
        reduce_all = True if axis.shape[0] == len(x.shape) else False
    else:
        if dim is not None and not isinstance(dim, list):
            if isinstance(dim, tuple):
                dim = list(dim)
            elif isinstance(dim, int):
                dim = [dim]
            else:
                raise TypeError(
3695 3696 3697 3698
                    "The type of axis must be int, list or tuple, but received {}".format(
                        type(dim)
                    )
                )
3699

3700 3701 3702 3703 3704
        reduce_all = (
            True
            if dim is None or len(dim) == 0 or len(dim) == len(x.shape)
            else False
        )
3705 3706
        if dim is None or len(dim) == 0:
            dim = [0]
3707

3708
    if in_dygraph_mode():
3709
        return _C_ops.reduce_prod(x, dim, keepdim, reduce_all)
3710
    if _in_legacy_dygraph():
3711 3712 3713
        return _legacy_C_ops.reduce_prod(
            x, 'dim', dim, 'keep_dim', keepdim, 'reduce_all', reduce_all
        )
3714 3715

    helper = LayerHelper('reduce_prod', **locals())
3716 3717 3718
    check_variable_and_dtype(
        x, 'x/input', ['float32', 'float64', 'int32', 'int64'], 'reduce_prod'
    )
3719
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
3720 3721
    if not isinstance(dim, Variable) and utils._contain_var(dim):
        dim = utils._convert_to_tensor_list(dim)
3722 3723 3724 3725 3726 3727
    helper.append_op(
        type='reduce_prod',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'dim': dim, 'keep_dim': keepdim, 'reduce_all': reduce_all},
    )
3728
    return out
W
WangXi 已提交
3729 3730 3731 3732


def sign(x, name=None):
    """
3733
    Returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
W
WangXi 已提交
3734 3735

    Args:
3736 3737
        x (Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
WangXi 已提交
3738 3739 3740 3741 3742 3743 3744 3745 3746

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

3747
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
3748 3749 3750
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
H
hong 已提交
3751
    if in_dygraph_mode():
3752
        return _C_ops.sign(x)
H
hong 已提交
3753 3754

    if _in_legacy_dygraph():
3755
        return _legacy_C_ops.sign(x)
W
WangXi 已提交
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sign')
    helper = LayerHelper("sign", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out


def tanh(x, name=None):
3767
    r"""
W
WangXi 已提交
3768 3769 3770
    Tanh Activation Operator.

    .. math::
3771
        out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

3786
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
3787
            out = paddle.tanh(x)
N
Noel 已提交
3788
            print(out)
W
WangXi 已提交
3789 3790
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
H
hong 已提交
3791
    if in_dygraph_mode():
3792
        return _C_ops.tanh(x)
H
hong 已提交
3793 3794

    if _in_legacy_dygraph():
3795
        return _legacy_C_ops.tanh(x)
W
WangXi 已提交
3796 3797

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanh')
S
ShenLiang 已提交
3798
    check_type(x, 'x', (Variable), 'tanh')
W
WangXi 已提交
3799 3800 3801 3802
    helper = LayerHelper('tanh', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
    return out
S
Steffy-zxf 已提交
3803

3804

3805
@inplace_apis_in_dygraph_only
3806 3807 3808 3809 3810
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
3811
    if in_dygraph_mode():
3812
        return _C_ops.tanh_(x)
3813
    return _legacy_C_ops.tanh_(x)
3814 3815


S
Steffy-zxf 已提交
3816 3817
def increment(x, value=1.0, name=None):
    """
3818
    The API is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
S
Steffy-zxf 已提交
3819 3820 3821 3822
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
3823
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
S
Steffy-zxf 已提交
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
H
hong 已提交
3839
    if in_dygraph_mode():
3840
        return _C_ops.increment_(x, value)
H
hong 已提交
3841 3842

    if _in_legacy_dygraph():
3843
        return _legacy_C_ops.increment(x, 'step', value)
S
Steffy-zxf 已提交
3844

3845 3846 3847
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'increment'
    )
S
Steffy-zxf 已提交
3848
    helper = LayerHelper("increment", **locals())
3849 3850 3851 3852 3853 3854
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
        outputs={'Out': [x]},
        attrs={'step': float(value)},
    )
S
Steffy-zxf 已提交
3855
    return x
3856 3857 3858 3859


def all(x, axis=None, keepdim=False, name=None):
    """
3860
    Computes the ``logical and`` of tensor elements over the given dimension.
3861 3862 3863 3864 3865

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3866
            Tensor with a single element, otherwise must be in the
3867 3868 3869 3870 3871 3872
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3873
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3874 3875 3876 3877 3878 3879 3880 3881

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3882

N
Noel 已提交
3883
            # x is a bool Tensor with following elements:
3884 3885
            #    [[True, False]
            #     [True, True]]
C
Chen Long 已提交
3886
            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
3887
            print(x)
S
syyxsxx 已提交
3888
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3889

3890 3891 3892
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
C
Chen Long 已提交
3893

3894 3895 3896
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
C
Chen Long 已提交
3897 3898

            # keepdim=False, out3 should be [False, True], out.shape should be (2,)
3899 3900
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
C
Chen Long 已提交
3901 3902 3903

            # keepdim=True, out4 should be [[False], [True]], out.shape should be (2,1)
            out4 = paddle.all(x, axis=1, keepdim=True) # [[False], [True]]
3904
            print(out4)
3905

3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

3918 3919 3920
    if in_dygraph_mode():
        if reduce_all_flag:
            axis = range(len(x.shape))
3921
        return _C_ops.all(x, axis, keepdim)
3922 3923

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3924
        axis = axis if axis != None and axis != [] else [0]
3925 3926 3927
        return _legacy_C_ops.reduce_all(
            x, 'dim', axis, 'keep_dim', keepdim, 'reduce_all', reduce_all_flag
        )
W
wanghuancoder 已提交
3928

