layers.py 247.0 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
15
import collections
Y
Yu Yang 已提交
16
import inspect
Z
zhangjinchao01 已提交
17

18
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
19 20
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22
from .evaluators import *
X
xzl 已提交
23
from .poolings import MaxPooling, AvgPooling, MaxWithMaskPooling, BasePoolingType, \
24
    CudnnAvgPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
25 26
from .attrs import *
from .default_decorators import *
27

Z
zhangjinchao01 已提交
28 29 30 31 32 33
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
34
__all__ = [
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
C
caoying03 已提交
54
    'l2_distance_layer',
55 56
    'hsigmoid',
    'conv_projection',
57
    'square_error_cost',
58
    'regression_cost',
Q
qijun 已提交
59
    'classification_cost',
60
    'LayerOutput',
Q
qijun 已提交
61 62 63 64 65 66
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
67
    'seq_concat_layer',
Q
qijun 已提交
68 69 70 71 72 73
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
74
    'scaling_projection',
Q
qijun 已提交
75 76 77 78
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
79
    'rotate_layer',
Q
qijun 已提交
80
    'sum_to_one_norm_layer',
G
guosheng 已提交
81
    'row_l2_norm_layer',
Q
qijun 已提交
82 83 84 85 86 87 88 89
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
90
    'gru_step_naive_layer',
Q
qijun 已提交
91 92 93 94 95 96 97 98 99 100 101 102
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
103
    'warp_ctc_layer',
Q
qijun 已提交
104 105 106 107 108
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
C
caoying03 已提交
109
    'BeamInput',
C
caoying03 已提交
110
    'cross_entropy_over_beam',
Q
qijun 已提交
111 112 113 114
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
L
Luo Tao 已提交
115
    'huber_regression_cost',
116
    'huber_classification_cost',
Q
qijun 已提交
117 118
    'block_expand_layer',
    'maxout_layer',
R
ranqiu 已提交
119
    'dot_prod_layer',
Q
qijun 已提交
120
    'out_prod_layer',
X
xuwei06 已提交
121
    'printer_layer',
Q
qijun 已提交
122
    'print_layer',
Y
yuan 已提交
123
    'priorbox_layer',
124
    'cross_channel_norm_layer',
125 126
    'multibox_loss_layer',
    'detection_output_layer',
G
guosheng 已提交
127
    'roi_pool_layer',
Q
qijun 已提交
128
    'spp_layer',
D
dangqingqing 已提交
129
    'pad_layer',
L
Luo Tao 已提交
130
    'eos_layer',
131
    'smooth_l1_cost',
132
    'layer_support',
W
wwhu 已提交
133
    'multiplex_layer',
D
dangqingqing 已提交
134
    'row_conv_layer',
135
    'dropout_layer',
136
    'prelu_layer',
137
    'switch_order_layer',
138
    'gated_unit_layer',
139
    'crop_layer',
140
    'sub_nested_seq_layer',
141
    'clip_layer',
142
    'slice_projection',
143
    'seq_slice_layer',
144
    'kmax_seq_score_layer',
C
chengduoZH 已提交
145
    'img_pool3d_layer',
G
guosheng 已提交
146
    'scale_shift_layer',
C
chengduoZH 已提交
147
    'img_conv3d_layer',
148
    'resize_layer',
Y
yangyaming 已提交
149
    'sub_seq_layer',
Y
yangyaming 已提交
150
    'scale_sub_region_layer',
Q
qijun 已提交
151
]
Z
zhangjinchao01 已提交
152 153 154 155 156 157 158


class LayerType(object):
    """
    Layer type enumerations.
    """

159 160 161 162 163 164 165 166
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
167
    POOLING_AVG = 'average'
168
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
169
    COST = 'cost'
170 171
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
C
caoying03 已提交
172
    L2_DISTANCE = 'l2_distance'
Z
zhangjinchao01 已提交
173
    HSIGMOID = 'hsigmoid'
174 175 176 177 178
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
C
chengduoZH 已提交
179
    CUDNNCONVTRANS_LAYER = 'cudnn_convt'
180
    POOL_LAYER = 'pool'
C
chengduoZH 已提交
181
    POOL3D_LAYER = 'pool3d'
Z
zhangjinchao01 已提交
182 183 184
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
185
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
186 187 188 189
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
190
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
191 192 193 194 195 196 197

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
198
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
199 200 201
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
202
    ROTATE_LAYER = 'rotate'
R
ranqiu 已提交
203
    DOT_PROD_LAYER = 'dot_prod'
H
Haonan 已提交
204
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
205
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
206 207 208 209 210 211 212 213 214 215 216

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
217
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
218
    BLOCK_EXPAND = "blockexpand"
219
    MAXOUT = "maxout"
Q
qijun 已提交
220
    SPP_LAYER = "spp"
D
dangqingqing 已提交
221
    PAD_LAYER = "pad"
W
wwhu 已提交
222
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
223
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
224 225 226

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
227 228
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
G
guosheng 已提交
229
    ROI_POOL_LAYER = 'roi_pool'
D
dangqingqing 已提交
230 231 232 233 234

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
235
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
236

237 238 239
    CONV3D_LAYER = 'conv3d'
    DECONV3D_LAYER = 'deconv3d'

240 241
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
L
Luo Tao 已提交
242
    HUBER_REGRESSION = 'huber_regression'
243
    HUBER_CLASSIFICATION = 'huber_classification'
244 245
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
C
caoying03 已提交
246
    CROSS_ENTROPY_OVER_BEAM = 'cross_entropy_over_beam'
247 248 249 250 251 252
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
253
    SWITCH_ORDER_LAYER = 'switch_order'
254
    CROP_LAYER = 'crop'
C
caoying03 已提交
255
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
256
    CLIP_LAYER = 'clip'
257
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
258

259
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
260
    SCALE_SHIFT_LAYER = 'scale_shift'
Z
zhangjinchao01 已提交
261

262
    RESIZE = 'resize'
Y
yangyaming 已提交
263
    SUB_SEQ_LAYER = 'subseq'
264

Y
yangyaming 已提交
265
    SCALE_SUB_REGION_LAYER = 'scale_sub_region'
Z
zhangjinchao01 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
287
    """
L
Luo Tao 已提交
288
    PaddlePaddle supports three sequence types:
289 290 291

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
292 293
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
294

L
Luo Tao 已提交
295
    Accordingly, AggregateLevel supports two modes:
296

L
Luo Tao 已提交
297
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
298
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
299 300
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
301
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
302 303 304
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
305 306
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
307 308 309
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
R
ranqiu 已提交
332
    :type parents: list | tuple | collections.Sequence
Z
zhangjinchao01 已提交
333 334
    """

Q
qijun 已提交
335 336 337 338 339 340 341 342 343
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
344
                 reverse=None):
Z
zhangjinchao01 已提交
345 346
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
347
        assert size is not None
Z
zhangjinchao01 已提交
348 349
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
350
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
351
        self.layer_type = layer_type
352 353
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
354 355 356 357 358 359 360 361
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
362
        self.reverse = reverse
Z
zhangjinchao01 已提交
363

364 365 366 367 368 369 370 371
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

372 373 374 375
    @property
    def depth(self):
        return cp.g_layer_map[self.full_name].depth

376 377 378 379 380 381 382 383
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
384 385 386

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
387
DEVICE = 'device'
Z
zhangjinchao01 已提交
388 389 390


def layer_support(*attrs):
391
    attrs_list = list(attrs)
392
    attrs_list.append(DEVICE)
Q
qijun 已提交
393

Z
zhangjinchao01 已提交
394 395 396
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
397
            for attr in attrs_list:
Z
zhangjinchao01 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
414 415 416 417 418
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

R
ranqiu 已提交
449
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
450 451 452 453 454 455 456 457
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
458 459
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
460 461 462 463
    proj.origin = input
    return proj


464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

R
ranqiu 已提交
485
    :param input: The input of this layer.
486 487 488 489 490 491 492 493
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
494 495
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
496 497 498 499
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


R
ranqiu 已提交
530
    :param input: The input of this layer, which must contains id fields.
Z
zhangjinchao01 已提交
531 532 533 534 535 536 537 538
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
539 540
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
541 542 543 544
    proj.origin = input
    return proj


545
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

R
ranqiu 已提交
575
    :param input: The input of this layer.
576
    :type input: LayerOutput
Z
zhangjinchao01 已提交
577 578
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
579
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
580 581 582 583 584 585
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
586 587
        if size is None:
            size = input.size - offset
Q
qijun 已提交
588
        proj = IdentityOffsetProjection(
589
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
590 591 592 593
        proj.origin = input
    return proj


594 595
def slice_projection(input, slices):
    """
596 597
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
598 599

    .. math::
600
       output = [input.slices()]
601 602 603 604 605 606 607 608 609

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

R
ranqiu 已提交
610
    :param input: The input of this layer.
611 612 613 614
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
615
    :type slices: pair of int
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

R
ranqiu 已提交
648
    :param input: The input of this layer.
X
xuwei06 已提交
649 650 651 652 653 654
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
655
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
656 657 658 659
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
660
@wrap_param_attr_default()
661
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
662
    """
663
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
664 665 666 667 668 669 670 671 672 673 674 675 676
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

R
ranqiu 已提交
677
    :param input: The input of this layer.
678 679 680 681 682 683
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
684 685
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
686
    proj.origin = input
687
    return proj
Z
zhangjinchao01 已提交
688

689 690

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
691 692
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
693

Z
zhangjinchao01 已提交
694
    .. math::
L
Luo Tao 已提交
695
       out.row[i] += scale * (a.row[i] .* b.row[i])
696

Z
zhangjinchao01 已提交
697 698
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
699

Z
zhangjinchao01 已提交
700
    The example usage is:
701

Z
zhangjinchao01 已提交
702
    .. code-block:: python
703

L
Luo Tao 已提交
704
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
705

706 707 708 709
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
710 711
    :param scale: config scalar, default value is one.
    :type scale: float
712 713
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
714
    """
715 716 717
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
718
    a = kwargs.get('x', a)  # For Backward capacity.
719 720 721 722 723 724
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
725
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
726
    op.origin = [a, b]
727
    return op
Z
zhangjinchao01 已提交
728

729

Z
zhangjinchao01 已提交
730
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
731 732 733
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
734 735 736 737 738 739 740 741 742 743 744 745 746 747
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

R
ranqiu 已提交
748
    :param input: The input of this layer, which should be a sequence.
Z
zhangjinchao01 已提交
749 750 751 752 753 754 755 756 757
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
R
ranqiu 已提交
758
    :type padding_attr: bool | ParameterAttribute
Z
zhangjinchao01 已提交
759 760 761 762 763 764 765 766 767 768 769
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
770 771 772 773 774 775
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
789
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
790 791 792 793 794 795
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
R
ranqiu 已提交
796
        :param act: Activation type.
Z
zhangjinchao01 已提交
797
        :type act: BaseActivation
R
ranqiu 已提交
798 799 800
        :param bias_attr: The bias attribute. If the parameter is set to False or an object
                          whose type is not ParameterAttribute, no bias is defined. If the
                          parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
801
        :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
802 803 804
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
805 806 807 808 809 810 811
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
812 813 814 815 816
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

817
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
818 819 820 821 822 823 824 825
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
826
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
827
            self.inputs.append(other)
828 829 830 831
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
832 833 834 835 836 837 838 839
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

840
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
841 842
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
843
        assert len(self.inputs) != 0
844
        ml = MixedLayer(
Z
zhangjinchao01 已提交
845 846 847 848 849
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
850
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
851 852 853
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
854
        self.finalized = True
Z
zhangjinchao01 已提交
855 856 857 858 859 860


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
861 862 863 864 865
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
R
ranqiu 已提交
893
    :param input: The input of this layer. It is an optional parameter. If set,
Z
zhangjinchao01 已提交
894
                  then this function will just return layer's name.
895
    :param act: Activation Type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
896
    :type act: BaseActivation
R
ranqiu 已提交
897 898 899
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
900
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
901 902 903 904 905 906 907 908 909
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
910 911 912 913 914 915
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
916
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
917 918 919 920 921 922 923 924
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
C
chengduoZH 已提交
925 926
def data_layer(name, size, depth=None, height=None, width=None,
               layer_attr=None):
Z
zhangjinchao01 已提交
927 928 929 930 931 932 933
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
934
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
935

R
ranqiu 已提交
936
    :param name: The name of this layer.
Z
zhangjinchao01 已提交
937 938 939
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
940
    :param height: Height of this data layer, used for image
R
ranqiu 已提交
941
    :type height: int | None
L
Luo Tao 已提交
942
    :param width: Width of this data layer, used for image
R
ranqiu 已提交
943
    :type width: int | None
Z
zhangjinchao01 已提交
944 945
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
946
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
947 948
    :rtype: LayerOutput
    """
Q
qijun 已提交
949 950 951 952
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
C
chengduoZH 已提交
953
        depth=depth,
L
Luo Tao 已提交
954 955
        height=height,
        width=width,
Q
qijun 已提交
956
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
957

C
chengduoZH 已提交
958 959
    if depth is None:
        depth = 1
960 961
    num_filters = None
    if height is not None and width is not None:
C
chengduoZH 已提交
962 963
        num_filters = size / (width * height * depth)
        assert num_filters * width * height * depth == size, \
C
chengduoZH 已提交
964
                "size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
965 966

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
967 968 969 970


@wrap_name_default("embedding")
@wrap_param_attr_default()
971
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
972 973 974 975
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

976
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
977
    :type name: basestring
R
ranqiu 已提交
978
    :param input: The input of this layer, which must be Index Data.
Z
zhangjinchao01 已提交
979 980 981 982 983
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
R
ranqiu 已提交
984
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
985
    :param layer_attr: Extra layer Config. Default is None.
R
ranqiu 已提交
986
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
987
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
988 989
    :rtype: LayerOutput
    """
Q
qijun 已提交
990 991 992 993 994 995
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
996 997 998 999 1000 1001 1002 1003 1004
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
1005 1006 1007 1008 1009 1010 1011
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
1024
    which is equal to:
Z
zhangjinchao01 已提交
1025 1026 1027 1028 1029 1030

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

1031
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1032
    :type name: basestring
R
ranqiu 已提交
1033 1034
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
1035 1036
    :param size: The layer dimension.
    :type size: int
1037
    :param act: Activation Type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1038 1039 1040
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
1041 1042 1043
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1044
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1045
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
1046
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1047
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1048 1049 1050 1051
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1052
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1053 1054
        param_attr = [param_attr]
    else:
1055
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1056 1057
            assert len(input) == len(param_attr)
        else:
1058
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
1059
                logger.fatal(
W
wangmeng28 已提交
1060 1061 1062 1063 1064
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
1065 1066
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1067
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1068 1069

    Layer(
Q
qijun 已提交
1070 1071 1072
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1073 1074 1075 1076 1077
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1078 1079 1080
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1081

1082

1083
@wrap_name_default("print")
1084
def printer_layer(input, format=None, name=None):
1085 1086
    """
    Print the output value of input layers. This layer is useful for debugging.
1087

1088
    :param name: The name of this layer. It is optional.
1089
    :type name: basestring
R
ranqiu 已提交
1090 1091
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
1092
    :return: LayerOutput
1093
    """
1094 1095 1096 1097 1098
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1099 1100 1101

    Layer(
        name=name,
1102
        format=format,
1103
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1104
        inputs=[l.name for l in input], )
1105
    # this layer don't return anything, can not be input of other layer.
1106

X
xuwei06 已提交
1107 1108 1109 1110 1111 1112 1113
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1114

Y
yuan 已提交
1115
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1116
def priorbox_layer(input,
G
gaoyuan 已提交
1117
                   image,
G
gaoyuan 已提交
1118 1119 1120 1121 1122
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1123 1124 1125
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

1126
    :param name: The name of this layer. It is optional.
Y
yuan 已提交
1127
    :type name: basestring
R
ranqiu 已提交
1128
    :param input: The input of this layer.
Y
yuan 已提交
1129
    :type input: LayerOutput
G
gaoyuan 已提交
1130 1131
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1143
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1144 1145 1146
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1147
        inputs=[input.name, image.name],
Y
yuan 已提交
1148 1149 1150 1151 1152 1153
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1154 1155
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1156
        parents=[input, image],
G
gaoyuan 已提交
1157 1158 1159
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1160

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

1175
    :param name: The name of this layer. It is optional.
1176
    :type name: basestring
Y
yangyaming 已提交
1177 1178
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1179
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1180
    :type input_conf: LayerOutput | List of LayerOutput
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1202
    input_loc_num = len(input_loc)
1203 1204 1205 1206 1207 1208

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1209
    input_conf_num = len(input_conf)
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
G
gaoyuan 已提交
1247 1248
    box location. The output's shape of this layer could be zero if there is
    no valid bounding box.
1249

1250
    :param name: The name of this layer. It is optional.
1251
    :type name: basestring
Y
yangyaming 已提交
1252 1253
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1254
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1255
    :type input_conf: LayerOutput | List of LayerOutput.
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1277
    input_loc_num = len(input_loc)
1278 1279 1280 1281 1282 1283

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1284 1285
    input_conf_num = len(input_conf)

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


G
guosheng 已提交
1314 1315 1316 1317 1318 1319
@wrap_name_default("roi_pool")
def roi_pool_layer(input,
                   rois,
                   pooled_width,
                   pooled_height,
                   spatial_scale,
G
guosheng 已提交
1320
                   num_channels=None,
G
guosheng 已提交
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
                   name=None):
    """
    A layer used by Fast R-CNN to extract feature maps of ROIs from the last
    feature map.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
    :param rois: The input ROIs' data.
    :type rois: LayerOutput.
    :param pooled_width: The width after pooling.
    :type pooled_width: int
    :param pooled_height: The height after pooling.
    :type pooled_height: int
    :param spatial_scale: The spatial scale between the image and feature map.
    :type spatial_scale: float
G
guosheng 已提交
1338 1339
    :param num_channels: number of input channel.
    :type num_channels: int
G
guosheng 已提交
1340 1341
    :return: LayerOutput
    """
G
guosheng 已提交
1342 1343 1344 1345
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    size = num_channels * pooled_width * pooled_height
G
guosheng 已提交
1346 1347 1348 1349 1350 1351
    Layer(
        name=name,
        type=LayerType.ROI_POOL_LAYER,
        inputs=[input.name, rois.name],
        pooled_width=pooled_width,
        pooled_height=pooled_height,
1352 1353
        spatial_scale=spatial_scale,
        num_channels=num_channels)
G
guosheng 已提交
1354 1355
    return LayerOutput(
        name, LayerType.ROI_POOL_LAYER, parents=[input, rois], size=size)
G
guosheng 已提交
1356 1357


1358 1359
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1360 1361 1362 1363 1364
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1365

1366
    :param name: The name of this layer. It is optional.
G
gaoyuan 已提交
1367
    :type name: basestring
R
ranqiu 已提交
1368
    :param input: The input of this layer.
G
gaoyuan 已提交
1369 1370 1371 1372 1373
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1374
    assert input.num_filters is not None
G
gaoyuan 已提交
1375 1376
    Layer(
        name=name,
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1390 1391
    return LayerOutput(
        name,
1392
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1393 1394 1395 1396 1397
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1398 1399 1400 1401
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1402 1403 1404 1405
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1406
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1407
                  stride=-1,
Z
zhangjinchao01 已提交
1408 1409 1410 1411
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1412 1413
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1414 1415 1416
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1417
    operation. Note that for sequence with sub-sequence, the default value
1418 1419
    of stride is -1.

