math.py 186.8 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
Y
Yang Zhang 已提交
17
import numpy as np
18

19 20 21 22 23 24
from paddle.common_ops_import import VarDesc
from paddle.common_ops_import import dygraph_only
from paddle.common_ops_import import OpProtoHolder
from paddle.common_ops_import import templatedoc
from paddle.common_ops_import import dygraph_utils

25 26 27 28
from .manipulation import cast
from .creation import _complex_to_real_dtype
from .layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn

29
import paddle
30
from ..static import Variable
31
from ..framework import core, in_dygraph_mode, _non_static_mode, LayerHelper, _in_legacy_dygraph
32
from ..fluid.framework import _in_legacy_dygraph
Z
zhiboniu 已提交
33
from ..framework import _varbase_creator, convert_np_dtype_to_dtype_
L
Li Fuchen 已提交
34
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
35
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
36
from ..fluid.layers import utils
37 38

# TODO: define math functions
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
from .ops import abs  # noqa: F401
from .ops import acos  # noqa: F401
from .ops import asin  # noqa: F401
from .ops import ceil  # noqa: F401
from .ops import ceil_  # noqa: F401
from .ops import cos  # noqa: F401
from .ops import tan  # noqa: F401
from .ops import sinh  # noqa: F401
from .ops import cosh  # noqa: F401
from .ops import exp  # noqa: F401
from .ops import exp_  # noqa: F401
from .ops import expm1  # noqa: F401
from .ops import floor  # noqa: F401
from .ops import floor_  # noqa: F401
from .ops import reciprocal  # noqa: F401
from .ops import reciprocal_  # noqa: F401
from .ops import round  # noqa: F401
from .ops import round_  # noqa: F401
from .ops import rsqrt  # noqa: F401
from .ops import rsqrt_  # noqa: F401
from .ops import square  # noqa: F401
from .ops import atan  # noqa: F401
from .ops import erf  # noqa: F401
from .ops import sqrt  # noqa: F401
from .ops import sqrt_  # noqa: F401
from .ops import sin  # noqa: F401
from .ops import asinh  # noqa: F401
from .ops import acosh  # noqa: F401
from .ops import atanh  # noqa: F401
68

Z
zhiboniu 已提交
69
from ..fluid.layers import elementwise_sub
70
from paddle import _C_ops, _legacy_C_ops
71

72 73
__all__ = []

74 75 76 77 78 79 80 81 82 83 84 85 86
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

87

88 89
def log(x, name=None):
    r"""
C
Chen Long 已提交
90
    Calculates the natural log of the given input Tensor, element-wise.
91 92 93

    .. math::

94
        Out = \ln(x)
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The natural log of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python

            import paddle

            x = [[2,3,4], [7,8,9]]
            x = paddle.to_tensor(x, dtype='float32')
            res = paddle.log(x)
            # [[0.693147, 1.09861, 1.38629], [1.94591, 2.07944, 2.19722]]
    """
    if in_dygraph_mode():
        return _C_ops.log(x)
117 118
    if _in_legacy_dygraph():
        return _legacy_C_ops.log(x)
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log")
    inputs = {'X': [x]}
    helper = LayerHelper('log', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
    return out


def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)

    Args:
146 147 148 149 150 151
        x (Tensor): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
        scale (float|Tensor): The scale factor of the input, it should be a float number or a Tensor with shape [1] and data type as float32.
        bias (float): The bias to be put on the input.
        bias_after_scale (bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act (str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
152 153

    Returns:
C
Chen Long 已提交
154
        Tensor: Output Tensor of scale operator, with shape and data type same as input.
155 156 157

    Examples:
        .. code-block:: python
158

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
            # scale as a float32 number
            import paddle

            data = paddle.randn(shape=[2,3], dtype='float32')
            res = paddle.scale(data, scale=2.0, bias=1.0)

        .. code-block:: python

            # scale with parameter scale as a Tensor
            import paddle

            data = paddle.randn(shape=[2, 3], dtype='float32')
            factor = paddle.to_tensor([2], dtype='float32')
            res = paddle.scale(data, scale=factor, bias=1.0)

    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
177 178 179
        out = _C_ops.scale(x, scale, float(bias), bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out, act)
    elif _in_legacy_dygraph():
180
        _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
181 182 183
        out = _legacy_C_ops.scale(x, 'scale', float(_scale), 'bias',
                                  float(bias), 'bias_after_scale',
                                  bias_after_scale)
W
wanghuancoder 已提交
184
        return dygraph_utils._append_activation_in_dygraph(out, act)
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

    check_variable_and_dtype(x, "x", [
        'float16', 'uint16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], "scale")
    inputs = {'X': [x]}
    attrs = {
        'bias': float(bias),
        'bias_after_scale': bias_after_scale,
    }
    if isinstance(scale, Variable):
        inputs['ScaleTensor'] = [scale]
    else:
        attrs['scale'] = float(scale)
    helper = LayerHelper('scale', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

202 203 204 205
    helper.append_op(type='scale',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
206 207 208 209 210 211 212 213 214
    return helper.append_activation(out)


def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
    """
    stanh activation.