3929 3930 3931
    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
3932
        'reduce_all': reduce_all_flag,
3933 3934 3935 3936 3937 3938 3939
    }
    check_variable_and_dtype(x, 'x', ['bool'], 'all')

    check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')

    helper = LayerHelper('all', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
3940 3941 3942
    helper.append_op(
        type='reduce_all', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
    )
3943 3944 3945 3946 3947
    return out


def any(x, axis=None, keepdim=False, name=None):
    """
C
Chen Long 已提交
3948
    Computes the ``logical or`` of tensor elements over the given dimension, and return the result.
3949 3950 3951 3952 3953

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3954
            Tensor with a single element, otherwise must be in the
3955 3956 3957 3958 3959 3960
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3961
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3962 3963 3964 3965 3966 3967 3968 3969

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3970 3971 3972

            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
            x = paddle.assign(x)
3973
            print(x)
S
syyxsxx 已提交
3974
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3975 3976 3977 3978
            # x is a bool Tensor with following elements:
            #    [[True, False]
            #     [True, True]]

3979 3980 3981
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
C
Chen Long 已提交
3982

3983 3984
            # out2 should be [True, True]
            out2 = paddle.any(x, axis=0)  # [True, True]
3985
            print(out2)
C
Chen Long 已提交
3986 3987

            # keepdim=False, out3 should be [True, True], out.shape should be (2,)
3988
            out3 = paddle.any(x, axis=-1)  # [True, True]
3989
            print(out3)
C
Chen Long 已提交
3990 3991 3992

            # keepdim=True, result should be [[True], [True]], out.shape should be (2,1)
            out4 = paddle.any(x, axis=1, keepdim=True)  # [[True], [True]]
3993 3994
            print(out4)

3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

4007 4008 4009
    if in_dygraph_mode():
        if reduce_all_flag:
            axis = range(len(x.shape))
4010
        return _C_ops.any(x, axis, keepdim)
4011 4012

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
4013
        axis = axis if axis != None and axis != [] else [0]
4014 4015 4016
        return _legacy_C_ops.reduce_any(
            x, 'dim', axis, 'keep_dim', keepdim, 'reduce_all', reduce_all_flag
        )
W
wanghuancoder 已提交
4017

4018 4019 4020
    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
4021
        'reduce_all': reduce_all_flag,
4022 4023 4024 4025 4026 4027 4028 4029
    }

    check_variable_and_dtype(x, 'x', ['bool'], 'any')

    check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')

    helper = LayerHelper('any', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
4030 4031 4032
    helper.append_op(
        type='reduce_any', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
    )
4033
    return out
L
Leo Chen 已提交
4034

4035

L
Leo Chen 已提交
4036 4037 4038 4039 4040 4041 4042
def broadcast_shape(x_shape, y_shape):
    """
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape, please refer to :ref:`user_guide_broadcasting` for more details.

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
4043

L
Leo Chen 已提交
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
4055

L
Leo Chen 已提交
4056 4057 4058 4059 4060 4061
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)
4062

4063

4064 4065 4066 4067 4068
def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
4069
        x (Tensor): The input Tensor which hold the complex numbers.
4070
            Optional data types are: complex64, complex128, float32, float64, int32 or int64.
4071
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4072 4073

    Returns:
C
Chen Long 已提交
4074
        out (Tensor): The conjugate of input. The shape and data type is the same with input. If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.
4075 4076 4077 4078 4079

    Examples:
        .. code-block:: python

          import paddle
4080

4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
          data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1+1j), (2+2j), (3+3j)],
          #        [(4+4j), (5+5j), (6+6j)]])

          conj_data=paddle.conj(data)
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1-1j), (2-2j), (3-3j)],
          #        [(4-4j), (5-5j), (6-6j)]])

    """
H
hong 已提交
4092
    if in_dygraph_mode():
4093
        return _C_ops.conj(x)
H
hong 已提交
4094

Z
zhiboniu 已提交
4095
    if paddle.in_dynamic_mode():
4096
        return _legacy_C_ops.conj(x)
4097

4098
    check_variable_and_dtype(
4099 4100
        x,
        "x",
4101
        ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'],
4102 4103
        'conj',
    )
4104 4105

    helper = LayerHelper('conj', **locals())
4106
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4107 4108 4109

    helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
    return out
4110

4111

Z
zyfncg 已提交
4112 4113 4114 4115 4116 4117 4118 4119 4120
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
4121
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zyfncg 已提交
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            res = paddle.digamma(data)
            print(res)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[-0.57721591,  0.03648996],
            #        [ nan       ,  5.32286835]])
    """

J
Jiabin Yang 已提交
4138
    if in_dygraph_mode():
4139
        return _C_ops.digamma(x)
J
Jiabin Yang 已提交
4140 4141
    else:
        if _in_legacy_dygraph():
4142
            return _legacy_C_ops.digamma(x)
Z
zyfncg 已提交
4143 4144 4145 4146 4147 4148 4149

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'digamma')
    helper = LayerHelper('digamma', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
    return out

4150

4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
def lgamma(x, name=None):
    r"""
    Calculates the lgamma of the given input tensor, element-wise.