Z
zhangjinchao01 已提交
1420 1421 1422 1423 1424 1425
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1426
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1427

L
Luo Tao 已提交
1428 1429
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1430
    :type agg_level: AggregateLevel
1431
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1432
    :type name: basestring
R
ranqiu 已提交
1433
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1434 1435 1436
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
R
ranqiu 已提交
1437
    :type pooling_type: BasePoolingType | None
L
Luo Tao 已提交
1438
    :param stride: The step size between successive pooling regions.
1439
    :type stride: Int
R
ranqiu 已提交
1440 1441 1442
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1443
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1444
    :param layer_attr: The Extra Attributes for layer, such as dropout.
R
ranqiu 已提交
1445
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1446
    :return: LayerOutput object.
Y
Yu Yang 已提交
1447
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1448 1449
    """
    extra_dict = dict()
1450
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1451 1452
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1453 1454 1455 1456
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1457 1458
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1459 1460 1461
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1462 1463 1464 1465 1466 1467
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1468
        stride=stride,
Q
qijun 已提交
1469
        **extra_dict)
Z
zhangjinchao01 已提交
1470

Q
qijun 已提交
1471 1472
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1473

Q
qijun 已提交
1474

Z
zhangjinchao01 已提交
1475 1476
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1477
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1478 1479
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1480
@layer_support()
Q
qijun 已提交
1481 1482
def lstmemory(input,
              name=None,
1483
              size=None,
Q
qijun 已提交
1484 1485 1486 1487 1488 1489
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1490 1491 1492 1493 1494 1495 1496 1497
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1498
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1499

L
luotao02 已提交
1500
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1501

L
luotao02 已提交
1502
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1503

L
luotao02 已提交
1504
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1505

L
luotao02 已提交
1506
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1507 1508


C
caoying03 已提交
1509
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1510
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1511 1512 1513 1514
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1515

C
caoying03 已提交
1516
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1517 1518
    to config a simple plain lstm layer.

C
caoying03 已提交
1519 1520 1521 1522
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1523 1524 1525 1526 1527

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1528 1529
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
R
ranqiu 已提交
1530
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1531 1532 1533
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
1534
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1535 1536 1537 1538 1539
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation
R
ranqiu 已提交
1540 1541 1542
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1543
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1544
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1545
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1546
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1547
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1548
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1549 1550 1551 1552 1553 1554
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1555
    assert input.size is not None and input.size % 4 == 0
1556

1557 1558 1559 1560 1561
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1562 1563 1564
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1565

Q
qijun 已提交
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1576

Q
qijun 已提交
1577 1578 1579 1580 1581
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1582

Z
zhangjinchao01 已提交
1583 1584 1585

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1586
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1587 1588
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1589
@layer_support()
Q
qijun 已提交
1590
def grumemory(input,
1591
              size=None,
Q
qijun 已提交
1592 1593 1594 1595 1596 1597
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1619 1620
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1621 1622 1623 1624 1625

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1626 1627 1628
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1629 1630 1631 1632 1633

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1634
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1635
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1636 1637 1638
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1639

C
caoying03 已提交
1640 1641 1642
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1643 1644 1645 1646 1647 1648 1649 1650

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
R
ranqiu 已提交
1651 1652
    :type name: None | basestring
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1653
    :type input: LayerOutput.
1654 1655
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1656
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1657
    :type reverse: bool
R
ranqiu 已提交
1658
    :param act: Activation type, TanhActivation is the default. This activation
Z
zhangjinchao01 已提交
1659 1660 1661 1662 1663 1664
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
R
ranqiu 已提交
1665 1666 1667
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1668
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1669
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1670
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1671
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1672
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1673
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1674 1675 1676 1677
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1678 1679 1680 1681 1682 1683
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1684 1685 1686
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1687

Q
qijun 已提交
1688 1689 1690 1691 1692 1693 1694 1695 1696
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1697

Q
qijun 已提交
1698 1699 1700 1701 1702
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1703

Z
zhangjinchao01 已提交
1704 1705 1706

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1707 1708
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1709
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1710
             stride=-1,
Z
zhangjinchao01 已提交
1711 1712 1713 1714
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1715 1716 1717
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1718
    of stride is -1.
1719

L
Luo Tao 已提交
1720 1721 1722 1723 1724 1725
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1726
    :param agg_level: Aggregated level
1727
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1728
    :type name: basestring
R
ranqiu 已提交
1729
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1730
    :type input: LayerOutput
L
Luo Tao 已提交
1731
    :param stride: The step size between successive pooling regions.
1732
    :type stride: Int
Z
zhangjinchao01 已提交
1733 1734
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1735
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1736 1737
    :rtype: LayerOutput
    """
1738 1739 1740 1741 1742 1743
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1744
    if agg_level == AggregateLevel.TO_SEQUENCE:
1745 1746
        assert stride == -1

Z
zhangjinchao01 已提交
1747 1748 1749 1750 1751
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1752
        stride=stride,
Q
qijun 已提交
1753 1754 1755 1756 1757 1758
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1759 1760 1761 1762


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1763 1764
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1765
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1766
              stride=-1,
Z
zhangjinchao01 已提交
1767 1768 1769 1770
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1771 1772 1773
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1774
    of stride is -1.
1775

L
Luo Tao 已提交
1776 1777 1778 1779 1780 1781
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1782
    :param agg_level: aggregation level
1783
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1784
    :type name: basestring
R
ranqiu 已提交
1785
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1786
    :type input: LayerOutput
L
Luo Tao 已提交
1787
    :param stride: The step size between successive pooling regions.
1788
    :type stride: Int
Z
zhangjinchao01 已提交
1789 1790
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1791
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1792 1793
    :rtype: LayerOutput
    """
1794 1795 1796 1797 1798 1799 1800

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1801
    if agg_level == AggregateLevel.TO_SEQUENCE:
1802 1803
        assert stride == -1

Z
zhangjinchao01 已提交
1804 1805 1806 1807 1808
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1809
        stride=stride,
Q
qijun 已提交
1810 1811 1812 1813 1814 1815
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1816 1817 1818


class ExpandLevel(object):
1819 1820 1821 1822 1823
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1824 1825
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1826 1827
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1828 1829
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1830 1831
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1832 1833
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1834 1835
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1836

1837

Z
zhangjinchao01 已提交
1838 1839
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1840 1841
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1842 1843
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1844
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1856
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1857

R
ranqiu 已提交
1858
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1859 1860 1861
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
1862
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1863
    :type name: basestring
R
ranqiu 已提交
1864 1865 1866
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1867
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1868 1869 1870 1871
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1872
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1882 1883 1884 1885 1886 1887
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1888 1889


X
xuwei06 已提交
1890
@wrap_name_default()
X
xuwei06 已提交
1891
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1892
@layer_support()
X
xuwei06 已提交
1893 1894 1895
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1896
                 act=None,
X
xuwei06 已提交
1897 1898
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1899
    """
X
xuwei06 已提交
1900
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1901

X
xuwei06 已提交
1902
    If as_row_vector:
X
xuwei06 已提交
1903
    .. math::
X
xuwei06 已提交
1904 1905 1906 1907 1908
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1909 1910 1911 1912 1913

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1914
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1915

R
ranqiu 已提交
1916
    :param input: The input of this layer.
X
xuwei06 已提交
1917 1918 1919
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
1920
    :param name: The name of this layer. It is optional.
X
xuwei06 已提交
1921 1922 1923 1924 1925 1926
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
1927
    :param act: Activation type. IdentityActivation is the default activation.
X
xuwei06 已提交
1928
    :type act: BaseActivation
X
xuwei06 已提交
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1939
        active_type=act.name,
X
xuwei06 已提交
1940
        num_filters=num_repeats,
X
xuwei06 已提交
1941
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1942
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1943 1944 1945 1946 1947
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1948
        activation=act,
Q
qijun 已提交
1949 1950
        parents=[input])

X
xuwei06 已提交
1951

1952 1953 1954
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1955
@layer_support(ERROR_CLIPPING, DROPOUT)
1956 1957 1958 1959 1960 1961 1962 1963
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1964
    the dimension of each instance is M, and the input reshape_size is N, then the
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

R
ranqiu 已提交
1975
    :param input: The input of this layer.
1976 1977 1978
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
1979
    :param name: The name of this layer. It is optional.
1980
    :type name: basestring
1981
    :param act: Activation type. IdentityActivation is the default activation.
1982 1983 1984
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
R
ranqiu 已提交
1985 1986 1987
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1988
    :type bias_attr: ParameterAttribute | None | bool | Any
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

R
ranqiu 已提交
2027 2028
    :param input: The input of this layer.
    :type input: list | tuple
Z
zhangjinchao01 已提交
2029 2030
    :param weight: Weight layer.
    :type weight: LayerOutput
2031
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2032 2033 2034
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2035
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2036 2037
    :rtype: LayerOutput
    """
2038
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2039
    assert len(input) == 2
2040 2041 2042 2043 2044 2045 2046
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2047 2048 2049 2050
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
2051 2052 2053 2054 2055 2056
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
2057 2058


L
liaogang 已提交
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
2075
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
2076

L
liaogang 已提交
2077
    :param   input:        A input layer.
L
liaogang 已提交
2078
    :type    input:        LayerOutput.
L
liaogang 已提交
2079
    :param   out_size_x:   bilinear interpolation output width.
R
ranqiu 已提交
2080
    :type    out_size_x:   int | None
L
liaogang 已提交
2081
    :param   out_size_y:   bilinear interpolation output height.
R
ranqiu 已提交
2082
    :type    out_size_y:   int | None
L
liaogang 已提交
2083
    :param   name:         The layer's name, which cna not be specified.
R
ranqiu 已提交
2084
    :type    name:         None | basestring
L
liaogang 已提交
2085
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
2086 2087 2088 2089 2090 2091 2092
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2093
    assert input.num_filters is not None
L
liaogang 已提交
2094
    num_channels = input.num_filters
Q
qijun 已提交
2095 2096 2097 2098 2099 2100 2101
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2102
                channels=num_channels)),
Q
qijun 已提交
2103 2104 2105 2106 2107 2108 2109 2110 2111
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2112

Z
zhangjinchao01 已提交
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2132
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2133 2134 2135
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2136
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2137 2138 2139
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2140
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2141 2142
    :rtype: LayerOutput
    """
2143 2144 2145
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2146 2147 2148
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2149
        inputs=[weight.name, input.name],
Q
qijun 已提交
2150 2151 2152
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2153 2154 2155 2156 2157 2158


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2159
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2160 2161

    .. math::
2162
       y  = w x
Z
zhangjinchao01 已提交
2163

2164 2165 2166 2167 2168
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2169 2170 2171 2172 2173 2174 2175

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2176
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2177 2178 2179
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2180
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2181 2182 2183
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2184
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2185 2186
    :rtype: LayerOutput
    """
2187 2188 2189
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2190 2191 2192 2193
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2194 2195 2196
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2197 2198 2199 2200 2201 2202


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2203
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

R
ranqiu 已提交
2216
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2217
    :type input: LayerOutput
2218
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2219 2220 2221
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2222
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2223 2224 2225 2226 2227 2228
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2229 2230 2231
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2232 2233


2234 2235
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2236
def rotate_layer(input, height, width, name=None, layer_attr=None):
2237
    """
H
Haonan 已提交
2238 2239
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2240 2241

    .. math::
H
Haonan 已提交
2242
       y(j,i,:) = x(M-i-1,j,:)
2243

H
Haonan 已提交
2244
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2245 2246 2247 2248 2249 2250

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2251 2252
                          height=100,
                          width=100)
2253

R
ranqiu 已提交
2254
    :param input: The input of this layer.
2255 2256 2257
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
2258
    :param name: The name of this layer. It is optional.
2259 2260 2261 2262 2263 2264 2265
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2266 2267 2268
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2269
        width=width,
H
Haonan 已提交
2270 2271 2272 2273 2274 2275 2276 2277
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2278 2279


Z
zhangjinchao01 已提交
2280 2281
@wrap_name_default()
@layer_support()
2282
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2283 2284 2285 2286
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2287
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2288 2289 2290 2291 2292
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2293

2294 2295
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2296

L
Luo Tao 已提交
2297 2298 2299 2300 2301 2302
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

2303
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2315
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2316 2317
    :rtype: LayerOutput
    """
2318
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2319 2320 2321 2322 2323 2324
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2325
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2326
    else:
2327 2328
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2329 2330 2331 2332 2333 2334
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2335
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2336
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2337

2338

C
caoying03 已提交
2339 2340 2341 2342
@wrap_name_default()
@layer_support()
def l2_distance_layer(x, y, name=None, layer_attr=None):
    """
C
caoying03 已提交
2343
    This layer calculates and returns the Euclidean distance between two input
C
caoying03 已提交
2344
    vectors x and y. The equation is as follows:
C
caoying03 已提交
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374

    ..  math::
        l2_distance(\\mathbf{x}, \\mathbf{y}) = \\sqrt{\\sum_{i=1}^D(x_i - y_i)}

    The output size of this layer is fixed to be 1. Note that the above
    computation is for one sample. Multiple samples are processed in one batch.