    .. math::

215
        out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        scale_a (float, optional): The scale factor a of the input. Default is 0.67.
        scale_b (float, optional): The scale factor b of the output. Default is 1.7159.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = paddle.stanh(x, scale_a=0.67, scale_b=1.72) # [1.00616539, 1.49927628, 1.65933108, 1.70390463]

    """

    if _non_static_mode():
238
        return _legacy_C_ops.stanh(x, 'scale_a', scale_a, 'scale_b', scale_b)
239 240 241 242 243

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'stanh')

    helper = LayerHelper('stanh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
244 245 246 247 248 249 250
    helper.append_op(type='stanh',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'scale_a': scale_a,
                         'scale_b': scale_b
                     })
251 252
    return out

253

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
def multiplex(inputs, index, name=None):
    """

    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.

    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .

    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .

    For Example:

            .. code-block:: text

                Given:

                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

                index = [[3],[0],[1],[2]]

                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]


    Args:
        inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
        index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
285
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
286

287 288 289 290 291 292 293 294
    Returns:
        Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64.

    Examples:

        .. code-block:: python

            import paddle
295

296 297 298 299
            img1 = paddle.to_tensor([[1, 2], [3, 4]], dtype=paddle.float32)
            img2 = paddle.to_tensor([[5, 6], [7, 8]], dtype=paddle.float32)
            inputs = [img1, img2]
            index = paddle.to_tensor([[1], [0]], dtype=paddle.int32)
300
            res = paddle.multiplex(inputs, index)
301
            print(res) # Tensor([[5., 6.], [3., 4.]], dtype=float32)
302 303

    """
304 305 306
    if in_dygraph_mode():
        return _C_ops.multiplex(inputs, index)
    elif _in_legacy_dygraph():
307
        return _legacy_C_ops.multiplex(index, inputs)
308

309 310 311 312 313 314 315 316 317 318 319 320 321
    helper = LayerHelper('multiplex', **locals())

    check_type(inputs, 'inputs', (list), 'multiplex')
    if len(inputs) < 2:
        raise ValueError(
            "inputs should be a list object with at least 2 elements.")
    for id, x in enumerate(inputs):
        check_variable_and_dtype(x, 'input[' + str(id) + ']',
                                 ['float32', 'float64', 'int32', 'int64'],
                                 'multiplex')
    check_variable_and_dtype(index, "index", ['int32', 'int64'], 'multiplex')

    out = helper.create_variable_for_type_inference(inputs[0].dtype)
322 323 324 325 326 327
    helper.append_op(type='multiplex',
                     inputs={
                         'X': inputs,
                         'Ids': index
                     },
                     outputs={'Out': [out]})
328 329
    return out

330

331 332 333 334 335 336
@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_scale`.
    """
337
    if in_dygraph_mode():
338
        return _C_ops.scale_(x, scale, float(bias), bias_after_scale)
339 340
    if _in_legacy_dygraph():
        _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
341 342 343
        return _legacy_C_ops.scale_(x, 'scale', float(_scale), 'bias',
                                    float(bias), 'bias_after_scale',
                                    bias_after_scale)
344 345


346
def pow(x, y, name=None):
347
    """
C
Chen Long 已提交
348
    Compute the power of Tensor elements. The equation is:
S
swtkiwi 已提交
349

350
    .. math::
351
        out = x^{y}
352

353 354
    Note:
        ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
355 356


357
    Args:
358
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
359
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
360
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
361

362
    Returns:
363
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
364 365 366

    Examples:

367
        ..  code-block:: python
368 369 370

            import paddle

371 372 373 374 375 376 377 378 379 380 381 382
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            # example 1: y is a float or int
            res = paddle.pow(x, 2)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
            res = paddle.pow(x, 2.5)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1.         , 5.65685415 , 15.58845711])

383
            # example 2: y is a Tensor
384
            y = paddle.to_tensor([2], dtype='float32')
385
            res = paddle.pow(x, y)
386 387 388
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
389 390