    This operator performs elementwise lgamma for input $X$.
    :math:`out = log\Gamma(x)`


    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the lgamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.lgamma(x)
            print(out)
            # [1.31452441, 1.76149750, 2.25271273, 1.09579802]
    """
    if in_dygraph_mode():
        return _C_ops.lgamma(x)
4178 4179
    elif _in_legacy_dygraph():
        return _legacy_C_ops.lgamma(x)
4180 4181 4182 4183 4184 4185 4186 4187

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'lgamma')
    helper = LayerHelper('lgamma', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='lgamma', inputs={'X': x}, outputs={'Out': out})
    return out


4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.neg(x)
            print(out)
            # [0.4 0.2 -0.1 -0.3]
    """

4210 4211 4212
    return scale(
        x, scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name
    )
4213

R
ronnywang 已提交
4214

4215
def atan2(x, y, name=None):
R
ronnywang 已提交
4216
    r"""
4217
    Element-wise arctangent of x/y with consideration of the quadrant.
R
ronnywang 已提交
4218 4219 4220 4221

    Equation:
        .. math::

4222 4223 4224 4225 4226 4227 4228 4229
            atan2(x,y)=\left\{\begin{matrix}
            & tan^{-1}(\frac{x}{y}) & y > 0 \\
            & tan^{-1}(\frac{x}{y}) + \pi & x>=0, y < 0 \\
            & tan^{-1}(\frac{x}{y}) - \pi & x<0, y < 0 \\
            & +\frac{\pi}{2} & x>0, y = 0 \\
            & -\frac{\pi}{2} & x<0, y = 0 \\
            &\text{undefined} & x=0, y = 0
            \end{matrix}\right.
R
ronnywang 已提交
4230 4231

    Args:
4232 4233
        x (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
        y (Tensor): An N-D Tensor, must have the same type as `x`.
R
ronnywang 已提交
4234 4235 4236 4237 4238 4239 4240 4241
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).

    Examples:
        .. code-block:: python

4242
            import paddle
R
ronnywang 已提交
4243

4244 4245 4246
            x = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  1,  1, -1])
R
ronnywang 已提交
4247

4248 4249 4250
            y = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  -1,  1, 1])
R
ronnywang 已提交
4251

4252 4253 4254
            out = paddle.atan2(x, y)
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-2.35619450,  2.35619450,  0.78539819, -0.78539819])
R
ronnywang 已提交
4255 4256 4257

    """

J
Jiabin Yang 已提交
4258
    if in_dygraph_mode():
4259
        return _C_ops.atan2(x, y)
R
ronnywang 已提交
4260
    else:
J
Jiabin Yang 已提交
4261
        if _in_legacy_dygraph():
4262
            return _legacy_C_ops.atan2(x, y)
J
Jiabin Yang 已提交
4263
        else:
4264
            check_variable_and_dtype(
4265 4266 4267 4268 4269
                x,
                'x',
                ['int32', 'int64', 'float16', 'float32', 'float64'],
                'atan2',
            )
4270
            check_variable_and_dtype(
4271 4272 4273 4274 4275
                y,
                'y',
                ['int32', 'int64', 'float16', 'float32', 'float64'],
                'atan2',
            )
R
ronnywang 已提交
4276

J
Jiabin Yang 已提交
4277
            helper = LayerHelper('atan2', **locals())
4278
            inputs = {'X1': x, 'X2': y}
J
Jiabin Yang 已提交
4279
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
4280
            helper.append_op(type='atan2', inputs=inputs, outputs={'Out': out})
J
Jiabin Yang 已提交
4281
            return out
A
andyjpaddle 已提交
4282

4283

W
wangzhen38 已提交
4284 4285 4286 4287 4288
def logit(x, eps=None, name=None):
    r"""
    This function generates a new tensor with the logit of the elements of input x. x is clamped to [eps, 1-eps] when eps is not zero. When eps is zero and x < 0 or x > 1, the function will yields NaN.

    .. math::
4289

W
wangzhen38 已提交
4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
        logit(x) = ln(\frac{x}{1 - x})

    where

    .. math::

        x_i=
            \left\{\begin{array}{rcl}
                x_i & &\text{if } eps == Default \\
                eps & &\text{if } x_i < eps \\
                x_i & &\text{if } eps <= x_i <= 1-eps \\
                1-eps & &\text{if } x_i > 1-eps
            \end{array}\right.

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        eps (float, optional):  the epsilon for input clamp bound. Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out(Tensor): A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0.2635, 0.0106, 0.2780, 0.2097, 0.8095])
            out1 = paddle.logit(x)
            print(out1)
4321
            # [-1.0277, -4.5365, -0.9544, -1.3269,  1.4468]
W
wangzhen38 已提交
4322 4323 4324 4325 4326

    """

    if eps == None:
        eps = 0.0
4327
    if _in_legacy_dygraph():
4328
        return _legacy_C_ops.logit(x, 'eps', eps)
4329
    if in_dygraph_mode():
4330
        return _C_ops.logit(x, eps)
W
wangzhen38 已提交
4331 4332 4333
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'logit')
    helper = LayerHelper("logit", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
4334 4335 4336
    helper.append_op(
        type='logit', inputs={'X': x}, outputs={'Out': out}, attrs={'eps': eps}
    )
W
wangzhen38 已提交
4337 4338
    return out

4339

4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
def lerp(x, y, weight, name=None):
    r"""
    Does a linear interpolation between x and y based on weight.

    Equation:
        .. math::

            lerp(x, y, weight) = x + weight * (y - x).

    Args:
4350 4351 4352
        x (Tensor): An N-D Tensor with starting points, the data type is float32, float64.
        y (Tensor): An N-D Tensor with ending points, the data type is float32, float64.
        weight (float|Tensor): The weight for the interpolation formula. When weight is Tensor, the data type is float32, float64.
4353 4354 4355 4356 4357 4358 4359 4360 4361
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

            import paddle
4362

4363 4364 4365
            x = paddle.arange(1., 5., dtype='float32')
            y = paddle.empty([4], dtype='float32')
            y.fill_(10.)
4366
            out = paddle.lerp(x, y, 0.5)
4367
            # out: [5.5, 6., 6.5, 7.]
4368 4369

    """
H
hong 已提交
4370
    if in_dygraph_mode():
4371
        check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
H
hong 已提交
4372 4373 4374
        if isinstance(weight, float):
            weight = paddle.to_tensor(weight, dtype=x.dtype)