    The example usage is:

    .. code-block:: python

       l2_sim = l2_distance(x=layer1, y=layer2)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param x: The first input x for this layer, whose output is a matrix with
              dimensionality N x D. N is the sample number in a mini-batch.
              D is the dimensionality of x's output.
    :type x: LayerOutput
    :param y: The second input y for this layer, whose output is a matrix with
              dimensionality N x D. N is the sample number in a mini-batch.
              D is the dimensionality of y's output.
    :type y: LayerOutput
    :param layer_attr: The extra layer attributes, for example, drop rate.
                       See ExtraLayerAttribute for more details.
    :type layer_attr: ExtraLayerAttribute
    :return: The returned LayerOutput object.
    :rtype: LayerOutput
    """

C
caoying03 已提交
2375
    assert isinstance(x, LayerOutput) and isinstance(y, LayerOutput)
C
caoying03 已提交
2376 2377 2378
    Layer(
        name=name,
        type=LayerType.L2_DISTANCE,
C
caoying03 已提交
2379
        inputs=[x.name, y.name],
C
caoying03 已提交
2380 2381 2382 2383
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(name, LayerType.L2_DISTANCE, parents=[x, y], size=1)


Z
zhangjinchao01 已提交
2384 2385
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2386
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2387
@layer_support()
Q
qijun 已提交
2388 2389
def hsigmoid(input,
             label,
2390
             num_classes=None,
Q
qijun 已提交
2391 2392 2393 2394
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2406
                        label=data_layer)
Z
zhangjinchao01 已提交
2407

R
ranqiu 已提交
2408 2409
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
2410 2411 2412
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
R
ranqiu 已提交
2413
    :type num_classes: int | None
2414
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
2415
    :type name: basestring
R
ranqiu 已提交
2416 2417 2418
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2419
    :type bias_attr: ParameterAttribute | None | bool | Any
2420
    :param param_attr: Parameter Attribute. None means default parameter.
R
ranqiu 已提交
2421
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
2422 2423
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2424
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2425 2426 2427 2428
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2429 2430 2431 2432 2433 2434 2435 2436 2437
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2438 2439 2440
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2441 2442 2443 2444 2445
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2446 2447
    ipts_for_layer = []
    parents = []
2448
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2449
        assert isinstance(each_input, LayerOutput)
2450
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2451 2452 2453 2454
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2455
    l = Layer(
Z
zhangjinchao01 已提交
2456 2457 2458 2459 2460
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2461 2462 2463
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2464

2465

Z
zhangjinchao01 已提交
2466 2467 2468 2469 2470
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2471 2472 2473 2474 2475 2476 2477 2478 2479
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2480
                   dilation=1,
Q
qijun 已提交
2481 2482 2483 2484 2485 2486 2487
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2488
                   dilation_y=None,
2489 2490
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2491
    """
2492
    Convolution layer for image. Paddle can support both square and non-square
2493
    input currently.
Z
zhangjinchao01 已提交
2494 2495 2496 2497

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2498

2499
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2500
    and non-square input currently.
2501

X
xuwei06 已提交
2502
    The details of convolution transpose layer,
2503 2504 2505
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2506 2507 2508 2509
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2510 2511 2512
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2513
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2514 2515
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2516

L
Luo Tao 已提交
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

2527
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2528
    :type name: basestring
R
ranqiu 已提交
2529
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2530
    :type input: LayerOutput
2531 2532
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
R
ranqiu 已提交
2533
    :type filter_size: int | tuple | list
C
caoying03 已提交
2534 2535 2536
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
R
ranqiu 已提交
2537
    :type filter_size_y: int | None
Z
zhangjinchao01 已提交
2538
    :param num_filters: Each filter group's number of filter
2539
    :param act: Activation type. ReluActivation is the default activation.
Z
zhangjinchao01 已提交
2540 2541 2542
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2543 2544
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
R
ranqiu 已提交
2545
    :type stride: int | tuple | list
Z
zhangjinchao01 已提交
2546 2547
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2548 2549
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
2550
    :type padding: int | tuple | list
Z
zhangjinchao01 已提交
2551 2552
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
2553 2554
    :param dilation: The x dimension of the dilation. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
2555
    :type dilation: int | tuple | list
W
wanghaoshuang 已提交
2556 2557
    :param dilation_y: The y dimension of the dilation.
    :type dilation_y: int
R
ranqiu 已提交
2558 2559 2560
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2561
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
2562 2563 2564 2565 2566 2567 2568 2569 2570
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2571 2572
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2573
    :param layer_type: specify the layer_type, default is None. If trans=True,
2574 2575
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2576
                       "cudnn_conv"
2577
    :type layer_type: String
D
dangqingqing 已提交
2578
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2579 2580 2581 2582 2583
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2584

Z
zhangjinchao01 已提交
2585
    if filter_size_y is None:
2586 2587 2588 2589 2590 2591
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2592
    if stride_y is None:
2593 2594 2595 2596 2597 2598
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2599
    if padding_y is None:
2600 2601 2602 2603 2604 2605
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2606 2607 2608 2609 2610 2611 2612
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2613 2614
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2615
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2616 2617 2618 2619
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2620

2621
    if layer_type:
W
wanghaoshuang 已提交
2622
        if dilation > 1 or dilation_y > 1:
X
xzl 已提交
2623 2624 2625
            assert layer_type in [
                "cudnn_conv", "cudnn_convt", "exconv", "exconvt"
            ]
2626
        if trans:
2627
            assert layer_type in ["exconvt", "cudnn_convt"]
2628 2629 2630 2631 2632
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2633

X
xuwei06 已提交
2634
    l = Layer(
Z
zhangjinchao01 已提交
2635
        name=name,
Q
qijun 已提交
2636 2637 2638 2639 2640
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2641
                dilation=dilation,
Q
qijun 已提交
2642 2643 2644 2645 2646
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2647
                dilation_y=dilation_y,
Q
qijun 已提交
2648 2649
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2650 2651 2652 2653
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2654
        type=lt,
Q
qijun 已提交
2655 2656 2657 2658 2659 2660 2661 2662
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2663 2664 2665 2666


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2677 2678
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2679 2680 2681 2682 2683 2684 2685
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2714
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2715
    :type padding: int
2716
    :param padding_y: pooling padding height. It's equal to padding by default.
R
ranqiu 已提交
2717
    :type padding_y: int | None
Z
zhangjinchao01 已提交
2718 2719
    :param name: name of pooling layer
    :type name: basestring.
R
ranqiu 已提交
2720
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2721
    :type input: LayerOutput
2722
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2723
    :type pool_size: int
2724
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
R
ranqiu 已提交
2725
    :type pool_size_y: int | None
Z
zhangjinchao01 已提交
2726 2727
    :param num_channels: number of input channel.
    :type num_channels: int
2728
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2729 2730
                      MaxPooling.
    :type pool_type: BasePoolingType
2731
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2732
    :type stride: int
2733
    :param stride_y: stride height of pooling. It is equal to stride by default.
R
ranqiu 已提交
2734
    :type stride_y: int | None
Z
zhangjinchao01 已提交
2735 2736
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2737 2738 2739 2740
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2741 2742
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

X
xzl 已提交
2753
    assert type(pool_type) in [AvgPooling, MaxPooling, MaxWithMaskPooling, CudnnAvgPooling,
W
wanghaoshuang 已提交
2754
                               CudnnMaxPooling], \
X
xzl 已提交
2755
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling, MaxWithMaskPooling are supported"
W
wanghaoshuang 已提交
2756

2757
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2758
        if (
Y
Yu Yang 已提交
2759
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2760
        else pool_type.name
2761 2762 2763 2764
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2765
    l = Layer(
Z
zhangjinchao01 已提交
2766 2767
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2780
                    padding_y=padding_y))
Q
qijun 已提交
2781
        ],
2782
        ceil_mode=ceil_mode,
Q
qijun 已提交
2783 2784 2785 2786 2787 2788 2789
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2790 2791


C
chengduoZH 已提交
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
@wrap_name_default("pool3d")
@layer_support()
def img_pool3d_layer(input,
                     pool_size,
                     name=None,
                     num_channels=None,
                     pool_type=None,
                     stride=1,
                     padding=0,
                     layer_attr=None,
                     pool_size_y=None,
                     stride_y=None,
                     padding_y=None,
                     pool_size_z=None,
                     stride_z=None,
                     padding_z=None,
                     ceil_mode=True):
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool3d_layer(input=conv,
                                 pool_size=3,
                                 num_channels=8,
                                 stride=1,
                                 padding=1,
                                 pool_type=MaxPooling())

    :param padding: pooling padding width.
R
ranqiu 已提交
2844
    :type padding: int | tuple | list
C
chengduoZH 已提交
2845 2846
    :param name: name of pooling layer
    :type name: basestring.
R
ranqiu 已提交
2847
    :param input: The input of this layer.
C
chengduoZH 已提交
2848 2849
    :type input: LayerOutput
    :param pool_size: pooling window width
R
ranqiu 已提交
2850
    :type pool_size: int | tuple | list
C
chengduoZH 已提交
2851 2852 2853 2854 2855 2856
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
                      MaxPooling.
    :type pool_type: BasePoolingType
    :param stride: stride width of pooling.
R
ranqiu 已提交
2857
    :type stride: int | tuple | list
C
chengduoZH 已提交
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name + '-projection' \
        if (
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
        else pool_type.name

    if isinstance(pool_size, collections.Sequence):
        assert len(pool_size) == 3
        pool_size, pool_size_y, pool_size_z = pool_size
    else:
        pool_size_y = pool_size
        pool_size_z = pool_size

    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride

    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_y = padding
    else:
        padding_y = padding
        padding_z = padding

    l = Layer(
        name=name,
        type=LayerType.POOL3D_LAYER,
        inputs=[
            Input(
                input.name,
                pool=Pool3d(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
                    padding_y=padding_y,
                    size_z=pool_size_z,
                    stride_z=stride_z,
                    padding_z=padding_z))
        ],
        ceil_mode=ceil_mode,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


Q
qijun 已提交
2932 2933
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2934 2935 2936 2937 2938 2939
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2940 2941 2942 2943 2944
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2945 2946 2947 2948
    The example usage is:

    ..  code-block:: python

2949 2950 2951
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2952 2953
                        pool_type=MaxPooling())

2954
    :param name: The name of this layer. It is optional.
Q
qijun 已提交
2955
    :type name: basestring
R
ranqiu 已提交
2956
    :param input: The input of this layer.
Q
qijun 已提交
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2982
    l = Layer(
Q
qijun 已提交
2983 2984
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2985 2986 2987 2988 2989
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2990
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
3002 3003 3004 3005
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
3006
    l = Layer(
Q
qijun 已提交
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
3026 3027 3028 3029


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
3030 3031 3032 3033 3034 3035
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
3036
                      layer_attr=None):
Z
zhangjinchao01 已提交
3037
    """
3038
    Response normalization across feature maps.
R
ranqiu 已提交
3039 3040 3041 3042

    Reference:
        ImageNet Classification with Deep Convolutional Neural Networks
        http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
Z
zhangjinchao01 已提交
3043

L
Luo Tao 已提交
3044 3045 3046
    The example usage is:

    ..  code-block:: python
3047

L
Luo Tao 已提交
3048 3049
        norm = img_cmrnorm_layer(input=net, size=5)

3050
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3051
    :type name: basestring
R
ranqiu 已提交
3052
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3053
    :type input: LayerOutput
3054
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
3055
    :type size: int
D
dangqingqing 已提交
3056
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
3057
    :type scale: float
D
dangqingqing 已提交
3058
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
3059
    :type power: float
R
ranqiu 已提交
3060 3061 3062 3063 3064
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3065
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3066
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3067 3068 3069
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
3070
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
3071 3072 3073


@wrap_bias_attr_default()
3074 3075
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
3076 3077
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
3078
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3079 3080 3081
def batch_norm_layer(input,
                     act=None,
                     name=None,
C
chengduoZH 已提交
3082
                     img3D=False,
Q
qijun 已提交
3083 3084 3085 3086
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
3087 3088
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
C
chengduoZH 已提交
3089 3090
                     use_global_stats=None,
                     mean_var_names=None):
Z
zhangjinchao01 已提交
3091
    """
R
ranqiu 已提交
3092
    Batch Normalization Layer. The notation of this layer is as follows.
Z
zhangjinchao01 已提交
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

R
ranqiu 已提交
3106 3107 3108 3109
    Reference:
        Batch Normalization: Accelerating Deep Network Training by Reducing
        Internal Covariate Shift
        http://arxiv.org/abs/1502.03167
Z
zhangjinchao01 已提交
3110

L
Luo Tao 已提交
3111 3112 3113
    The example usage is:

    ..  code-block:: python
3114

L
Luo Tao 已提交
3115 3116
        norm = batch_norm_layer(input=net, act=ReluActivation())

3117
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3118
    :type name: basestring
R
ranqiu 已提交
3119
    :param input: This layer's input which is to be performed batch normalization on.
Z
zhangjinchao01 已提交
3120
    :type input: LayerOutput
3121 3122 3123 3124 3125
    :param batch_norm_type: We have batch_norm, mkldnn_batch_norm and cudnn_batch_norm.
                            batch_norm supports CPU, MKLDNN and GPU. cudnn_batch_norm
                            requires cuDNN version greater or equal to v4 (>=v4).
                            But cudnn_batch_norm is faster and needs less
                            memory than batch_norm. mkldnn_batch_norm requires
R
ranqiu 已提交
3126 3127
                            use_mkldnn is enabled. By default (None), we will
                            automatically select cudnn_batch_norm for GPU,
3128
                            mkldnn_batch_norm for MKLDNN and batch_norm for CPU.
R
ranqiu 已提交
3129 3130 3131
                            Users can specify the batch norm type. If you use
                            cudnn_batch_norm, we suggested you use latest version,
                            such as v5.1.
R
ranqiu 已提交
3132
    :type batch_norm_type: None | string, None or "batch_norm" or "cudnn_batch_norm"
3133
                           or "mkldnn_batch_norm"
R
ranqiu 已提交
3134
    :param act: Activation type. ReluActivation is the default activation.
Z
zhangjinchao01 已提交
3135
    :type act: BaseActivation
R
ranqiu 已提交
3136 3137 3138
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Z
zhangjinchao01 已提交
3139
    :type num_channels: int
R
ranqiu 已提交
3140 3141 3142 3143
    :param bias_attr: :math:`\\beta`. The bias attribute. If the parameter is set to
                      False or an object whose type is not ParameterAttribute, no
                      bias is defined. If the parameter is set to True, the bias is
                      initialized to zero.
R
ranqiu 已提交
3144
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3145 3146
    :param param_attr: :math:`\\gamma`. The parameter attribute. See ParameterAttribute
                       for details.
Z
zhangjinchao01 已提交
3147
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
3148 3149
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3150
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3151 3152 3153 3154 3155 3156
    :param use_global_stats: Whether use moving mean/variance statistics during
                             testing peroid. If the parameter is set to None or
                             True, it will use moving mean/variance statistics
                             during testing. If the parameter is set to False, it
                             will use the mean and variance of the current batch
                             of test data.
R
ranqiu 已提交
3157
    :type use_global_stats: bool | None.
R
ranqiu 已提交
3158 3159
    :param moving_average_fraction: Factor used in the moving average computation.
                                   :math:`runningMean = newMean*(1-factor) + runningMean*factor`
Z
zhangjinchao01 已提交
3160
    :type moving_average_fraction: float.
C
chengduoZH 已提交
3161 3162
    :param mean_var_names: [mean name, variance name]
    :type mean_var_names: string list
D
dangqingqing 已提交
3163
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3164 3165 3166 3167 3168 3169 3170 3171 3172
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
3173
           (batch_norm_type == "mkldnn_batch_norm") or \
Z
zhangjinchao01 已提交
3174
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
3175
    l = Layer(
Z
zhangjinchao01 已提交
3176
        name=name,
C
chengduoZH 已提交
3177
        img3D=img3D,
Q
qijun 已提交
3178 3179
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
3180 3181 3182 3183 3184 3185
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
C
chengduoZH 已提交
3186
        mean_var_names=mean_var_names,
Q
qijun 已提交
3187
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3188

Q
qijun 已提交
3189 3190 3191 3192 3193 3194 3195
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

R
ranqiu 已提交
3217
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3218
    :type input: LayerOutput
3219
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3220
    :type name: basestring
R
ranqiu 已提交
3221 3222 3223
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute
                       for details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3224
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3225 3226 3227 3228 3229 3230
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
3231 3232 3233
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
3234 3235


G
guosheng 已提交
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

R
ranqiu 已提交
3254
    :param input: The input of this layer.
G
guosheng 已提交
3255
    :type input: LayerOutput
3256
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
3257
    :type name: basestring
R
ranqiu 已提交
3258 3259
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute
                       for details.
G
guosheng 已提交
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
3273 3274 3275
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
3276
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3277
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

R
ranqiu 已提交
3296 3297 3298
    This layer just simply adds all input layers together, then activates the
    sum. All inputs should share the same dimension, which is also the dimension
    of this layer's output.
Z
zhangjinchao01 已提交
3299

C
caoying03 已提交
3300 3301 3302
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3303

3304
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3305
    :type name: basestring
R
ranqiu 已提交
3306
    :param input: The input layers. It could be a LayerOutput or list/tuple of
Z
zhangjinchao01 已提交
3307
                 LayerOutput.
R
ranqiu 已提交
3308
    :type input: LayerOutput | list | tuple
3309
    :param act: Activation Type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
3310
    :type act: BaseActivation
R
ranqiu 已提交
3311 3312 3313
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3314
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3315 3316
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3317
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3318
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3319 3320 3321 3322 3323 3324
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3325
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3326 3327 3328 3329 3330 3331 3332
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3333
    l = Layer(
Q
qijun 已提交
3334 3335 3336
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3337 3338
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3339
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3340

Q
qijun 已提交
3341 3342 3343 3344 3345 3346 3347
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3348 3349 3350 3351


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3352
@layer_support(DROPOUT, ERROR_CLIPPING)
3353
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3354
    """
R
ranqiu 已提交
3355 3356
    Concatenate all input vectors to one vector.
    Inputs can be a list of LayerOutput or a list of projection.
Z
zhangjinchao01 已提交
3357

3358 3359 3360 3361 3362 3363
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

3364
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3365
    :type name: basestring
R
ranqiu 已提交
3366
    :param input: The input layers or projections
R
ranqiu 已提交
3367
    :type input: list | tuple | collections.Sequence
3368
    :param act: Activation type. IdentityActivation is the default activation.
Z
zhangjinchao01 已提交
3369
    :type act: BaseActivation
R
ranqiu 已提交
3370 3371
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3372
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3373
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3374 3375 3376 3377 3378 3379 3380 3381
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3382
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3383 3384

    def __is_type__(o, tp):
3385
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3407 3408
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3409

Q
qijun 已提交
3410 3411
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3412

3413 3414
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3415

3416
    layer = Layer(
Q
qijun 已提交
3417 3418
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3419 3420
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3421
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3422
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3423

3424
    sz = layer.config.size
Z
zhangjinchao01 已提交
3425

Q
qijun 已提交
3426 3427 3428 3429 3430 3431 3432 3433
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3434 3435
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3436
@wrap_bias_attr_default(has_bias=False)
3437
@layer_support(DROPOUT, ERROR_CLIPPING)
3438 3439 3440
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
R
ranqiu 已提交
3441
    Concatenate sequence a and sequence b.
3442

3443
    Inputs:
X
xuwei06 已提交
3444
      - a = [a1, a2, ..., am]
3445
      - b = [b1, b2, ..., bn]
3446

X
xuwei06 已提交
3447 3448 3449 3450
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3451 3452 3453 3454 3455 3456 3457

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

3458
    :param name: The name of this layer. It is optional.
3459
    :type name: basestring
R
ranqiu 已提交
3460
    :param a: The first input sequence layer
3461
    :type a: LayerOutput
R
ranqiu 已提交
3462
    :param b: The second input sequence layer
3463
    :type b: LayerOutput
3464
    :param act: Activation type. IdentityActivation is the default activation.
3465
    :type act: BaseActivation
R
ranqiu 已提交
3466 3467
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
3468
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3469 3470 3471
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3472
    :type bias_attr: ParameterAttribute | None | bool | Any
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3494
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3495 3496
def memory(name,
           size,
3497
           memory_name=None,
Q
qijun 已提交
3498 3499 3500 3501
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3502 3503
           boot_with_const_id=None):
    """
R
ranqiu 已提交
3504
    The memory takes a layer's output at previous time step as its own output.
Z
zhangjinchao01 已提交
3505

R
ranqiu 已提交
3506
    If boot_bias, the activation of the bias is the initial value of the memory.
Z
zhangjinchao01 已提交
3507

R
ranqiu 已提交
3508 3509
    If boot_with_const_id is set, then the memory's output at the first time step
    is a IndexSlot, the Arguments.ids()[0] is this :code:`cost_id`.
Z
zhangjinchao01 已提交
3510

R
ranqiu 已提交
3511 3512
    If boot_layer is specified, the memory's output at the first time step will
    be the boot_layer's output.
Z
zhangjinchao01 已提交
3513

R
ranqiu 已提交
3514
    In other case, the default memory's output at the first time step is zero.
Z
zhangjinchao01 已提交
3515

3516 3517 3518 3519 3520
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

R
ranqiu 已提交
3521 3522
    If you do not want to specify the name, you can also use set_input()
    to specify the layer to be remembered as the following:
3523 3524

    .. code-block:: python
L
Liu Yiqun 已提交
3525

3526 3527 3528 3529
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

R
ranqiu 已提交
3530
    :param name: The name of the layer which this memory remembers.
3531 3532
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3533
    :type name: basestring
R
ranqiu 已提交
3534
    :param size: The dimensionality of memory.
Z
zhangjinchao01 已提交
3535
    :type size: int
R
ranqiu 已提交
3536
    :param memory_name: The name of the memory. It is ignored when name is provided.
3537
    :type memory_name: basestring
3538
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3539
    :type is_seq: bool
R
ranqiu 已提交
3540 3541
    :param boot_layer: This parameter specifies memory's output at the first time
                       step and the output is boot_layer's output.
R
ranqiu 已提交
3542
    :type boot_layer: LayerOutput | None
R
ranqiu 已提交
3543 3544 3545 3546
    :param boot_bias: The bias attribute of memory's output at the first time step.
                      If the parameter is set to False or an object whose type is not
                      ParameterAttribute, no bias is defined. If the parameter is set
                      to True, the bias is initialized to zero.
R
ranqiu 已提交
3547
    :type boot_bias: ParameterAttribute | None
R
ranqiu 已提交
3548 3549
    :param boot_bias_active_type: Activation type for memory's bias at the first time
                                  step. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
3550
    :type boot_bias_active_type: BaseActivation
R
ranqiu 已提交
3551 3552
    :param boot_with_const_id: This parameter specifies memory's output at the first
                               time step and the output is an index.
Z
zhangjinchao01 已提交
3553
    :type boot_with_const_id: int
R
ranqiu 已提交
3554
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3565 3566
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3567

3568 3569 3570 3571 3572 3573 3574 3575
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3576 3577

    lout = LayerOutput(
3578
        name=memory_name,
Q
qijun 已提交
3579 3580 3581
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3582 3583 3584 3585
    return lout


@wrap_bias_attr_default()
3586 3587
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3588 3589 3590
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3591 3592
def lstm_step_layer(input,
                    state,
3593
                    size=None,
Q
qijun 已提交
3594 3595 3596 3597 3598 3599
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3600
    """
3601 3602
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3603 3604 3605

    ..  math::

3606
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3607

3608
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3609

3610
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3611

3612
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3613

L
luotao02 已提交
3614
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3615 3616


L
luotao02 已提交
3617
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3618
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3619
    input vectors.
Z
zhangjinchao01 已提交
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3630
    This layer has two outputs. The default output is :math:`h_t`. The other
R
ranqiu 已提交
3631
    output is :math:`o_t`, whose name is 'state' and users can use
Z
zhangjinchao01 已提交
3632 3633
    :code:`get_output_layer` to extract this output.

3634
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3635
    :type name: basestring
R
ranqiu 已提交
3636 3637
    :param size: The dimension of this layer's output, which must be
                 equal to the dimension of the state.
Z
zhangjinchao01 已提交
3638
    :type size: int
R
ranqiu 已提交
3639
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3640
    :type input: LayerOutput
3641
    :param state: The state of the LSTM unit.
Z
zhangjinchao01 已提交
3642
    :type state: LayerOutput
3643
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
3644
    :type act: BaseActivation
3645 3646
    :param gate_act: Activation type of the gate. SigmoidActivation is the
                     default activation.
Z
zhangjinchao01 已提交
3647
    :type gate_act: BaseActivation
3648 3649
    :param state_act: Activation type of the state. TanhActivation is the
                      default activation.
Z
zhangjinchao01 已提交
3650
    :type state_act: BaseActivation
R
ranqiu 已提交
3651 3652 3653
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3654
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3655
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
Z
zhangjinchao01 已提交
3656
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3657
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3658 3659
    :rtype: LayerOutput
    """
3660 3661 3662

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3663 3664 3665 3666 3667 3668 3669
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3670
        size=state.size,
Q
qijun 已提交
3671 3672
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3673

Q
qijun 已提交
3674 3675 3676 3677 3678 3679 3680
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3681 3682 3683


@wrap_bias_attr_default()
W
wangyang59 已提交
3684
@wrap_param_attr_default()
Q
qijun 已提交
3685
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3686 3687 3688
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3689 3690 3691 3692 3693 3694 3695
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3696
                   param_attr=None,
Q
qijun 已提交
3697
                   layer_attr=None):
Z
zhangjinchao01 已提交
3698 3699
    """

R
ranqiu 已提交
3700
    :param input: The input of this layer, whose dimension can be divided by 3.
Z
zhangjinchao01 已提交
3701
    :type input: LayerOutput
R
ranqiu 已提交
3702 3703 3704 3705 3706 3707
    :param output_mem: A memory which memorizes the output of this layer at previous
                       time step.
    :type output_mem: LayerOutput
    :param size: The dimension of this layer's output. If it is not set or set to None,
                 it will be set to one-third of the dimension of the input automatically.
    :type size: int
3708 3709
    :param act: Activation type of this layer's output. TanhActivation
                is the default activation.
R
ranqiu 已提交
3710
    :type act: BaseActivation
3711
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3712
    :type name: basestring
3713 3714
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation is
                     the default activation.
R
ranqiu 已提交
3715
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
3716 3717 3718 3719
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute, no bias
                      is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3720
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3721 3722 3723 3724
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3725
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3726 3727 3728 3729 3730 3731 3732 3733
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3734 3735 3736 3737
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3738
        # backward model compatibility.
3739
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3740 3741 3742 3743
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3744
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3745
    return LayerOutput(
Q
qijun 已提交
3746 3747
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3748
        parents=[input, output_mem],
Q
qijun 已提交
3749 3750
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3751 3752


Y
Yu Yang 已提交
3753 3754 3755 3756
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3757
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
3769
    GRU Step Layer, which is realized using PaddlePaddle API. It supports ERROR_CLIPPING
Y
Yu Yang 已提交
3770 3771
    and DROPOUT.

3772
    :param input: The input of this layer, whose dimensionality can be divided by 3.
R
ranqiu 已提交
3773 3774 3775 3776 3777 3778
    :param output_mem: A memory which memorizes the output of this layer at previous
                       time step.
    :type output_mem: LayerOutput
    :param size: The dimension of this layer's output. If it is not set or set to None,
                 it will be set to one-third of the dimension of the input automatically.
    :type size: int
3779
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3780
    :type name: basestring
3781 3782
    :param act: Activation type of this layer's output. TanhActivation
                is the default activation.
R
ranqiu 已提交
3783
    :type act: BaseActivation
3784 3785
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation
                     is the default activation.
R
ranqiu 已提交
3786
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
3787 3788 3789 3790
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute, no bias
                      is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3791
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3792 3793 3794 3795 3796
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
R
ranqiu 已提交
3797
    :rtype: LayerOutput
Y
Yu Yang 已提交
3798 3799 3800 3801 3802 3803
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

3804
    if bias_attr and bias_attr.attr.get("parameter_name", None) is not None:
3805 3806 3807 3808
        raise ValueError("You should not specify the field `name` in bias_attr."
                         " Otherwise, the three biases, which correponding to "
                         " the two gates and the mixed layer for computing Wx+b"
                         ", will share the same parameter matrix unexpectedly.")
3809

Y
Yu Yang 已提交
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3847 3848 3849 3850
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3851 3852 3853 3854
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3855

3856
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3857
    :type name: basestring
R
ranqiu 已提交
3858
    :param input: The input layer. And this layer should contain
Z
zhangjinchao01 已提交
3859 3860
                   multiple outputs.
    :type input: LayerOutput
3861
    :param arg_name: The name of the output to be extracted from the input layer.
Z
zhangjinchao01 已提交
3862
    :type arg_name: basestring
R
ranqiu 已提交
3863 3864
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
3865
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3866 3867 3868 3869 3870 3871 3872
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3873 3874 3875 3876 3877 3878 3879
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3880

Q
qijun 已提交
3881 3882 3883 3884 3885
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3886 3887 3888 3889 3890 3891 3892


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3893 3894 3895 3896 3897 3898 3899
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3900
    """
3901 3902
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3903

3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


R
ranqiu 已提交
3919
    :param input: The input of this layer.
3920
    :type input: LayerOutput
3921
    :param act: Activation type. TanhActivation is the default activation.
3922
    :type act: BaseActivation
C
caoying03 已提交
3923
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
P
peterzhang2029 已提交
3924 3925 3926
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If the parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3927
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3928 3929
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
3930
    :type param_attr: ParameterAttribute
3931
    :param name: The name of this layer. It is optional.
3932
    :type name: basestring
R
ranqiu 已提交
3933 3934
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
3935
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3936
    :return: LayerOutput object.
3937
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3938
    """
Q
qijun 已提交
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3954 3955 3956 3957 3958


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
R
ranqiu 已提交
3959
    and can be a sequence or non-sequence.
3960 3961
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3962
    """
3963

Z
zhangjinchao01 已提交
3964 3965 3966
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
3967
        assert input.size is not None
Z
zhangjinchao01 已提交
3968
        if size is not None:
3969
            assert input.size == size
Z
zhangjinchao01 已提交
3970 3971


3972
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
3973
    """
3974
    DEPRECATED.
Z
zhangjinchao01 已提交
3975 3976 3977 3978 3979 3980 3981 3982
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3983
    return input
Z
zhangjinchao01 已提交
3984 3985 3986


@wrap_name_default("recurrent_group")
3987
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
3988
    """
C
caoying03 已提交
3989 3990 3991
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
3992 3993
    sequence input. This is useful for attention-based models, or Neural
    Turning Machine like models.
Z
zhangjinchao01 已提交
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

4015 4016
    :param step: A step function which takes the input of recurrent_group as its own
                 input and returns values as recurrent_group's output every time step.
Z
zhangjinchao01 已提交
4017

R
ranqiu 已提交
4018 4019 4020
                 The recurrent group scatters a sequence into time steps. And
                 for each time step, it will invoke step function, and return
                 a time step result. Then gather outputs of each time step into
Z
zhangjinchao01 已提交
4021 4022 4023 4024
                 layer group's output.

    :type step: callable

R
ranqiu 已提交
4025
    :param name: The recurrent_group's name. It is optional.
Z
zhangjinchao01 已提交
4026 4027 4028 4029 4030 4031 4032
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
R
ranqiu 已提交
4033
                  over time. It's a mechanism to access layer outside step function.
Z
zhangjinchao01 已提交
4034

R
ranqiu 已提交
4035
    :type input: LayerOutput | StaticInput | SubsequenceInput | list | tuple
Z
zhangjinchao01 已提交
4036

R
ranqiu 已提交
4037
    :param reverse: If reverse is set to True, the recurrent unit will process the
4038
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
4039
    :type reverse: bool
4040

4041 4042
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
4043 4044 4045 4046 4047 4048 4049

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

R
ranqiu 已提交
4050
    :type targetInlink: LayerOutput | SubsequenceInput
4051

D
dangqingqing 已提交
4052
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4053 4054 4055 4056
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

4057
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
4058
        input = [input]
4059
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
4060 4061

    def is_in_links(x):
4062
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
4063 4064 4065 4066

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
4067
        name=name,
4068 4069
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
4070 4071
    in_args = []
    for each_input in input:
4072
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
4073
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
4074
            mem = memory(
4075
                name=None,
Q
qijun 已提交
4076 4077
                size=each_input.input.size,
                boot_layer=each_input.input)
4078
            mem.set_input(mem)
Z
zhangjinchao01 已提交
4079
            in_args.append(mem)
4080 4081
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
4082

Z
zhangjinchao01 已提交
4083 4084 4085 4086 4087
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

4088 4089 4090 4091 4092 4093
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
4094 4095 4096

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
4097
    for layer_out in layer_outs:
4098 4099
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
4100 4101
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
4102 4103 4104 4105 4106
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

4107

Z
zhangjinchao01 已提交
4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
4136 4137

    def before_real_step(self):
Q
qijun 已提交
4138 4139 4140 4141 4142 4143 4144 4145 4146
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
4147 4148 4149
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
4150
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

R
ranqiu 已提交
4168
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4169
    :type input: LayerOutput
4170
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4171
    :type name: basestring
R
ranqiu 已提交
4172 4173
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
4174
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4175
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4176 4177 4178 4179
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
4180 4181 4182 4183 4184 4185 4186 4187 4188 4189
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4190

4191

R
ranqiu 已提交
4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
@wrap_name_default()
def dot_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the dot product of two vectors.