4375
        return _C_ops.lerp(x, y, weight)
H
hong 已提交
4376
    if _in_legacy_dygraph():
4377 4378
        if isinstance(weight, float):
            weight = paddle.to_tensor(weight, dtype=x.dtype)
4379
        return _legacy_C_ops.lerp(x, y, weight)
4380

4381 4382 4383
    if isinstance(weight, float):
        weight = paddle.full(shape=[1], fill_value=weight, dtype=x.dtype)

4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'lerp')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'lerp')
    check_variable_and_dtype(weight, 'weight', ['float32', 'float64'], 'lerp')

    helper = LayerHelper('lerp', **locals())
    inputs = {'X': x, 'Y': y, 'Weight': weight}
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='lerp', inputs=inputs, outputs={'Out': out})
    return out

4394

4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407
@inplace_apis_in_dygraph_only
def lerp_(x, y, weight, name=None):
    r"""
    Inplace version of ``lerp`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_lerp`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
    if isinstance(weight, float):
        weight = paddle.to_tensor([weight], dtype=x.dtype)
    elif isinstance(weight, (paddle.Tensor, Variable)):
        out_shape = broadcast_shape(out_shape, weight.shape)
    if out_shape != x.shape:
4408
        raise ValueError(
4409 4410 4411 4412
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
4413
    if in_dygraph_mode():
4414
        return _C_ops.lerp_(x, y, weight)
4415
    return _legacy_C_ops.lerp_(x, y, weight)
4416

4417

W
wuhuanzhou 已提交
4418 4419
def erfinv(x, name=None):
    r"""
4420
    The inverse error function of x. Please refer to :ref:`api_paddle_erf`
W
wuhuanzhou 已提交
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430

        .. math::

            erfinv(erf(x)) = x.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4431
        out (Tensor), an N-D Tensor, the shape and data type is the same with input.
W
wuhuanzhou 已提交
4432 4433 4434 4435 4436

    Example:
        .. code-block:: python

            import paddle
4437

W
wuhuanzhou 已提交
4438 4439 4440 4441 4442
            x = paddle.to_tensor([0, 0.5, -1.], dtype="float32")
            out = paddle.erfinv(x)
            # out: [0, 0.4769, -inf]

    """
H
hong 已提交
4443
    if in_dygraph_mode():
4444
        return _C_ops.erfinv(x)
H
hong 已提交
4445

W
wuhuanzhou 已提交
4446 4447
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'erfinv')

Z
zhiboniu 已提交
4448
    if paddle.in_dynamic_mode():
4449
        return _legacy_C_ops.erfinv(x)
W
wuhuanzhou 已提交
4450 4451 4452 4453 4454 4455

    helper = LayerHelper('erfinv', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='erfinv', inputs={'X': x}, outputs={'Out': out})
    return out

4456

W
wuhuanzhou 已提交
4457 4458 4459 4460 4461 4462 4463
@inplace_apis_in_dygraph_only
def erfinv_(x, name=None):
    r"""
    Inplace version of ``erfinv`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_erfinv`.
    """
    check_type(x, 'x', (paddle.Tensor, Variable), 'erfinv')
4464
    if in_dygraph_mode():
4465
        return _C_ops.erfinv_(x)
4466
    return _legacy_C_ops.erfinv_(x)
W
wuhuanzhou 已提交
4467

4468

4469
def rad2deg(x, name=None):
4470
    r"""
4471
    Convert each of the elements of input x from angles in radians to degrees.
4472

4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488
    Equation:
        .. math::

            rad2deg(x)=180/ \pi * x

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
4489
            import math
4490

4491 4492 4493 4494 4495 4496 4497
            x1 = paddle.to_tensor([3.142, -3.142, 6.283, -6.283, 1.570, -1.570])
            result1 = paddle.rad2deg(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [180.02334595, -180.02334595,  359.98937988, -359.98937988,
            #           9.95437622 , -89.95437622])

4498
            x2 = paddle.to_tensor(math.pi/2)
4499 4500 4501 4502
            result2 = paddle.rad2deg(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [90.])
4503

4504 4505 4506 4507 4508 4509 4510
            x3 = paddle.to_tensor(1)
            result3 = paddle.rad2deg(x3)
            print(result3)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [57.29578018])
    """
    rad2deg_scale = 180 / np.pi
4511 4512 4513
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4514
        return _C_ops.scale(x, rad2deg_scale, 0.0, True)
4515
    elif paddle.in_dynamic_mode():
4516 4517
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4518
        return _legacy_C_ops.scale(x, 'scale', rad2deg_scale)
4519
    else:
4520 4521 4522
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'rad2deg'
        )
4523 4524 4525
        helper = LayerHelper('rad2deg', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
4526
            out_cast = helper.create_variable_for_type_inference(
4527 4528 4529 4530 4531 4532 4533 4534
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
4535
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
4536 4537 4538 4539 4540 4541
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': rad2deg_scale},
        )
4542 4543
        return out

4544

4545
def deg2rad(x, name=None):
4546
    r"""
4547
    Convert each of the elements of input x from degrees to angles in radians.
4548

4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
        .. math::

            deg2rad(x)=\pi * x / 180

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
4564

4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
            x1 = paddle.to_tensor([180.0, -180.0, 360.0, -360.0, 90.0, -90.0])
            result1 = paddle.deg2rad(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274, -3.14159274,  6.28318548, -6.28318548,  1.57079637,
            #           -1.57079637])

            x2 = paddle.to_tensor(180)
            result2 = paddle.deg2rad(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274])
    """
    deg2rad_scale = np.pi / 180.0
4579 4580 4581
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4582
        return _C_ops.scale(x, deg2rad_scale, 0.0, True)
4583
    elif paddle.in_dynamic_mode():
4584 4585
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4586
        return _legacy_C_ops.scale(x, 'scale', deg2rad_scale)
4587
    else:
4588 4589 4590
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'deg2rad'
        )
4591 4592 4593
        helper = LayerHelper('deg2rad', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
4594
            out_cast = helper.create_variable_for_type_inference(
4595 4596 4597 4598 4599 4600 4601 4602
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
4603
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
4604 4605 4606 4607 4608 4609
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': deg2rad_scale},
        )
4610
        return out
A
andyjpaddle 已提交
4611