    The example usage is:

    .. code-block:: python

        dot_prod = dot_prod_layer(input1=vec1, input2=vec2)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input1: The first input layer.
    :type input: LayerOutput
    :param input2: The second input layer.
    :type input2: LayerOutput
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
    assert input1.size == input2.size, ("Two inputs should have the same size.")

    l = Layer(
        name=name,
        type=LayerType.DOT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.DOT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)


H
Haonan 已提交
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

4243
    :param name: The name of this layer. It is optional.
H
Haonan 已提交
4244
    :type name: basestring
R
ranqiu 已提交
4245
    :param input1: The first input layer.
H
Haonan 已提交
4246
    :type input: LayerOutput
R
ranqiu 已提交
4247
    :param input2: The second input layer.
H
Haonan 已提交
4248
    :type input2: LayerOutput
R
ranqiu 已提交
4249 4250
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
H
Haonan 已提交
4251 4252 4253 4254 4255 4256 4257
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
4268

Z
zhangjinchao01 已提交
4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

4285
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
4286
    :type name: basestring
R
ranqiu 已提交
4287
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4288
    :type input: LayerOutput
R
ranqiu 已提交
4289
    :param eos_id: End id of sequence
Z
zhangjinchao01 已提交
4290
    :type eos_id: int
R
ranqiu 已提交
4291 4292
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
4293
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4294
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4295 4296
    :rtype: LayerOutput
    """
Q
qijun 已提交
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4308 4309 4310


@wrap_name_default()
Q
qijun 已提交
4311 4312 4313 4314 4315 4316 4317
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
4318
                num_results_per_sample=None):
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
4330
            with mixed_layer(size=512, name='rnn') as simple_rnn:
4331 4332 4333 4334
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

4335 4336 4337 4338 4339
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

4340 4341
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
4342 4343
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
4344 4345
                               bos_id=0,
                               eos_id=1,
4346
                               beam_size=5)
4347 4348 4349 4350 4351 4352

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

4353 4354
    :param name: The name of the recurrent unit that is responsible for
                 generating sequences. It is optional.
R
ranqiu 已提交
4355
    :type name: basestring
4356
    :param step: A callable function that defines the calculation in a time
4357
                 step, and it is applied to sequences with arbitrary length by
4358 4359 4360 4361 4362
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
4363 4364
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
4365
                  In beam_search, none of the input's type should be LayerOutput.
4366
    :type input: list
4367 4368 4369
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
4370
                   symbol is essential, since it is used to initialize the RNN
4371 4372 4373 4374 4375 4376 4377 4378
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4379 4380
    :param max_length: Max generated sequence length.
    :type max_length: int
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4391 4392
    :return: The generated word index.
    :rtype: LayerOutput
4393 4394
    """

Z
zhangjinchao01 已提交
4395 4396 4397 4398 4399
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4400
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4401 4402 4403 4404 4405 4406
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4407 4408 4409
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4410
        if isinstance(each_input, BaseGeneratedInput):
4411 4412
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4413
            generated_input_index = i
4414

Z
zhangjinchao01 已提交
4415 4416 4417
        else:
            real_input.append(each_input)

4418
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4419 4420 4421 4422 4423 4424 4425 4426

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4427 4428 4429 4430 4431 4432
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4433 4434 4435 4436 4437 4438

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4439
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4440 4441
        return predict

4442 4443
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4444

Q
qijun 已提交
4445

4446 4447
def __cost_input__(input, label, weight=None):
    """
4448
    inputs and parents for cost layers.
4449
    """
C
caoying03 已提交
4450 4451 4452 4453 4454 4455
    if isinstance(input, LayerOutput):
        input = [input]
    if isinstance(label, LayerOutput):
        label = [label]
    ipts = [Input(ipt.name) for ipt in (input + label)]
    parents = [ipt for ipt in (input + label)]
4456
    if weight is not None:
4457
        assert weight.size == 1
4458 4459 4460
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4461

Z
zhangjinchao01 已提交
4462 4463

@wrap_name_default()
L
luotao1 已提交
4464
@layer_support()
4465 4466 4467 4468 4469 4470
def square_error_cost(input,
                      label,
                      weight=None,
                      name=None,
                      coeff=1.0,
                      layer_attr=None):
Z
zhangjinchao01 已提交
4471
    """
4472
    sum of square error cost:
L
Luo Tao 已提交
4473 4474 4475

    ..  math::

4476
        cost = \\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4477

4478
    :param name: The name of this layer. It is optional.
4479
    :type name: basestring
R
ranqiu 已提交
4480
    :param input: The first input layer.
4481
    :type input: LayerOutput
R
ranqiu 已提交
4482
    :param label: The input label.
4483
    :type label: LayerOutput
R
ranqiu 已提交
4484 4485
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
4486
    :type weight: LayerOutput
R
ranqiu 已提交
4487
    :param coeff: The weight of the gradient in the back propagation.
4488
                  1.0 is the default value.
4489
    :type coeff: float
R
ranqiu 已提交
4490 4491
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
4492
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4493
    :return: LayerOutput object.
4494
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4495
    """
4496 4497
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4498 4499 4500 4501
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4502
        coeff=coeff,
Q
qijun 已提交
4503
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4504
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4505 4506


4507
regression_cost = square_error_cost
L
Luo Tao 已提交
4508 4509


Z
zhangjinchao01 已提交
4510
@wrap_name_default("cost")
4511
@layer_support()
Q
qijun 已提交
4512 4513 4514 4515
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4516
                        evaluator=classification_error_evaluator,
4517 4518
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4519 4520 4521
    """
    classification cost Layer.

4522
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4523
    :type name: basestring
R
ranqiu 已提交
4524
    :param input: The first input layer.
Z
zhangjinchao01 已提交
4525
    :type input: LayerOutput
R
ranqiu 已提交
4526
    :param label: The input label.
Z
zhangjinchao01 已提交
4527
    :type label: LayerOutput
R
ranqiu 已提交
4528 4529
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
4530
    :type weight: LayerOutput
R
ranqiu 已提交
4531 4532 4533 4534
    :param evaluator: Evaluator method. classification_error_evaluator is the default.
    :type evaluator: Evaluator method
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
4535
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
4536
    :param coeff: The weight of the gradient in the back propagation.
4537
                  1.0 is the default value.
4538
    :type coeff: float
D
dangqingqing 已提交
4539
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4540 4541 4542 4543 4544
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4545 4546 4547

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4548 4549 4550 4551
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4552
        coeff=coeff,
Q
qijun 已提交
4553
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4564
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4565

4566
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4567 4568 4569 4570 4571
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4572
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4573

4574

Q
qijun 已提交
4575 4576 4577 4578 4579 4580 4581 4582 4583
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4584 4585
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4586 4587 4588 4589
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
R
ranqiu 已提交
4590
    supports GPU mode.
Z
zhangjinchao01 已提交
4591 4592 4593 4594 4595

    The example usage is:

    .. code-block:: python

4596 4597
       op = conv_operator(img=input1,
                          filter=input2,
4598
                          filter_size=3,
Z
zhangjinchao01 已提交
4599 4600 4601
                          num_filters=64,
                          num_channels=64)

R
ranqiu 已提交
4602
    :param img: The input image.
4603
    :type img: LayerOutput
R
ranqiu 已提交
4604
    :param filter: The input filter.
4605
    :type filter: LayerOutput
R
ranqiu 已提交
4606
    :param filter_size: The dimension of the filter kernel on the x axis.
Z
zhangjinchao01 已提交
4607
    :type filter_size: int
R
ranqiu 已提交
4608 4609 4610
    :param filter_size_y: The dimension of the filter kernel on the y axis.
                          If the parameter is not set or set to None, it will
                          set to 'filter_size' automatically.
Z
zhangjinchao01 已提交
4611
    :type filter_size_y: int
R
ranqiu 已提交
4612
    :param num_filters: The number of the output channels.
4613
    :type num_filters: int
R
ranqiu 已提交
4614 4615 4616
    :param num_channels: The number of the input channels. If the parameter is not set
                         or set to None, it will be automatically set to the channel
                         number of the 'img'.
4617
    :type num_channels: int
R
ranqiu 已提交
4618
    :param stride: The stride on the x axis.
L
luotao02 已提交
4619
    :type stride: int
R
ranqiu 已提交
4620 4621
    :param stride_y: The stride on the y axis. If the parameter is not set or
                     set to None, it will be set to 'stride' automatically.
L
luotao02 已提交
4622
    :type stride_y: int
R
ranqiu 已提交
4623
    :param padding: The padding size on the x axis.
Z
zhangjinchao01 已提交
4624
    :type padding: int
R
ranqiu 已提交
4625 4626
    :param padding_y: The padding size on the y axis. If the parameter is not set
                      or set to None, it will be set to 'padding' automatically.
Z
zhangjinchao01 已提交
4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4637

4638 4639
    if num_channels is None:
        num_channels = img.num_filters
4640 4641

    assert isinstance(filter, LayerOutput)
4642
    assert filter.size is not None
4643

4644 4645 4646
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4658

4659
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4660 4661
    return op

Q
qijun 已提交
4662

4663
@wrap_param_attr_default()
Q
qijun 已提交
4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4674 4675
                    param_attr=None,
                    trans=False):
4676
    """
R
ranqiu 已提交
4677 4678 4679
    Different from img_conv_layer and conv_op, conv_projection is a Projection,
    which can be used in mixed_layer and concat_layer. It uses cudnn to implement
    convolution and only supports GPU mode.
4680 4681 4682 4683 4684

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4685
       proj = conv_projection(input=input1,
4686 4687 4688 4689
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

R
ranqiu 已提交
4690
    :param input: The input of this layer.
4691
    :type input: LayerOutput
R
ranqiu 已提交
4692 4693 4694 4695 4696 4697 4698 4699 4700
    :param filter_size: The dimensions of the filter kernel. If the parameter is
                        set to one integer, the two dimensions on x and y axises
                        will be same when filter_size_y is not set. If it is set
                        to a list, the first element indicates the dimension on
                        the x axis, and the second is used to specify the dimension
                        on the y axis when filter_size is not provided.
    :type filter_size: int | tuple | list
    :param filter_size_y: The dimension of the filter kernel on the y axis. If the parameter
                          is not set, it will be set automatically according to filter_size.
4701
    :type filter_size_y: int
R
ranqiu 已提交
4702
    :param num_filters: The number of filters.
4703
    :type num_filters: int
R
ranqiu 已提交
4704
    :param num_channels: The number of the input channels.
4705
    :type num_channels: int
R
ranqiu 已提交
4706 4707 4708 4709 4710 4711 4712
    :param stride: The strides. If the parameter is set to one integer, the strides
                   on x and y axises will be same when stride_y is not set. If it is
                   set to a list, the first element indicates the stride on the x axis,
                   and the second is used to specify the stride on the y axis when
                   stride_y is not provided.
    :type stride: int | tuple | list
    :param stride_y: The stride on the y axis.
4713
    :type stride_y: int
R
ranqiu 已提交
4714 4715 4716 4717 4718 4719 4720
    :param padding: The padding sizes. If the parameter is set to one integer, the padding
                    sizes on x and y axises will be same when padding_y is not set. If it
                    is set to a list, the first element indicates the padding size on the
                    x axis, and the second is used to specify the padding size on the y axis
                    when padding_y is not provided.
    :type padding: int | tuple | list
    :param padding_y: The padding size on the y axis.
4721 4722 4723
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
R
ranqiu 已提交
4724 4725
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
4726
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
4727
    :param trans: Whether it is ConvTransProjection or ConvProjection
R
ranqiu 已提交
4728
    :type trans: bool
R
ranqiu 已提交
4729 4730
    :return: A Projection Object.
    :rtype: ConvTransProjection | ConvProjection
4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4759
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4760 4761 4762 4763 4764
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4765 4766 4767
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4780 4781 4782 4783

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4784

D
dangqingqing 已提交
4785 4786 4787 4788 4789 4790 4791 4792 4793 4794
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
R
ranqiu 已提交
4795 4796
    and pad_w. pad_c, pad_h, pad_w specify the size in the corresponding
    dimension. And the input data shape is NCHW.
D
dangqingqing 已提交
4797

R
ranqiu 已提交
4798 4799 4800 4801
    For example, pad_c=[2,3] means padding 2 zeros before the input data
    and 3 zeros after the input data in the channel dimension. pad_h means
    padding zeros in the height dimension. pad_w means padding zeros in the
    width dimension.
4802

D
dangqingqing 已提交
4803
    For example,
4804

4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4826 4827

    The simply usage is:
D
dangqingqing 已提交
4828 4829 4830 4831 4832 4833 4834 4835

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

R
ranqiu 已提交
4836
    :param input: The input of this layer.
D
dangqingqing 已提交
4837
    :type input: LayerOutput
R
ranqiu 已提交
4838
    :param pad_c: The padding size in the channel dimension.
R
ranqiu 已提交
4839
    :type pad_c: list | None
R
ranqiu 已提交
4840
    :param pad_h: The padding size in the height dimension.
R
ranqiu 已提交
4841
    :type pad_h: list | None
R
ranqiu 已提交
4842
    :param pad_w: The padding size in the width dimension.
R
ranqiu 已提交
4843
    :type pad_w: list | None
R
ranqiu 已提交
4844 4845
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
4846
    :type layer_attr: ExtraLayerAttribute
4847
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4890
@wrap_name_default()
L
luotao1 已提交
4891 4892
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4893
    """
R
ranqiu 已提交
4894
    This layer performs cyclic convolution on two inputs. For example:
Z
zhangjinchao01 已提交
4895 4896 4897 4898 4899 4900 4901 4902
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

R
ranqiu 已提交
4903
    In this formula:
4904 4905 4906 4907
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4908 4909 4910 4911 4912

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4913
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4914

4915
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4916
    :type name: basestring
R
ranqiu 已提交
4917
    :param a: The first input of this layer.
4918
    :type a: LayerOutput
R
ranqiu 已提交
4919
    :param b: The second input of this layer.
4920
    :type b: LayerOutput
R
ranqiu 已提交
4921 4922
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
4923
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4924
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4925 4926
    :rtype: LayerOutput
    """
4927 4928
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4929 4930 4931
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4932
        inputs=[a.name, b.name],
Q
qijun 已提交
4933
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4934

Q
qijun 已提交
4935 4936
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4937 4938 4939 4940 4941


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4942
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4943
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4944 4945 4946 4947 4948 4949 4950 4951
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4952
    """
R
ranqiu 已提交
4953 4954
    This layer performs tensor operation on two inputs.
    For example:
Z
zhangjinchao01 已提交
4955 4956

    .. math::
4957
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4958 4959

    In this formular:
4960 4961
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4962 4963
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4964
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4965 4966 4967 4968 4969

    The simple usage is:

    .. code-block:: python

4970
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4971

4972
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4973
    :type name: basestring
R
ranqiu 已提交
4974
    :param a: The first input of this layer.
4975
    :type a: LayerOutput
R
ranqiu 已提交
4976
    :param b: The second input of this layer.
4977
    :type b: LayerOutput
R
ranqiu 已提交
4978 4979
    :param size: The dimension of this layer.
    :type size: int
4980
    :param act: Activation type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
4981
    :type act: BaseActivation
R
ranqiu 已提交
4982 4983
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
4984
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
4985 4986 4987 4988
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
4989
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
4990 4991
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
4992
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4993
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4994 4995
    :rtype: LayerOutput
    """
4996
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4997 4998 4999 5000 5001 5002
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5003 5004 5005 5006
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
5007 5008 5009 5010 5011 5012


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
5013
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
5014 5015
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
5016
                       select=None,
Q
qijun 已提交
5017 5018
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
5019 5020 5021
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
5022 5023 5024
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5025 5026
    """
    Selectived fully connected layer. Different from fc_layer, the output
R
ranqiu 已提交
5027
    of this layer can be sparse. It requires an additional input to indicate
Z
zhangjinchao01 已提交
5028 5029 5030 5031 5032 5033 5034
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

5035
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
5036

5037
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5038
    :type name: basestring
R
ranqiu 已提交
5039 5040
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
R
ranqiu 已提交
5041 5042 5043 5044
    :param select: The layer to select columns to output. It should be a sparse
                   binary matrix, and is treated as the mask of selective fc. If
                   it is not set or set to None, selective_fc_layer acts exactly
                   like fc_layer.
5045
    :type select: LayerOutput
R
ranqiu 已提交
5046 5047
    :param size: The dimension of this layer, which should be equal to that of
                 the layer 'select'.
Z
zhangjinchao01 已提交
5048
    :type size: int
5049
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
5050
    :type act: BaseActivation
R
ranqiu 已提交
5051 5052 5053 5054 5055 5056 5057 5058 5059 5060
    :param pass_generation: The flag which indicates whether it is during generation.
    :type pass_generation: bool
    :param has_selected_colums: The flag which indicates whether the parameter 'select'
                                has been set. True is the default.
    :type has_selected_colums: bool
    :param mul_ratio: A ratio helps to judge how sparse the output is and determine
                      the computation method for speed consideration.
    :type mul_ratio: float
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5061
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
5062 5063 5064 5065
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5066
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5067 5068
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
5069
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5070
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5071 5072 5073 5074
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5075
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
5076 5077
        param_attr = [param_attr]
    else:
5078
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
5079 5080
            assert len(input) == len(param_attr)
        else:
5081
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
5082
                logger.fatal(
W
wangmeng28 已提交
5083 5084 5085 5086 5087
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
5088 5089
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5090 5091 5092 5093
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
5094
    Layer(
Q
qijun 已提交
5095 5096 5097
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
5098 5099 5100
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
5101
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
5102 5103 5104 5105
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
5106 5107 5108 5109 5110 5111 5112
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
5113 5114 5115


@wrap_name_default()
L
luotao1 已提交
5116 5117
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5118
    """
R
ranqiu 已提交
5119
    A layer for sampling id from a multinomial distribution from the input layer.
Z
zhangjinchao01 已提交
5120 5121 5122 5123 5124 5125 5126 5127
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

R
ranqiu 已提交
5128
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5129
    :type input: LayerOutput
5130
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5131
    :type name: basestring
R
ranqiu 已提交
5132 5133 5134
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5135
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5136 5137
    :rtype: LayerOutput
    """
X
xuwei06 已提交
5138
    l = Layer(
Z
zhangjinchao01 已提交
5139 5140 5141
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
5142 5143 5144
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
5145 5146 5147


@wrap_name_default()
L
luotao1 已提交
5148
@layer_support()
Q
qijun 已提交
5149 5150 5151 5152
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
5153
                          layer_attr=None):
Z
zhangjinchao01 已提交
5154
    """
R
ranqiu 已提交
5155
    This layer for applying a slope and an intercept to the input.
Z
zhangjinchao01 已提交
5156 5157 5158 5159 5160 5161 5162 5163 5164 5165