4612

T
Tao Luo 已提交
4613 4614 4615 4616
def gcd(x, y, name=None):
    """
    Computes the element-wise greatest common divisor (GCD) of input |x| and |y|.
    Both x and y must have integer types.
4617

T
Tao Luo 已提交
4618 4619 4620
    Note:
        gcd(0,0)=0, gcd(0, y)=|y|

T
Tao Luo 已提交
4621 4622
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4623
    Args:
4624 4625
        x (Tensor): An N-D Tensor, the data type is int32,int64.
        y (Tensor): An N-D Tensor, the data type is int32,int64.
T
Tao Luo 已提交
4626 4627 4628 4629 4630 4631 4632 4633 4634
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
4635

T
Tao Luo 已提交
4636 4637 4638 4639 4640 4641
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.gcd(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])

T
Tao Luo 已提交
4642
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
            paddle.gcd(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20, 1 , 2 , 1 , 4 , 5])

            x4 = paddle.to_tensor(0)
            paddle.gcd(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20])

            paddle.gcd(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
4655

T
Tao Luo 已提交
4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
            x5 = paddle.to_tensor(-20)
            paddle.gcd(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])
    """
    shape = paddle.broadcast_shape(x.shape, y.shape)
    x = paddle.broadcast_to(x, shape)
    y = paddle.broadcast_to(y, shape)
    x = paddle.abs(x)
    y = paddle.abs(y)

    def _gcd_cond_fn(x, y):
        return paddle.any(y != 0)

    def _gcd_body_fn(x, y):
        # paddle.mod will raise an error when any element of y is 0. To avoid
        # that, we change those zeros to ones. Their values don't matter because
        # they won't be used.
4674
        y_not_equal_0 = y != 0
T
Tao Luo 已提交
4675
        y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype))
4676 4677 4678 4679 4680 4681 4682 4683
        x, y = (
            paddle.where(y_not_equal_0, y, x),
            paddle.where(
                y_not_equal_0,
                paddle.mod(x, y_safe),
                paddle.zeros(y.shape, y.dtype),
            ),
        )
T
Tao Luo 已提交
4684 4685
        return (paddle.where(x < y, y, x), paddle.where(x < y, x, y))

Z
zhiboniu 已提交
4686
    if paddle.in_dynamic_mode():
T
Tao Luo 已提交
4687 4688 4689 4690 4691
        while _gcd_cond_fn(x, y):
            x, y = _gcd_body_fn(x, y)

        return x
    else:
T
Tao Luo 已提交
4692 4693
        check_variable_and_dtype(x, 'x', ['int32', 'int64'], 'gcd')
        check_variable_and_dtype(y, 'y', ['int32', 'int64'], 'gcd')
T
Tao Luo 已提交
4694 4695 4696
        out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y])
        return out

4697

T
Tao Luo 已提交
4698 4699 4700 4701
def lcm(x, y, name=None):
    """
    Computes the element-wise least common multiple (LCM) of input |x| and |y|.
    Both x and y must have integer types.
4702

T
Tao Luo 已提交
4703 4704 4705
    Note:
        lcm(0,0)=0, lcm(0, y)=0

T
Tao Luo 已提交
4706 4707
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4708
    Args:
4709 4710
        x (Tensor): An N-D Tensor, the data type is int32,int64.
        y (Tensor): An N-D Tensor, the data type is int32,int64.
T
Tao Luo 已提交
4711 4712 4713 4714 4715 4716 4717 4718 4719
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
4720

T
Tao Luo 已提交
4721 4722 4723 4724 4725 4726
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.lcm(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])

T
Tao Luo 已提交
4727
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
            paddle.lcm(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0, 20, 20, 60, 20, 20])

            x4 = paddle.to_tensor(0)
            paddle.lcm(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])

            paddle.lcm(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
4740

T
Tao Luo 已提交
4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751
            x5 = paddle.to_tensor(-20)
            paddle.lcm(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])
    """
    d = paddle.gcd(x, y)
    # paddle.mod will raise an error when any element of y is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    d_equal_0 = paddle.equal(d, 0)
    d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d)
4752 4753 4754
    out = paddle.where(
        d_equal_0, paddle.zeros(d.shape, d.dtype), paddle.abs(x * y) // d_safe
    )
T
Tao Luo 已提交
4755 4756
    return out

4757

A
andyjpaddle 已提交
4758 4759 4760
def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
    r"""
    Computes the n-th forward difference along the given axis.
4761
    The first-order differences is computed by using the following formula:
A
andyjpaddle 已提交
4762 4763 4764 4765

    .. math::

        out[i] = x[i+1] - x[i]
4766 4767

    Higher-order differences are computed by using paddle.diff() recursively.
A
andyjpaddle 已提交
4768 4769 4770
    Only n=1 is currently supported.

    Args:
4771
        x (Tensor): The input tensor to compute the forward difference on
4772
        n (int, optional): The number of times to recursively compute the difference.
A
andyjpaddle 已提交
4773
                          Only support n=1. Default:1
4774 4775
        axis (int, optional): The axis to compute the difference along. Default:-1
        prepend (Tensor, optional): The tensor to prepend to input along axis before computing the difference.
4776
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
4777
                                   and its shapes must match x's shape except on axis.
4778 4779
        append (Tensor, optional): The tensor to append to input along axis before computing the difference,
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
4780
                                   and its shapes must match x's shape except on axis.
4781
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4782

A
andyjpaddle 已提交
4783 4784 4785 4786 4787 4788 4789
    Returns:
        Tensor: The output tensor with same dtype with x.