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

R
ranqiu 已提交
5166
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5167
    :type input: LayerOutput
5168
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5169
    :type name: basestring
R
ranqiu 已提交
5170 5171 5172 5173 5174 5175 5176
    :param slope: The scale factor.
    :type slope: float
    :param intercept: The offset.
    :type intercept: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5177
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5178 5179 5180 5181 5182 5183 5184 5185
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
5186 5187 5188
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
5189 5190 5191


@wrap_name_default()
L
luotao1 已提交
5192
@layer_support()
Q
qijun 已提交
5193
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5194
    """
5195 5196 5197 5198
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
5199 5200 5201

    .. math::

5202
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
5203

5204 5205 5206 5207 5208
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
5209

5210
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
5211 5212

    In this formular:
5213 5214 5215 5216 5217 5218
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
5219 5220 5221 5222 5223

    The simple usage is:

    .. code-block:: python

5224
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
5225 5226
                                       size=elem_dim)

5227 5228 5229 5230
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
R
ranqiu 已提交
5231
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
5232
    :type size: int
5233
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5234
    :type name: basestring
R
ranqiu 已提交
5235 5236 5237
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5238
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5239 5240
    :rtype: LayerOutput
    """
5241 5242 5243 5244
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
5245
            size = vectors.size / weights.size
5246 5247
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
5248 5249
    Layer(
        name=name,
5250
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
5251
        size=size,
5252
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
5253 5254 5255
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
5256

5257

5258
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
5259

5260

Z
zhangjinchao01 已提交
5261
@wrap_name_default()
L
luotao1 已提交
5262
@layer_support()
Z
zhangjinchao01 已提交
5263 5264 5265 5266 5267 5268 5269
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
5270
                       num_channels=None,
L
luotao1 已提交
5271 5272
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5273 5274
    """
    Expand feature map to minibatch matrix.
5275
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
5276
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
5277 5278 5279 5280 5281 5282 5283

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

R
ranqiu 已提交
5284
    The expanding method is the same with ExpandConvLayer, but saved the transposed
Z
zhangjinchao01 已提交
5285
    value. After expanding, output.sequenceStartPositions will store timeline.
R
ranqiu 已提交
5286
    The number of time steps is outputH * outputW and the dimension of each
5287
    time step is block_y * block_x * num_channels. This layer can be used after
R
ranqiu 已提交
5288
    convolutional neural network, and before recurrent neural network.
Z
zhangjinchao01 已提交
5289

5290 5291 5292 5293
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
5294
       block_expand = block_expand_layer(input=layer,
5295
                                         num_channels=128,
5296 5297 5298 5299 5300
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

R
ranqiu 已提交
5301
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5302
    :type input: LayerOutput
R
ranqiu 已提交
5303 5304 5305 5306
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :type num_channels: int
Z
zhangjinchao01 已提交
5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
5319
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5320 5321 5322 5323
    :type name: basestring.
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5324
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5325 5326
    :rtype: LayerOutput
    """
5327 5328 5329
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
5347 5348


5349 5350
@wrap_name_default()
@layer_support()
5351
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
5352
    """
R
ranqiu 已提交
5353 5354 5355 5356
    A layer to do max out on convolutional layer output.
      - Input: the output of a convolutional layer.
      - Output: feature map size same as the input's, and its channel number is
        (input channel) / groups.
5357

5358
    So groups should be larger than 1, and the num of channels should be able
R
ranqiu 已提交
5359 5360 5361 5362 5363 5364 5365
    to be devided by groups.

    Reference:
        Maxout Networks
        http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
        Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
        https://arxiv.org/pdf/1312.6082v4.pdf
5366

X
xuwei06 已提交
5367 5368 5369 5370 5371 5372 5373 5374
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

5375 5376 5377 5378 5379 5380 5381 5382
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

R
ranqiu 已提交
5383
    :param input: The input of this layer.
5384
    :type input: LayerOutput
R
ranqiu 已提交
5385 5386 5387 5388
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :type num_channels: int
5389 5390
    :param groups: The group number of input layer.
    :type groups: int
5391
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5392 5393 5394
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
5405 5406 5407 5408 5409 5410 5411 5412 5413
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
5414 5415


Z
zhangjinchao01 已提交
5416
@wrap_name_default()
L
luotao1 已提交
5417
@layer_support()
Q
qijun 已提交
5418 5419 5420 5421 5422
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
5423
              layer_attr=None):
Z
zhangjinchao01 已提交
5424 5425
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
R
ranqiu 已提交
5426
    classication task. e.g. sequence labeling problems where the
Z
zhangjinchao01 已提交
5427 5428
    alignment between the inputs and the target labels is unknown.

R
ranqiu 已提交
5429 5430 5431 5432
    Reference:
        Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
        with Recurrent Neural Networks
        http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
5433 5434

    Note:
R
ranqiu 已提交
5435 5436 5437 5438 5439
        Considering the 'blank' label needed by CTC, you need to use (num_classes + 1)
        as the size of the input, where num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer (e.g.
        fc_layer with softmax activation) should be (num_classes + 1). The size of
        ctc_layer should also be (num_classes + 1).
5440

C
caoying03 已提交
5441
    The example usage is:
Z
zhangjinchao01 已提交
5442 5443 5444 5445 5446 5447 5448 5449

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

R
ranqiu 已提交
5450
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5451
    :type input: LayerOutput
R
ranqiu 已提交
5452
    :param label: The input label.
Z
zhangjinchao01 已提交
5453
    :type label: LayerOutput
R
ranqiu 已提交
5454
    :param size: The dimension of this layer, which must be equal to (category number + 1).
Z
zhangjinchao01 已提交
5455
    :type size: int
5456
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5457 5458
    :type name: basestring
    :param norm_by_times: Whether to do normalization by times. False is the default.
Z
zhangjinchao01 已提交
5459
    :type norm_by_times: bool
R
ranqiu 已提交
5460 5461 5462
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5463
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5464 5465 5466 5467
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5468 5469 5470 5471 5472
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5473
    Layer(
5474 5475 5476 5477
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5478
        inputs=[input.name, label.name],
Q
qijun 已提交
5479
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5480 5481
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5482

5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5494
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5495
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5496 5497 5498 5499 5500 5501 5502
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

R
ranqiu 已提交
5503 5504 5505 5506
    Reference:
        Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
        with Recurrent Neural Networks
        http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
5507 5508

    Note:
R
ranqiu 已提交
5509 5510 5511
        - Let num_classes represents the category number. Considering the 'blank'
          label needed by CTC, you need to use (num_classes + 1) as the size of
          warp_ctc layer.
5512
        - You can set 'blank' to any value ranged in [0, num_classes], which
R
ranqiu 已提交
5513
          should be consistent with those used in your labels.
5514
        - As a native 'softmax' activation is interated to the warp-ctc library,
R
ranqiu 已提交
5515
          'linear' activation is expected to be used instead in the 'input' layer.
5516

C
caoying03 已提交
5517
    The example usage is:
5518 5519 5520 5521 5522 5523 5524 5525 5526

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

R
ranqiu 已提交
5527
    :param input: The input of this layer.
5528
    :type input: LayerOutput
R
ranqiu 已提交
5529
    :param label: The input label.
5530
    :type label: LayerOutput
R
ranqiu 已提交
5531
    :param size: The dimension of this layer, which must be equal to (category number + 1).
5532
    :type size: int
5533
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5534 5535
    :type name: basestring
    :param blank: The 'blank' label used in ctc.
5536
    :type blank: int
R
ranqiu 已提交
5537
    :param norm_by_times: Whether to do normalization by times. False is the default.
5538
    :type norm_by_times: bool
R
ranqiu 已提交
5539 5540 5541
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5564
@wrap_name_default()
5565
@wrap_param_attr_default()
L
luotao1 已提交
5566
@layer_support()
Q
qijun 已提交
5567 5568 5569 5570 5571 5572
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5573
              coeff=1.0,
L
luotao1 已提交
5574
              layer_attr=None):
Z
zhangjinchao01 已提交
5575 5576 5577 5578
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5579
    The example usage is:
Z
zhangjinchao01 已提交
5580 5581 5582 5583 5584 5585 5586

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

R
ranqiu 已提交
5587
    :param input: The first input layer.
Z
zhangjinchao01 已提交
5588
    :type input: LayerOutput
R
ranqiu 已提交
5589
    :param label: The input label.
5590
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5591 5592
    :param size: The category number.
    :type size: int
R
ranqiu 已提交
5593 5594
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
Z
zhangjinchao01 已提交
5595
    :type weight: LayerOutput
R
ranqiu 已提交
5596 5597
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5598
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5599
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5600 5601
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
5602
                  1.0 is the default value.
5603
    :type coeff: float
R
ranqiu 已提交
5604 5605 5606
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5607
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5608 5609 5610 5611 5612
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5613 5614 5615 5616 5617 5618
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5619

Q
qijun 已提交
5620
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5621 5622 5623 5624
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5625 5626 5627 5628
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5629
        coeff=coeff,
Q
qijun 已提交
5630
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5631 5632 5633
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5634 5635 5636 5637
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5638

5639

Z
zhangjinchao01 已提交
5640
@wrap_name_default()
5641
@wrap_param_attr_default()
L
luotao1 已提交
5642
@layer_support()
Q
qijun 已提交
5643 5644 5645 5646 5647
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5648
                       layer_attr=None):
Z
zhangjinchao01 已提交
5649 5650 5651
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
R
ranqiu 已提交
5652 5653 5654
    If the input 'label' is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for an incorrect
    decoding and 0 for the correct.
Z
zhangjinchao01 已提交
5655

C
caoying03 已提交
5656
    The example usage is:
L
Luo Tao 已提交
5657 5658 5659 5660 5661 5662

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5663 5664
    :param input: The first input layer.
    :type input: LayerOutput
R
ranqiu 已提交
5665
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
5666
    :type size: int
R
ranqiu 已提交
5667 5668 5669 5670
    :param label: The input label.
    :type label: LayerOutput | None
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5671
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5672
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5673 5674 5675 5676
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5677
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5678 5679 5680 5681 5682 5683
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5684
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5685 5686 5687 5688
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5689 5690 5691 5692
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5693
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5694 5695 5696
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5697 5698 5699 5700
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5701

Q
qijun 已提交
5702

C
caoying03 已提交
5703 5704 5705 5706 5707
"""
Following are cost Layers.
"""


5708
@wrap_bias_attr_default(has_bias=True)
5709
@wrap_param_attr_default()
5710 5711
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5712 5713
def nce_layer(input,
              label,
C
caoying03 已提交
5714
              num_classes=None,
5715
              param_attr=None,
Q
qijun 已提交
5716 5717 5718 5719 5720 5721
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5722 5723
    """
    Noise-contrastive estimation.
C
caoying03 已提交
5724 5725 5726 5727

    Reference:
        A fast and simple algorithm for training neural probabilistic language
        models. https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf
5728 5729 5730 5731 5732

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5733 5734
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5735 5736
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

5737
    :param name: The name of this layer. It is optional.
5738
    :type name: basestring
R
ranqiu 已提交
5739
    :param input: The first input of this layer.
R
ranqiu 已提交
5740
    :type input: LayerOutput | list | tuple | collections.Sequence
R
ranqiu 已提交
5741
    :param label: The input label.
5742
    :type label: LayerOutput
C
caoying03 已提交
5743
    :param weight: The weight layer defines a weight for each sample in the
R
ranqiu 已提交
5744
                   mini-batch. It is optional.
5745
    :type weight: LayerOutput
R
ranqiu 已提交
5746
    :param num_classes: The number of classes.
5747
    :type num_classes: int
5748
    :param act: Activation type. SigmoidActivation is the default activation.
Y
Yu Yang 已提交
5749
    :type act: BaseActivation
R
ranqiu 已提交
5750 5751
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
5752
    :type param_attr: ParameterAttribute
5753 5754
    :param num_neg_samples: The number of sampled negative labels. 10 is the
                            default value.
5755
    :type num_neg_samples: int
C
caoying03 已提交
5756 5757 5758
    :param neg_distribution: The discrete noisy distribution over the output
                             space from which num_neg_samples negative labels
                             are sampled. If this parameter is not set, a
R
ranqiu92 已提交
5759
                             uniform distribution will be used. A user-defined
C
caoying03 已提交
5760 5761 5762
                             distribution is a list whose length must be equal
                             to the num_classes. Each member of the list defines
                             the probability of a class given input x.
R
ranqiu 已提交
5763
    :type neg_distribution: list | tuple | collections.Sequence | None
P
peterzhang2029 已提交
5764 5765 5766 5767
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5768
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5769 5770
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
5771
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
5772
    :return: LayerOutput object.
5773 5774 5775 5776
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5777 5778 5779 5780 5781 5782 5783 5784
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5785
    assert isinstance(input, collections.Sequence)
5786

5787 5788
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5789 5790
    if num_classes is None:
        num_classes = label.size
5791 5792 5793
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5794
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
5795

5796 5797
    ipts_for_layer = []
    parents = []
5798
    for each_input, attr in zip(input, param_attr):
5799
        assert isinstance(each_input, LayerOutput)
5800
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5801 5802 5803 5804 5805 5806 5807 5808 5809 5810
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5811
    l = Layer(
5812 5813 5814 5815
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
C
caoying03 已提交
5816
        active_type=SigmoidActivation().name,
5817 5818 5819
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5820 5821
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5822 5823 5824 5825
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
C
caoying03 已提交
5826
        activation=SigmoidActivation())
5827 5828


Z
zhangjinchao01 已提交
5829
@wrap_name_default()
L
luotao1 已提交
5830
@layer_support()
Q
qijun 已提交
5831 5832 5833 5834 5835 5836 5837
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5838
    """
R
ranqiu 已提交
5839 5840 5841 5842 5843
    A cost Layer for learning to rank using gradient descent.

    Reference:
        Learning to Rank using Gradient Descent
        http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf
Z
zhangjinchao01 已提交
5844 5845 5846

    .. math::

L
luotao02 已提交
5847
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5848

L
luotao02 已提交
5849
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5850

L
luotao02 已提交
5851
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5852 5853 5854 5855 5856 5857 5858 5859

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5860
    The example usage is:
Z
zhangjinchao01 已提交
5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
R
ranqiu 已提交
5874 5875
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
Z
zhangjinchao01 已提交
5876
    :type weight: LayerOutput
R
ranqiu 已提交
5877
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5878 5879
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
5880
                  1.0 is the default value.
Z
zhangjinchao01 已提交
5881
    :type coeff: float
R
ranqiu 已提交
5882 5883
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5884
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5885
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5898 5899 5900 5901 5902 5903
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5904

X
xuwei06 已提交
5905
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5906

5907

Z
zhangjinchao01 已提交
5908
@wrap_name_default()
L
luotao1 已提交
5909
@layer_support()
Q
qijun 已提交
5910 5911 5912 5913 5914 5915
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5916 5917 5918
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5919
    The example usage is:
Z
zhangjinchao01 已提交
5920 5921 5922 5923 5924 5925 5926 5927

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

R
ranqiu 已提交
5928 5929
    :param input: The first input of this layer, which is often a document
                  samples list of the same query and whose type must be sequence.
Z
zhangjinchao01 已提交
5930
    :type input: LayerOutput
R
ranqiu 已提交
5931
    :param score: The scores of the samples.
Z
zhangjinchao01 已提交
5932 5933
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
R
ranqiu 已提交
5934
                     e.g., 5 for NDCG@5. It must be less than or equal to the
R
ranqiu 已提交
5935
                     minimum size of the list.
Z
zhangjinchao01 已提交
5936
    :type NDCG_num: int
R
ranqiu 已提交
5937 5938 5939 5940 5941
    :param max_sort_size: The size of partial sorting in calculating gradient. If
                          max_sort_size is equal to -1 or greater than the number
                          of the samples in the list, then the algorithm will sort
                          the entire list to compute the gradient. In other cases,
                          max_sort_size must be greater than or equal to NDCG_num.
Z
zhangjinchao01 已提交
5942
    :type max_sort_size: int
R
ranqiu 已提交
5943
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5944 5945 5946
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5947
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5948
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5949 5950
    :rtype: LayerOutput
    """
5951 5952 5953
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5954 5955 5956 5957 5958 5959 5960
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5961

Q
qijun 已提交
5962 5963
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5964

5965

Z
zhangjinchao01 已提交
5966
@wrap_name_default()
L
luotao1 已提交
5967
@layer_support()
5968 5969 5970 5971 5972 5973
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5974 5975 5976
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5977 5978
    The example usage is:

Z
zhangjinchao01 已提交
5979 5980
    .. code-block:: python

X
xuwei06 已提交
5981
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5982
                            label=label_layer)
Z
zhangjinchao01 已提交
5983 5984 5985 5986