    Examples:
        .. code-block:: python

            import paddle
4790

A
andyjpaddle 已提交
4791 4792 4793 4794 4795 4796 4797 4798 4799
            x = paddle.to_tensor([1, 4, 5, 2])
            out = paddle.diff(x)
            print(out)
            # out:
            # [3, 1, -3]

            y = paddle.to_tensor([7, 9])
            out = paddle.diff(x, append=y)
            print(out)
4800
            # out:
A
andyjpaddle 已提交
4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822
            # [3, 1, -3, 5, 2]

            z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            out = paddle.diff(z, axis=0)
            print(out)
            # out:
            # [[3, 3, 3]]
            out = paddle.diff(z, axis=1)
            print(out)
            # out:
            # [[1, 1], [1, 1]]
    """

    if axis < 0:
        axis = axis + len(x.shape)
    if axis > len(x.shape):
        axis = len(x.shape)
    if axis < 0:
        axis = 0
    dtype = x.dtype
    axes = [axis]
    infer_flags = list(1 for i in range(len(axes)))
4823
    if in_dygraph_mode():
A
andyjpaddle 已提交
4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
4836
            new_input = _C_ops.concat(input_list, axis)
A
andyjpaddle 已提交
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
4849 4850 4851
        input_front = _C_ops.slice(
            new_input, axes, starts_1, ends_1, infer_flags, []
        )
A
andyjpaddle 已提交
4852 4853 4854 4855
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
4856 4857 4858
        input_back = _C_ops.slice(
            new_input, axes, starts_2, ends_2, infer_flags, []
        )
4859 4860

        if x.dtype == paddle.bool:
4861
            return _C_ops.logical_xor(input_back, input_front)
4862
        else:
4863
            return _C_ops.subtract(input_back, input_front)
4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877
    elif _in_legacy_dygraph():
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
            new_input = _varbase_creator()
4878
            _legacy_C_ops.concat(input_list, new_input, 'axis', axis)
4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
        input_front = _legacy_C_ops.slice(
            new_input,
            None,
            None,
            None,
            None,
            'axes',
            axes,
            'infer_flags',
            infer_flags,
            *attrs_1
        )
4903 4904 4905 4906
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918
        input_back = _legacy_C_ops.slice(
            new_input,
            None,
            None,
            None,
            None,
            'axes',
            axes,
            'infer_flags',
            infer_flags,
            *attrs_2
        )
A
andyjpaddle 已提交
4919 4920

        if x.dtype == paddle.bool:
4921
            return _legacy_C_ops.logical_xor(input_back, input_front)
A
andyjpaddle 已提交
4922
        else:
4923
            return elementwise_sub(input_back, input_front, axis=axis)
A
andyjpaddle 已提交
4924
    else:
4925
        check_variable_and_dtype(
4926 4927
            x, 'x', ['float32', 'float64', 'bool', 'int32', 'int64'], 'diff'
        )
A
andyjpaddle 已提交
4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943
        check_type(axis, 'axis', (int), 'diff')
        helper = LayerHelper('diff', **locals())
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True

        if has_pend:
            new_input = helper.create_variable_for_type_inference(dtype)
4944 4945 4946 4947 4948 4949
            helper.append_op(
                type='concat',
                inputs={'X': input_list},
                outputs={'Out': [new_input]},
                attrs={'axis': axis},
            )
A
andyjpaddle 已提交
4950 4951 4952 4953 4954 4955 4956 4957 4958 4959
        else:
            new_input = x

        dim_len = new_input.shape[axis]
        attrs_1 = {'axes': axes}
        starts_1 = [0]
        ends_1 = [dim_len - 1]
        attrs_1['starts'] = starts_1
        attrs_1['ends'] = ends_1
        input_front = helper.create_variable_for_type_inference(dtype)
4960 4961 4962 4963 4964 4965
        helper.append_op(
            type='slice',
            inputs={'Input': new_input},
            attrs=attrs_1,
            outputs={'Out': input_front},
        )
A
andyjpaddle 已提交
4966 4967 4968 4969 4970 4971
        attrs_2 = {'axes': axes}
        starts_2 = [1]
        ends_2 = [dim_len]
        attrs_2['starts'] = starts_2
        attrs_2['ends'] = ends_2
        input_back = helper.create_variable_for_type_inference(dtype)
4972 4973 4974 4975 4976 4977
        helper.append_op(
            type='slice',
            inputs={'Input': new_input},
            attrs=attrs_2,
            outputs={'Out': input_back},
        )
A
andyjpaddle 已提交
4978 4979 4980

        if dtype == paddle.bool:
            out = helper.create_variable_for_type_inference(dtype)
4981 4982 4983 4984 4985
            helper.append_op(
                type='logical_xor',
                inputs={"X": input_back, "Y": input_front},
                outputs={"Out": out},
            )
A
andyjpaddle 已提交
4986
        else:
Z
zhiboniu 已提交
4987
            out = elementwise_sub(input_back, input_front, axis=axis)
A
andyjpaddle 已提交
4988 4989

        return out
F
Feiyu Chan 已提交
4990

4991

F
Feiyu Chan 已提交
4992 4993
def angle(x, name=None):
    r"""
4994
    Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while
F
Feiyu Chan 已提交
4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006
    for negative real numbers, the angle is :math:`\pi`.