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
R
ranqiu 已提交
5987
    :type input: LayerOutput
R
ranqiu 已提交
5988
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5989 5990
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
5991
                  1.0 is the default value.
R
ranqiu 已提交
5992
    :type coeff: float
R
ranqiu 已提交
5993 5994
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
5995
    :type weight: LayerOutout
R
ranqiu 已提交
5996 5997
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5998
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5999
    :return: LayerOutput object.
R
ranqiu 已提交
6000
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6001 6002
    """

6003
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
6004 6005 6006
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
6007
        inputs=ipts,
Q
qijun 已提交
6008 6009
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
6010
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
6011

6012

Z
zhangjinchao01 已提交
6013
@wrap_name_default()
L
luotao1 已提交
6014
@layer_support()
Q
qijun 已提交
6015 6016 6017 6018
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
6019 6020
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
6021 6022
    """
    A loss layer for multi class entropy with selfnorm.
6023
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
6024

C
caoying03 已提交
6025 6026
    The example usage is:

Z
zhangjinchao01 已提交
6027 6028
    .. code-block:: python

X
xuwei06 已提交
6029
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
6030
                                          label=label_layer)
Z
zhangjinchao01 已提交
6031 6032

    :param input: The first input layer.
R
ranqiu 已提交
6033
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6034
    :param label: The input label.
R
ranqiu 已提交
6035
    :type input: LayerOutput
R
ranqiu 已提交
6036
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6037 6038
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6039
                  1.0 is the default value.
R
ranqiu 已提交
6040
    :type coeff: float
Z
zhangjinchao01 已提交
6041
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
R
ranqiu 已提交
6042 6043 6044
    :type softmax_selfnorm_alpha: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6045
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6046
    :return: LayerOutput object.
R
ranqiu 已提交
6047
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6048
    """
Q
qijun 已提交
6049 6050 6051 6052 6053 6054 6055
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
6056

Q
qijun 已提交
6057 6058 6059 6060 6061
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
6062

6063

X
xuwei06 已提交
6064 6065 6066 6067
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6068
    A loss layer which calculates the sum of the input as loss.
X
xuwei06 已提交
6069

C
caoying03 已提交
6070 6071
    The example usage is:

X
xuwei06 已提交
6072 6073
    .. code-block:: python

L
Luo Tao 已提交
6074
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
6075

R
ranqiu 已提交
6076
    :param input: The input of this layer.
R
ranqiu 已提交
6077
    :type input: LayerOutput
R
ranqiu 已提交
6078
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6079 6080 6081
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
X
xuwei06 已提交
6082 6083 6084 6085
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
6086
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
6087 6088 6089 6090 6091
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
6092

Q
qijun 已提交
6093
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
6094 6095


Z
zhangjinchao01 已提交
6096
@wrap_name_default()
L
luotao1 已提交
6097
@layer_support()
L
Luo Tao 已提交
6098 6099 6100 6101 6102 6103
def huber_regression_cost(input,
                          label,
                          name=None,
                          delta=1.0,
                          coeff=1.0,
                          layer_attr=None):
Z
zhangjinchao01 已提交
6104
    """
6105 6106 6107
    In statistics, the Huber loss is a loss function used in robust regression,
    that is less sensitive to outliers in data than the squared error loss.
    Given a prediction f(x), a label y and :math:`\delta`, the loss function
L
Luo Tao 已提交
6108 6109 6110 6111 6112
    is defined as:

    .. math:
       loss = 0.5*\left ( y-f(x) \right )^2, \left | y-f(x) \right |\leq \delta
       loss = \delta \left | y-f(x) \right |-0.5\delta ^2, otherwise
Z
zhangjinchao01 已提交
6113

C
caoying03 已提交
6114 6115
    The example usage is:

Z
zhangjinchao01 已提交
6116 6117
    .. code-block:: python

L
Luo Tao 已提交
6118
       cost = huber_regression_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
6119 6120

    :param input: The first input layer.
R
ranqiu 已提交
6121
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6122
    :param label: The input label.
R
ranqiu 已提交
6123
    :type input: LayerOutput
R
ranqiu 已提交
6124
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6125
    :type name: basestring
L
Luo Tao 已提交
6126
    :param delta: The difference between the observed and predicted values.
R
ranqiu 已提交
6127 6128
    :type delta: float
    :param coeff: The weight of the gradient in the back propagation.
6129
                  1.0 is the default value.
R
ranqiu 已提交
6130 6131 6132
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6133
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6134
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6135 6136
    :rtype: LayerOutput.
    """
6137
    assert isinstance(input, LayerOutput)
L
Luo Tao 已提交
6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148
    Layer(
        name=name,
        type=LayerType.HUBER_REGRESSION,
        inputs=[input.name, label.name],
        delta=delta,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HUBER_REGRESSION, parents=[input, label], size=1)


Z
zhangjinchao01 已提交
6149
@wrap_name_default()
L
luotao1 已提交
6150
@layer_support()
6151 6152 6153 6154 6155
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
6156
    """
6157 6158 6159
    For classification purposes, a variant of the Huber loss called modified Huber
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
    a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber
6160 6161 6162
    loss is defined as:

    .. math:
6163
       loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1
6164
       loss = -4yf(x), \text{otherwise}
Z
zhangjinchao01 已提交
6165

C
caoying03 已提交
6166 6167
    The example usage is:

Z
zhangjinchao01 已提交
6168 6169
    .. code-block:: python

6170
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
6171 6172

    :param input: The first input layer.
R
ranqiu 已提交
6173
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6174
    :param label: The input label.
R
ranqiu 已提交
6175
    :type input: LayerOutput
R
ranqiu 已提交
6176
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6177 6178
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6179
                  1.0 is the default value.
R
ranqiu 已提交
6180 6181 6182
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6183
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6184
    :return: LayerOutput object.
R
ranqiu 已提交
6185
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6186
    """
6187 6188 6189
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
6190 6191
    Layer(
        name=name,
6192
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
6193 6194 6195
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
6196 6197
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
6198

6199

Z
zhangjinchao01 已提交
6200
@wrap_name_default()
L
luotao1 已提交
6201
@layer_support()
Q
qijun 已提交
6202 6203 6204 6205
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
6206
                                     layer_attr=None):
Z
zhangjinchao01 已提交
6207 6208 6209
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
6210 6211
    The example usage is:

Z
zhangjinchao01 已提交
6212 6213
    .. code-block:: python

X
xuwei06 已提交
6214
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
6215
                                               label=label_layer)
Z
zhangjinchao01 已提交
6216 6217 6218 6219 6220

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6221
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6222 6223
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6224
                  1.0 is the default value.
Z
zhangjinchao01 已提交
6225
    :type coeff: float
R
ranqiu 已提交
6226 6227
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6228
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6229
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6230 6231 6232
    :rtype: LayerOutput
    """

6233 6234
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
C
caoying03 已提交
6235 6236 6237 6238
        logger.log(logging.WARN,
                   ("%s is not a recommended activation for "
                    "multi_binary_label_cross_entropy, sigmoid is better") %
                   repr(input.activation))
Q
qijun 已提交
6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
6251 6252


C
caoying03 已提交
6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274
class BeamInput(object):
    """
    Define the input for cross_entropy_over_beam layer.

    A beam is made up of a triple: the first one is scores over all
    candidates; the second one is indices of top k selected candidates; the
    third one is the index of ground truth, which is also always called
    gold.
    """

    def __init__(self, candidate_scores, selected_candidates, gold):
        assert isinstance(candidate_scores, LayerOutput)
        self.candidate_scores = candidate_scores
        assert candidate_scores.size == 1

        assert isinstance(selected_candidates, LayerOutput)
        self.selected_candidates = selected_candidates

        assert isinstance(gold, LayerOutput)
        self.gold = gold


D
dangqingqing 已提交
6275 6276
@wrap_name_default()
@layer_support()
C
caoying03 已提交
6277
def cross_entropy_over_beam(input, name=None):
D
dangqingqing 已提交
6278
    """
C
caoying03 已提交
6279 6280 6281
    This layer is used in learning to search models, which is to solve complex
    joint prediction problems based on learning to search through a
    problem-defined search space.
D
dangqingqing 已提交
6282

C
caoying03 已提交
6283 6284 6285 6286 6287
    Specifically, the learning to search process for this layer begins with
    searching a target sequence from a nested sequence. In the first search
    step, top beam size sequences with highest scores, indices of these top k
    sequences in the original nested sequence, and the ground truth (also
    called gold) altogether (a triple) make up of the first beam.
D
dangqingqing 已提交
6288

C
caoying03 已提交
6289 6290 6291 6292 6293
    Then, several special positions, for example, start and end positions
    that define meaningful segments are searched. In these searches, top k
    positions with highest scores are selected, and then sequence, starting
    from the selected starts till ends of the sequences (or a fixed position)
    are taken to search next.
D
dangqingqing 已提交
6294

C
caoying03 已提交
6295 6296 6297
    We call the possible top k results returned in one search the beam. This
    search process can be repeated for pre-defined turns and leads to several
    beam expansions.
D
dangqingqing 已提交
6298

C
caoying03 已提交
6299 6300 6301 6302
    Finally, the layer cross_entropy_over_beam takes all the beam expansions
    which contain several candidate targets found along the multi-step search.
    cross_entropy_over_beam calculates cross entropy over the expanded beams
    which all the candidates in the beam as the normalized factor.
D
dangqingqing 已提交
6303

C
caoying03 已提交
6304 6305 6306
    Note that, if gold falls off the beam at search step t, then the cost is
    calculated over the beam at step t.

6307
    This cost layer always works together with kmax_seq_score_layer,
C
caoying03 已提交
6308 6309
    sub_nested_seq_layer, and sequence_slice_layer to trim the input to form a
    sub-search space.
D
dangqingqing 已提交
6310

D
dangqingqing 已提交
6311

C
caoying03 已提交
6312 6313
    The example usage is:

D
dangqingqing 已提交
6314 6315
    .. code-block:: python

C
caoying03 已提交
6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327
       cost = cross_entropy_over_beam(input=[
           BeamInput(
               candidate_scores=beam1_candidates,
               selected_candidates=beam1_topk,
               gold=gold1),
           BeamInput(
               candidate_scores=beam2_candidates,
               selected_candidates=beam2_topk,
               gold=gold2),
       ])


R
ranqiu 已提交
6328
    :param input: Input beams for this layer.
C
caoying03 已提交
6329
    :type input: BeamInput
R
ranqiu 已提交
6330
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    if isinstance(input, BeamInput):
        input = [input]
    else:
        assert isinstance(input, list), (
            'input for cross_entropy_over_beam shold be a python list '
            'of BeamInput object.')
        for ipt in input:
            assert isinstance(ipt, BeamInput), (
                'input for cross_entropy_over_beam '
                'should be a BeamInput object.')

    ipts = []
    parents = []
    for beam in input:
        parents += [beam.candidate_scores, beam.selected_candidates, beam.gold]
        ipts += [
            beam.candidate_scores.name, beam.selected_candidates.name,
            beam.gold.name
        ]

    Layer(name=name, type=LayerType.CROSS_ENTROPY_OVER_BEAM, inputs=ipts)
C
caoying03 已提交
6357 6358 6359
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)


D
dangqingqing 已提交
6360 6361
@wrap_name_default()
@layer_support()
6362
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
6363 6364
    """
    This is a L1 loss but more smooth. It requires that the
R
ranqiu 已提交
6365
    sizes of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
6366 6367 6368 6369 6370 6371 6372 6373 6374

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

6375
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
6376

R
ranqiu 已提交
6377 6378 6379
    Reference:
        Fast R-CNN
        https://arxiv.org/pdf/1504.08083v2.pdf
D
dangqingqing 已提交
6380

C
caoying03 已提交
6381 6382
    The example usage is:

D
dangqingqing 已提交
6383 6384
    .. code-block:: python

6385 6386
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
6387 6388 6389 6390 6391

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6392
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6393
    :type name: basestring
R
ranqiu 已提交
6394
    :param coeff: The weight of the gradient in the back propagation.
6395
                  1.0 is the default value.
6396
    :type coeff: float
R
ranqiu 已提交
6397 6398
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
6411
        coeff=coeff,
D
dangqingqing 已提交
6412 6413 6414
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
6415 6416 6417 6418 6419


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6420 6421 6422
    This layer multiplex multiple layers according to the indexes,
    which are provided by the first input layer.
    inputs[0]: the indexes of the layers to form the output of size batchSize.
W
wwhu 已提交
6423
    inputs[1:N]; the candidate output data.
R
ranqiu 已提交
6424 6425
    For each index i from 0 to batchSize - 1, the i-th row of the output is the
    the same to the i-th row of the (index[i] + 1)-th layer.
W
wwhu 已提交
6426 6427 6428 6429 6430 6431 6432 6433

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
6434 6435
    The example usage is:

W
wwhu 已提交
6436 6437 6438 6439 6440 6441
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
6442
    :param name: The name of this layer. It is optional.
W
wwhu 已提交
6443
    :type name: basestring
R
ranqiu 已提交
6444 6445
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
W
wwhu 已提交
6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
6469 6470


6471 6472 6473 6474
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """

R
ranqiu 已提交
6475 6476 6477 6478 6479 6480
    The example usage is:

    .. code-block:: python

        dropout = dropout_layer(input=input_layer, dropout_rate=0.5)

6481
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6482
    :type name: basestring
R
ranqiu 已提交
6483
    :param input: The input of this layer.
R
ranqiu 已提交
6484 6485 6486 6487 6488
    :type input: LayerOutput
    :param dropout_rate: The probability of dropout.
    :type dropout_rate: float
    :return: LayerOutput object.
    :rtype: LayerOutput
6489 6490 6491 6492 6493 6494 6495
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
6496 6497


D
dangqingqing 已提交
6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
R
ranqiu 已提交
6511
    introduced in paper of `Deep Speech 2: End-to-End Speech Recognition
D
dangqingqing 已提交
6512 6513 6514 6515 6516 6517 6518
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
R
ranqiu 已提交
6519
    efficient manner to improve unidirectional RNNs.
6520

R
ranqiu 已提交
6521
    The connection of row convolution is different from the 1D sequence
D
dangqingqing 已提交
6522 6523 6524 6525
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
6526

D
dangqingqing 已提交
6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


R
ranqiu 已提交
6542
    :param input: The input of this layer.
D
dangqingqing 已提交
6543 6544 6545 6546
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
6547
    :param act: Activation Type. LinearActivation is the default activation.
D
dangqingqing 已提交
6548
    :type act: BaseActivation
R
ranqiu 已提交
6549 6550
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
D
dangqingqing 已提交
6551
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
6552 6553
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6554
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
6570 6571


6572 6573 6574 6575 6576 6577 6578 6579 6580
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
R
ranqiu 已提交
6581
    The Parametric Relu activation that actives outputs with a learnable weight.
6582 6583 6584 6585 6586 6587 6588 6589 6590

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
6591 6592 6593 6594 6595 6596
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

6597
    :param name: The name of this layer. It is optional.
6598
    :type name: basestring
R
ranqiu 已提交
6599
    :param input: The input of this layer.
6600
    :type input: LayerOutput
R
ranqiu 已提交
6601
    :param partial_sum: this parameter makes a group of inputs share the same weight.
C
caoying03 已提交
6602 6603

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
R
ranqiu 已提交
6604 6605
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share the same weight.
        - partial_sum = number of outputs, indicates all elements share the same weight.
C
caoying03 已提交
6606 6607

    :type partial_sum: int
6608
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
R
ranqiu 已提交
6609 6610 6611
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6612
    :type layer_attr: ExtraLayerAttribute | None
6613 6614 6615 6616
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

6617
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
C
caoying03 已提交
6618
    assert isinstance(param_attr, ParameterAttribute)
6619 6620 6621

    l = Layer(
        name=name,
C
caoying03 已提交
6622
        type=LayerType.PRELU,
C
caoying03 已提交
6623
        inputs=Input(input.name, **param_attr.attr),
6624 6625 6626 6627 6628 6629 6630
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)
6631 6632


6633
@wrap_name_default()
C
caoying03 已提交
6634
@layer_support(ERROR_CLIPPING, DROPOUT)
6635 6636 6637 6638 6639 6640 6641
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6642 6643
                     gate_bias_attr=True,
                     inproj_attr=None,
6644 6645 6646 6647 6648 6649 6650
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
R
ranqiu 已提交
6651
    product between :match:`X'` and :math:`\sigma` is finally returned.
6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664