    Equation:
        .. math::

            angle(x)=arctan2(x.imag, x.real)

    Args:
        x (Tensor): An N-D Tensor, the data type is complex64, complex128, or float32, float64 .
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
5007
        Tensor: An N-D Tensor of real data type with the same precision as that of x's data type.
F
Feiyu Chan 已提交
5008 5009 5010 5011 5012 5013 5014 5015 5016

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32')
            y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32')
            z = x + 1j * y
5017 5018 5019 5020 5021 5022
            print(z)
            # Tensor(shape=[4, 4], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[(-2-2j), (-2-1j), (-2+0j), (-2+1j)],
            #         [(-1-2j), (-1-1j), (-1+0j), (-1+1j)],
            #         [-2j    , -1j    ,  0j    ,  1j    ],
            #         [ (1-2j),  (1-1j),  (1+0j),  (1+1j)]])
F
Feiyu Chan 已提交
5023 5024

            theta = paddle.angle(z)
5025 5026 5027 5028 5029 5030
            print(theta)
            # Tensor(shape=[4, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-2.35619450, -2.67794514,  3.14159274,  2.67794514],
            #         [-2.03444386, -2.35619450,  3.14159274,  2.35619450],
            #         [-1.57079637, -1.57079637,  0.        ,  1.57079637],
            #         [-1.10714877, -0.78539819,  0.        ,  0.78539819]])
F
Feiyu Chan 已提交
5031 5032
    """

W
WangZhen 已提交
5033
    if in_dygraph_mode():
F
Feiyu Chan 已提交
5034
        return _C_ops.angle(x)
5035 5036
    elif paddle.in_dynamic_mode():
        return _legacy_C_ops.angle(x)
F
Feiyu Chan 已提交
5037

5038 5039 5040
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'complex64', 'complex128'], 'angle'
    )
F
Feiyu Chan 已提交
5041 5042 5043 5044
    op_type = "angle"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
5045 5046
        dtype=_complex_to_real_dtype(x.dtype)
    )
F
Feiyu Chan 已提交
5047 5048 5049
    outputs = {"Out": out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
5050

5051

5052
def heaviside(x, y, name=None):
5053
    r"""
5054 5055 5056 5057 5058
    Computes the Heaviside step function determined by corresponding element in y for each element in x. The equation is

    .. math::
        heaviside(x, y)=
            \left\{
5059 5060 5061 5062
                \begin{array}{lcl}
                0,& &\text{if} \ x < 0, \\
                y,& &\text{if} \ x = 0, \\
                1,& &\text{if} \ x > 0.
5063
                \end{array}
5064
            \right.
5065

5066
    Note:
5067 5068 5069
        ``paddle.heaviside`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.

    Args:
5070 5071
        x (Tensor): The input tensor of Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
        y (Tensor): The tensor that determines a Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x and y have different shapes and are broadcastable, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-0.5, 0, 0.5])
            y = paddle.to_tensor([0.1])
            paddle.heaviside(x, y)
            #    [0.        , 0.10000000, 1.        ]
            x = paddle.to_tensor([[-0.5, 0, 0.5], [-0.5, 0.5, 0]])
            y = paddle.to_tensor([0.1, 0.2, 0.3])
            paddle.heaviside(x, y)
            #    [[0.        , 0.20000000, 1.        ],
            #     [0.        , 1.        , 0.30000001]]
5090
    """
5091 5092 5093 5094
    op_type = 'elementwise_heaviside'
    axis = -1
    act = None
    if _non_static_mode():
5095 5096 5097
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type
        )
5098 5099
    return _elementwise_op(LayerHelper(op_type, **locals()))

5100

5101 5102 5103 5104 5105 5106
def frac(x, name=None):
    """
    This API is used to return the fractional portion of each element in input.

    Args:
        x (Tensor): The input tensor, which data type should be int32, int64, float32, float64.
5107
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
5108 5109 5110 5111 5112

    Returns:
        Tensor: The output Tensor of frac.

    Examples:
5113
        .. code-block:: python
5114 5115 5116

            import paddle

5117 5118
            input = paddle.to_tensor([[12.22000003, -1.02999997],
                                    [-0.54999995, 0.66000003]])
5119
            output = paddle.frac(input)
5120 5121 5122 5123
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[ 0.22000003, -0.02999997],
            #         [-0.54999995,  0.66000003]])
5124 5125 5126 5127
    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
5128
    if x.dtype not in [
5129 5130 5131 5132
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
5133
    ]:
5134
        raise TypeError(
5135 5136 5137 5138
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
5139
    if in_dygraph_mode():
5140 5141
        y = _C_ops.trunc(x)
        return _C_ops.subtract(x, y)
5142 5143
    else:
        if _in_legacy_dygraph():
5144
            y = _legacy_C_ops.trunc(x)
5145 5146 5147
            return _elementwise_op_in_dygraph(
                x, y, axis=axis, act=act, op_name=op_type
            )
5148 5149 5150 5151 5152
        else:
            inputs = {"X": x}
            attrs = {}

            helper = LayerHelper("trunc", **locals())
5153 5154 5155
            check_variable_and_dtype(
                x, "X", ['int32', 'int64', 'float32', 'float64'], 'trunc'
            )
5156
            y = helper.create_variable_for_type_inference(dtype=x.dtype)
5157 5158 5159
            helper.append_op(
                type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": y}
            )
5160
            return _elementwise_op(LayerHelper(op_type, **locals()))
5161

5162

5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187
def sgn(x, name=None):
    """
    For complex tensor, this API returns a new tensor whose elements have the same angles as the corresponding
    elements of input and absolute values of one.
    For other float dtype tensor,
    this API returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero, same as paddle.sign.

    Args:
        x (Tensor): The input tensor, which data type should be float16, float32, float64, complex64, complex128.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A sign Tensor for real input, or normalized Tensor for complex input, shape and data type are same as input.

    Examples:
        .. code-block:: Python

            import paddle

            x = paddle.to_tensor([[3 + 4j, 7 - 24j, 0, 1 + 2j], [6 + 8j, 3, 0, -2]])
            print(paddle.sgn(x))
            #[[0.6+0.8j       0.28-0.96j      0.+0.j      0.4472136+0.8944272j]
            # [0.6+0.8j       1.+0.j          0.+0.j      -1.+0.j]]

    """
5188
    if x.dtype not in [
5189 5190 5191 5192 5193
        paddle.float16,
        paddle.float32,
        paddle.float64,
        paddle.complex64,
        paddle.complex128,
5194
    ]:
5195
        raise TypeError(
5196 5197 5198 5199
            "The data type of input must be one of ['float16', 'float32', 'float64', 'complex64', 'complex128'], but got {}".format(
                x.dtype
            )
        )
5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210
    if paddle.is_complex(x):
        expand_x = paddle.as_real(x)
        x_abs = paddle.abs(x)
        x_abs = paddle.unsqueeze(x_abs, axis=-1)
        output = expand_x / x_abs
        zeros = paddle.zeros_like(output)
        output = paddle.where(paddle.isnan(output), zeros, output)

        return paddle.as_complex(output)
    else:
        return paddle.sign(x)
5211

5212

5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279
def take(x, index, mode='raise', name=None):
    """
    Returns a new tensor with the elements of input tensor x at the given index.
    The input tensor is treated as if it were viewed as a 1-D tensor.
    The result takes the same shape as the index.

    Args:
        x (Tensor): An N-D Tensor, its data type should be int32, int64, float32, float64.
        index (Tensor): An N-D Tensor, its data type should be int32, int64.
        mode (str, optional): Specifies how out-of-bounds index will behave. the candicates are ``'raise'``, ``'wrap'`` and ``'clip'``.

            - ``'raise'``: raise an error (default);
            - ``'wrap'``: wrap around;
            - ``'clip'``: clip to the range. ``'clip'`` mode means that all indices that are too large are replaced by the index that addresses the last element. Note that this disables indexing with negative numbers.

        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Tensor with the same shape as index, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x_int = paddle.arange(0, 12).reshape([3, 4])
            x_float = x_int.astype(paddle.float64)

            idx_pos = paddle.arange(4, 10).reshape([2, 3])  # positive index
            idx_neg = paddle.arange(-2, 4).reshape([2, 3])  # negative index
            idx_err = paddle.arange(-2, 13).reshape([3, 5])  # index out of range

            paddle.take(x_int, idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_neg)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 ],
            #         [1 , 2 , 3 ]])

            paddle.take(x_float, idx_pos)
            # Tensor(shape=[2, 3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[4., 5., 6.],
            #         [7., 8., 9.]])

            x_int.take(idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_err, mode='wrap')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 0 ]])

            paddle.take(x_int, idx_err, mode='clip')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 11]])

    """
    if mode not in ['raise', 'wrap', 'clip']:
        raise ValueError(
5280 5281 5282 5283
            "'mode' in 'take' should be 'raise', 'wrap', 'clip', but received {}.".format(
                mode
            )
        )
5284 5285 5286 5287

    if paddle.in_dynamic_mode():
        if not isinstance(index, (paddle.Tensor, Variable)):
            raise TypeError(
5288
                "The type of 'index' must be Tensor, but got {}".format(
5289 5290 5291
                    type(index)
                )
            )
5292 5293
        if index.dtype not in [paddle.int32, paddle.int64]:
            raise TypeError(
5294 5295 5296 5297
                "The data type of 'index' must be one of ['int32', 'int64'], but got {}".format(
                    index.dtype
                )
            )
5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310

    else:
        check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'take')

    input_1d = x.flatten()
    index_1d = index.flatten()
    max_index = input_1d.shape[-1]

    if mode == 'raise':
        # This processing enables 'take' to handle negative indexes within the correct range.
        index_1d = paddle.where(index_1d < 0, index_1d + max_index, index_1d)
    elif mode == 'wrap':
        # The out of range indices are constrained by taking the remainder.
5311
        index_1d = paddle.where(index_1d < 0, index_1d % max_index, index_1d)
5312 5313 5314
        index_1d = paddle.where(
            index_1d >= max_index, index_1d % max_index, index_1d
        )
5315 5316 5317 5318 5319 5320 5321
    elif mode == 'clip':
        # 'clip' mode disables indexing with negative numbers.
        index_1d = clip(index_1d, 0, max_index - 1)

    out = input_1d.index_select(index_1d).reshape(index.shape)

    return out
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347


def frexp(x, name=None):
    """
    The function used to decompose a floating point number into mantissa and exponent.

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
    Returns:

        - mantissa (Tensor), A mantissa Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

        - exponent (Tensor), A exponent Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3, 4]], dtype="float32")
            print(paddle.tensor.math.frexp(x))
            # (Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,[[0.50000000, 0.50000000, 0.75000000, 0.50000000]]),
            #  Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,[[1., 2., 2., 3.]]))
5348
    """
5349 5350
    if x.dtype not in [paddle.float32, paddle.float64]:
        raise TypeError(
5351 5352 5353 5354
            "The data type of input must be one of ['float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
5355 5356
    input_x = paddle.abs(x)
    exponent = paddle.floor(paddle.log2(input_x))
5357 5358 5359
    exponent = paddle.where(
        paddle.isinf(exponent), paddle.full_like(exponent, 0), exponent
    )
5360 5361 5362 5363

    # 0填充
    mantissa = paddle.divide(input_x, 2**exponent)
    # 计算exponent
5364 5365 5366 5367 5368 5369 5370 5371 5372 5373
    exponent = paddle.where(
        (mantissa >= 1),
        paddle.add(exponent, paddle.ones_like(exponent)),
        exponent,
    )
    mantissa = paddle.where(
        (mantissa >= 1),
        paddle.divide(mantissa, 2 ** paddle.ones_like(exponent)),
        mantissa,
    )
5374 5375 5376

    mantissa = paddle.where((x < 0), mantissa * -1, mantissa)
    return mantissa, exponent