    Reference:
        Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

R
ranqiu 已提交
6665
    :param input: The input of this layer.
6666
    :type input: LayerOutput
R
ranqiu 已提交
6667
    :param size: The dimension of this layer's output.
6668
    :type size: int
6669 6670
    :param act: Activation type of the projection. LinearActivation is the default
                activation.
6671
    :type act: BaseActivation
6672
    :param name: The name of this layer. It is optional.
6673
    :type name: basestring
R
ranqiu 已提交
6674 6675
    :param gate_attr: The extra layer attribute of the gate. See ExtraLayerAttribute for
                      details.
R
ranqiu 已提交
6676
    :type gate_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6677 6678 6679
    :param gate_param_attr: The parameter attribute of the gate. See ParameterAttribute
                            for details.
    :type gate_param_attr: ParameterAttribute
P
peterzhang2029 已提交
6680
    :param gate_bias_attr: The bias attribute of the gate. If this parameter is set to False or
R
ranqiu 已提交
6681
                           an object whose type is not ParameterAttribute, no bias is defined.
P
peterzhang2029 已提交
6682
                           If this parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6683 6684 6685
    :type gate_bias_attr: ParameterAttribute | bool | None | Any
    :param inproj_attr: Extra layer attributes of the projection. See ExtraLayerAttribute for
                        details.
R
ranqiu 已提交
6686
    :type inproj_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6687 6688 6689
    :param inproj_param_attr: The parameter attribute of the projection. See ParameterAttribute
                              for details.
    :type inproj_param_attr: ParameterAttribute
P
peterzhang2029 已提交
6690
    :param inproj_bias_attr: The bias attribute of the projection. If this parameter is set to False
R
ranqiu 已提交
6691
                             or an object whose type is not ParameterAttribute, no bias is defined.
P
peterzhang2029 已提交
6692
                             If this parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6693 6694 6695
    :type inproj_bias_attr: ParameterAttribute | bool | None | Any
    :param layer_attr: Extra layer attribute of the product. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6696
    :type layer_attr: ExtraLayerAttribute | None
6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6709
        layer_attr=inproj_attr,
6710 6711 6712 6713 6714 6715 6716 6717 6718
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6719
        param_attr=gate_param_attr,
6720 6721 6722 6723 6724
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6725 6726


6727
@layer_support()
6728
@wrap_name_default('switch_order')
W
wanghaoshuang 已提交
6729 6730
def switch_order_layer(input,
                       name=None,
6731
                       reshape_axis=None,
W
wanghaoshuang 已提交
6732 6733
                       act=None,
                       layer_attr=None):
6734
    """
6735
    This layer switch dimension order of image input.
6736 6737
    From order "batchSize, channels, height, width"
    to order "batchSize, height, width, channels".
6738 6739 6740 6741

    The example usage is:

    .. code-block:: python
6742 6743
       reshape_axis = 3
       switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
6744
       reshape = {'height':[ 0, 1, 2], 'width':[3]}
6745

R
ranqiu 已提交
6746
    :param input: The input of this layer.
6747
    :type input: LayerOutput
6748
    :param name: The name of this layer. It is optional.
6749
    :type name: basestring
R
ranqiu 已提交
6750 6751
    :param reshape_axis: Specify the axises of 'height'. Its value should be positive and less than 4.
    :type reshape_axis: int
6752 6753 6754
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6755
    assert isinstance(input, LayerOutput)
6756 6757 6758 6759 6760
    assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
    height = [ele for ele in xrange(reshape_axis)]
    width = [ele for ele in range(reshape_axis, 4)]
    reshape = {'height': height, 'width': width}

6761 6762
    l = Layer(
        name=name,
W
wanghaoshuang 已提交
6763
        inputs=input.name,
6764 6765
        reshape=reshape,
        type=LayerType.SWITCH_ORDER_LAYER,
W
wanghaoshuang 已提交
6766
        active_type=act.name,
6767 6768 6769
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
6770
        layer_type=LayerType.SWITCH_ORDER_LAYER,
6771
        activation=act,
6772 6773
        parents=input,
        size=l.config.size)
W
wanghaoshuang 已提交
6774 6775


6776 6777
@wrap_name_default()
@layer_support()
6778
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6779
    """
R
ranqiu 已提交
6780 6781 6782
    This layer crops images according to the offset and shape. Users can set
    the crop shape through the argument 'shape' explicitly or by specifying a
    reference input layer.
6783

6784 6785 6786
    The example usage is:

    .. code-block:: python
W
whs 已提交
6787
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6788

R
ranqiu 已提交
6789 6790
    :param input: The input of this layer. If two inputs are given, the second one
                  will be regarded as the reference.
R
ranqiu 已提交
6791 6792
    :type input: LayerOutput | Sequence
    :param offset: The crop offset.
6793
    :type offset: Sequence
R
ranqiu 已提交
6794
    :param axis: The start axis to be cropped. For image input layer:
6795 6796 6797 6798
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
R
ranqiu 已提交
6799 6800
    :type axis: int
    :param shape: The shape to be cropped to. Default is None.
6801
    :type shape: Sequence | None
6802
    :param name: The name of this layer. It is optional.
6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6824 6825


C
caoying03 已提交
6826 6827
@wrap_name_default()
@layer_support()
6828
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6829
    """
6830
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6831
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6832

C
caoying03 已提交
6833 6834 6835
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6836 6837 6838 6839

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6840

R
ranqiu 已提交
6841
        sub_nest_seq = sub_nested_seq_layer(input=data, selected_indices=selected_ids)
6842

C
caoying03 已提交
6843

R
ranqiu 已提交
6844
    :param input: The input of this layer. It is a nested sequence.
6845
    :type input: LayerOutput
R
ranqiu 已提交
6846
    :param selected_indices: A set of sequence indices in the nested sequence.
C
caoying03 已提交
6847
    :type input: LayerOutput
6848
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6849 6850 6851 6852
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6853

6854 6855 6856 6857 6858 6859 6860
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6861
    l = Layer(
6862 6863
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6864 6865 6866 6867 6868 6869 6870
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6871 6872


G
guosheng 已提交
6873
@wrap_name_default("clip")
6874
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6875 6876 6877 6878 6879 6880 6881 6882 6883
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6884
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6885

6886
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6887
    :type name: basestring
R
ranqiu 已提交
6888
    :param input: The input of this layer.
G
guosheng 已提交
6889
    :type input: LayerOutput.
6890
    :param min: The lower threshold for clipping.
R
ranqiu 已提交
6891
    :type min: float
6892
    :param max: The upper threshold for clipping.
R
ranqiu 已提交
6893
    :type max: float
6894 6895
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6896 6897 6898 6899 6900
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6901 6902
        min=min,
        max=max)
G
guosheng 已提交
6903 6904
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6905 6906


6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

6931
    :param name: The name of this layer. It is optional.
6932
    :type name: basestring
R
ranqiu 已提交
6933
    :param input: The input of this layer, which should be a sequence.
6934
    :type input: LayerOutput
R
ranqiu 已提交
6935
    :param starts: The start indices to slice the input sequence.
R
ranqiu 已提交
6936
    :type starts: LayerOutput | None
R
ranqiu 已提交
6937
    :param ends: The end indices to slice the input sequence.
R
ranqiu 已提交
6938
    :type ends: LayerOutput | None
6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
6970 6971


6972 6973
@wrap_name_default()
@layer_support()
6974
def kmax_seq_score_layer(input, name=None, beam_size=1):
6975
    """
R
ranqiu 已提交
6976
    This layer accepts one input which is scores over a sequence or a nested
6977 6978 6979 6980
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

6981
        kmax_indices = kmax_seq_score_layer(input=input_layer, beam_size)
6982 6983


6984
    :param name: The name of this layer. It is optional.
6985
    :type name: basestring
R
ranqiu 已提交
6986 6987
    :param input: The input of this layer. It stores scores over a sequence or
                  a nested sequence and its size must be 1.
R
ranqiu 已提交
6988
    :type input: LayerOutput
R
ranqiu 已提交
6989 6990
    :param beam_size: The indices of the sequences with top beam_size scores are returned.
    :type beam_size: int
6991 6992 6993
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6994
    assert isinstance(input, LayerOutput), ("kmax_seq_score_layer "
6995
                                            "accepts only one input.")
6996
    assert input.size == 1, (
6997
        "input of kmax_seq_score_layer is a score "
6998 6999 7000 7001 7002 7003 7004 7005 7006 7007
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
7008 7009


7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035
@wrap_name_default("conv3d")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_conv3d_layer(input,
                     filter_size,
                     num_filters,
                     name=None,
                     num_channels=None,
                     act=None,
                     groups=1,
                     stride=1,
                     padding=0,
                     bias_attr=None,
                     param_attr=None,
                     shared_biases=True,
                     layer_attr=None,
                     trans=False,
                     layer_type=None):
    """

    The example usage is:

    ..  code-block:: python

C
chengduoZH 已提交
7036
        conv = img_conv3d_layer(input=data, filter_size=1,
7037 7038 7039 7040 7041
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

7042
    :param name: The name of this layer. It is optional.
7043
    :type name: basestring
R
ranqiu 已提交
7044
    :param input: The input of this layer.
7045
    :type input: LayerOutput
R
ranqiu 已提交
7046 7047
    :param filter_size: The dimensions of the filter kernel along three axises. If the parameter
                        is set to one integer, the three dimensions will be same.
R
ranqiu 已提交
7048
    :type filter_size: int | tuple | list
R
ranqiu 已提交
7049 7050
    :param num_filters: The number of filters in each group.
    :type num_filters: int
7051
    :param act: Activation type. ReluActivation is the default activation.
7052
    :type act: BaseActivation
R
ranqiu 已提交
7053
    :param groups: The number of the filter groups.
7054
    :type groups: int
R
ranqiu 已提交
7055 7056
    :param stride: The strides of the convolution along three axises. If the parameter
                   is set to one integer, the three strides will be same.
R
ranqiu 已提交
7057
    :type stride: int | tuple | list
R
ranqiu 已提交
7058 7059
    :param padding: The numbers of padding along three axises. If the parameter is set to
                    one integer, they will be same.
R
ranqiu 已提交
7060
    :type padding: int | tuple | list
R
ranqiu 已提交
7061 7062 7063
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
7064
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
7065
    :param num_channels: The number of input channels. If the parameter is not set or
R
ranqiu 已提交
7066 7067
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
7068
    :type num_channels: int
R
ranqiu 已提交
7069 7070
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
7071
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
7072
    :param shared_biases: Whether biases will be shared between filters or not.
7073
    :type shared_biases: bool
R
ranqiu 已提交
7074 7075
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
7076
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
7077
    :param trans: True if it is a convTransLayer, False if it is a convLayer
7078
    :type trans: bool
R
ranqiu 已提交
7079 7080 7081 7082
    :param layer_type: Specify the layer_type. If the parameter is set, it must be "deconv3d"
                       when trans=True. If not set, it will be automatically set to "deconv3d"
                       when trans=True and "conv3d" when trans=False.
    :type layer_type: basestring
7083 7084 7085 7086 7087 7088 7089
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

C
chengduoZH 已提交
7090 7091 7092 7093 7094 7095
    if isinstance(filter_size, collections.Sequence):
        assert len(filter_size) == 3
        filter_size, filter_size_y, filter_size_z = filter_size
    else:
        filter_size_y = filter_size
        filter_size_z = filter_size
7096

C
chengduoZH 已提交
7097 7098 7099 7100 7101 7102
    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride
7103

C
chengduoZH 已提交
7104 7105 7106 7107 7108 7109
    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_z = padding
    else:
        padding_y = padding
        padding_z = padding
7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

    if layer_type:
        if trans:
            assert layer_type in ["deconv3d"]
        lt = layer_type
    else:
        lt = LayerType.DECONV3D_LAYER if trans else LayerType.CONV3D_LAYER

    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            conv=Conv3D(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y,
                filter_size_z=filter_size_z,
                padding_z=padding_z,
                stride_z=stride_z),
            **param_attr.attr),
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
        type=lt,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
C
chengduoZH 已提交
7156 7157


G
guosheng 已提交
7158 7159 7160 7161 7162
@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
7163
    A layer applies a linear transformation to each element in each row of
R
ranqiu 已提交
7164
    the input matrix. For each element, the layer first re-scales it and then
7165 7166
    adds a bias to it.

X
xuwei06 已提交
7167
    This layer is very like the SlopeInterceptLayer, except the scale and
7168 7169
    bias are trainable.

G
guosheng 已提交
7170 7171 7172 7173 7174 7175 7176 7177
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

7178
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
7179
    :type name: basestring
R
ranqiu 已提交
7180 7181
    :param input: The input of this layer.
    :type input: LayerOutput
R
ranqiu 已提交
7182 7183
    :param param_attr: The parameter attribute of scaling. See ParameterAttribute for
                      details.
G
guosheng 已提交
7184
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
7185 7186 7187
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
7188
    :type bias_attr: ParameterAttribute | None | bool | Any
G
guosheng 已提交
7189 7190 7191 7192 7193 7194 7195 7196 7197 7198
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)
7199 7200 7201 7202 7203 7204 7205 7206 7207


@wrap_name_default("resize")
def resize_layer(input, size, name=None):
    """
    The resize layer resizes the input matrix with a shape of [Height, Width]
    into the output matrix with a shape of [Height x Width / size, size],
    where size is the parameter of this layer indicating the output dimension.

R
ranqiu 已提交
7208
    :param input: The input of this layer.
7209 7210 7211
    :type input: LayerOutput.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
7212
    :param size: The resized output dimension of this layer.
7213 7214 7215 7216 7217 7218
    :type size: int
    :return: A LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(name=name, type=LayerType.RESIZE, inputs=Input(input.name), size=size)
    return LayerOutput(name, LayerType.RESIZE, parents=[input], size=input.size)
Y
yangyaming 已提交
7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237


@wrap_act_default(act=LinearActivation())
@wrap_name_default('sub_seq')
def sub_seq_layer(input, offsets, sizes, act=None, bias_attr=None, name=None):
    """
    sub_seq_layer will return sub-sequences from the input sequences. For each
    sequence in the input sequence layer, sub_seq_layer will slice it by given
    offset and size. Please notice that, number of offset value and size value
    both are equal to the number of sequence in the input layer.

    .. code-block:: python

        sub_seq = sub_seq_layer(input=input_seq, offsets=offsets, sizes=sizes)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer, which should be sequence.
    :type input: LayerOutput
R
ranqiu 已提交
7238 7239
    :param offsets: The offset indices to slice the input sequence, which should
                    be sequence type.
Y
yangyaming 已提交
7240
    :type offsets: LayerOutput
R
ranqiu 已提交
7241
    :param sizes: The sizes of the sub-sequences, which should be sequence type.
Y
yangyaming 已提交
7242
    :type sizes: LayerOutput
7243
    :param act: Activation type, LinearActivation is the default activation.
Y
yangyaming 已提交
7244
    :type act: BaseActivation.
R
ranqiu 已提交
7245 7246 7247
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
Y
yangyaming 已提交
7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272
    :type bias_attr: ParameterAttribute | None | bool | Any
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of sub_seq_layer layer must be a PaddlePaddle layer.')
    assert isinstance(offsets, LayerOutput), (
        'The offset indices for sub_seq_layer, '
        'must be a PaddlePaddle layer.')
    assert isinstance(sizes, LayerOutput), (
        'The sizes of sub-sequences, must be a PaddlePaddle layer.')

    Layer(
        name=name,
        type=LayerType.SUB_SEQ_LAYER,
        inputs=[input.name, offsets.name, sizes.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr))

    return LayerOutput(
        name,
        LayerType.SUB_SEQ_LAYER,
        parents=[input, offsets, sizes],
        size=input.size)
Y
yangyaming 已提交
7273 7274


Y
yangyaming 已提交
7275 7276
@wrap_name_default('scale_sub_region')
def scale_sub_region_layer(input, indices, value, name=None):
Y
yangyaming 已提交
7277
    """
Y
yangyaming 已提交
7278 7279 7280 7281 7282 7283
    Given an image or feature map with CHW information, scale_sub_region_layer
    can be used to multiply a real value to values of a sub continuous region.
    You can provide start and end indices of CHW for each instance.
    Please notice that all start indices are counting from 1.
    The shape of indices should be [batch_size, 6] and the layout for each row
    is [C_Start, C_End, H_Start, H_End, W_Start, W_End].
Y
yangyaming 已提交
7284 7285 7286

    .. code-block:: python

Y
yangyaming 已提交
7287 7288 7289
        scale_sub_region = scale_sub_region_layer(input=input,
                                                  indices=indices,
                                                  value=value)
Y
yangyaming 已提交
7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer which should contains CHW information.
    :type input: LayerOutput
    :param indices: Start index and end index for C H W, the input value should
                    be a 2-D matrix with shape [batch_size, 6].
    :type indices: LayerOutput.
    :param value: value to multiply.
    :type value: float
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
Y
yangyaming 已提交
7305 7306
        'The first input of scale_sub_region_layer, '
        'must be a PaddlePaddle layer.')
Y
yangyaming 已提交
7307 7308 7309 7310 7311 7312 7313
    assert isinstance(indices, LayerOutput), (
        'The start and end indices for CHW, must be a PaddlePaddle layer.')
    assert isinstance(value, float), (
        'The value to multiply, must be a real value.')

    Layer(
        name=name,
Y
yangyaming 已提交
7314
        type=LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7315 7316 7317 7318 7319
        inputs=[input.name, indices.name],
        value=value)

    return LayerOutput(
        name,
Y
yangyaming 已提交
7320
        LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7321
        parents=[input, indices],
Y
yangyaming 已提交
7322
        num_filters=input.num_filters,
Y
yangyaming 已提交
7323
        size=input.size)