    """
391
    # in dynamic graph mode
392
    if in_dygraph_mode():
393
        if isinstance(y, (int, float)):
394
            return _C_ops.pow(x, y)
395
        elif isinstance(y, (paddle.Tensor, Variable)):
396
            return _C_ops.elementwise_pow(x, y)
397
        else:
398 399 400
            raise TypeError(
                'y must be scalar or tensor type, but received: %s ' %
                (y.dtype))
401
    if _in_legacy_dygraph():
402
        if isinstance(y, (int, float)):
403
            return _legacy_C_ops.pow(x, 'factor', y)
404
        elif isinstance(y, (paddle.Tensor, Variable)):
405 406 407 408 409
            return _elementwise_op_in_dygraph(x,
                                              y,
                                              axis=-1,
                                              act=None,
                                              op_name='elementwise_pow')
410
        else:
411 412 413
            raise TypeError(
                'y must be scalar or tensor type, but received: %s ' %
                (y.dtype))
414 415 416 417 418 419
    # in static graph mode
    if isinstance(y, (int, float)):
        helper = LayerHelper('pow', **locals())
        inputs = {'X': x}
        attrs = {'factor': y}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
420 421 422 423
        helper.append_op(type='pow',
                         inputs=inputs,
                         outputs={'Out': out},
                         attrs=attrs)
424 425 426 427 428 429 430
        return out
    elif isinstance(y, (paddle.Tensor, Variable)):
        # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
        helper = LayerHelper('elementwise_pow', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
    else:
431 432
        raise TypeError('y must be scalar or tensor type, but received: %s ' %
                        (type(y)))
433 434


435
OP_NAMEMAPPING = {
436 437 438 439 440 441 442 443
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
444
    'elementwise_mod': 'remainder',
445
}
446

447

448 449 450 451 452 453 454
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
455

456
    def is_inplace(op_name):
457
        return op_name[-1] == "_"
458

459
    if op_name not in OP_NAMEMAPPING.keys() or axis != -1:
460
        op = getattr(_legacy_C_ops, op_name)
461
        out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
W
wanghuancoder 已提交
462 463
    else:
        if in_dygraph_mode():
464 465 466
            op = getattr(
                _C_ops,
                OP_NAMEMAPPING[op_name] if not is_inplace(op_name) else op_name)
W
wanghuancoder 已提交
467 468 469
            out = op(x, y)

        if _in_legacy_dygraph():
470
            op = getattr(_legacy_C_ops, op_name)
W
wanghuancoder 已提交
471
            out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
472

473 474 475 476
    return dygraph_utils._append_activation_in_dygraph(out,
                                                       act,
                                                       use_mkldnn=use_mkldnn)

477 478 479 480 481 482 483

def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

484 485
    out = helper.kwargs.get('out', None)

486 487 488
    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
W
will-jl944 已提交
489
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
490 491
        original_op_type)
    check_variable_and_dtype(
W
will-jl944 已提交
492
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
493 494 495 496 497
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
498 499 500 501 502

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
503 504 505 506 507 508 509 510 511 512 513 514 515 516
            out = helper.create_variable(name=name,
                                         dtype=x.dtype,
                                         persistable=False)

    helper.append_op(type=op_type,
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Out': out},
                     attrs={
                         'axis': axis,
                         'use_mkldnn': use_mkldnn
                     })
517 518 519
    return helper.append_activation(out)


Y
Yang Zhang 已提交
520
def add(x, y, name=None):
521
    """
522 523 524 525 526 527 528 529
    Elementwise Add Operator.
    Add two tensors element-wise
    The equation is:

    ..  math::

        Out=X+Y

530 531
    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.
532 533

    There are two cases for this operator:
534 535 536 537

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

538
    For case 2:
539 540 541 542

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
    2. If $axis$ is -1 (default), $axis$=rank($X$)−rank($Y$).
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).
543 544 545 546

        For example:

        ..  code-block:: python
547

548 549 550 551 552 553
            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
554

555
    Args:
556 557 558
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
559 560

    Returns:
561
        N-D Tensor. A location into which the result is stored. It’s dimension equals with x.
562 563 564 565

    Examples:

        ..  code-block:: python
566

567
            import paddle
568

569 570 571 572
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.to_tensor([1, 5, 2], 'float64')
            z = paddle.add(x, y)
            print(z)  # [3., 8., 6. ]
573
    """
574

J
Jiabin Yang 已提交
575
    if in_dygraph_mode():
576
        return _C_ops.add(x, y)
J
Jiabin Yang 已提交
577 578
    else:
        if _in_legacy_dygraph():
579
            return _legacy_C_ops.elementwise_add(x, y)
J
Jiabin Yang 已提交
580 581
        else:
            return _elementwise_op(LayerHelper('elementwise_add', **locals()))
582 583


584 585 586 587 588 589 590 591 592 593 594
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_add`.
    """
    op_type = 'elementwise_add_'
    axis = -1

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
595 596 597
        raise ValueError(
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation."
            .format(out_shape, x.shape))
598

599
    if in_dygraph_mode():
600
        return _C_ops.add_(x, y)
601
    else:
602
        out = _elementwise_op_in_dygraph(x, y, axis=axis, op_name=op_type)
603
        return out
604 605


606 607
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
608
    Substract two tensors element-wise. The equation is:
609 610 611 612

    .. math::
        out = x - y

613 614
    Note:
        ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
615 616 617 618 619 620 621 622 623 624 625 626

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
627

628 629 630 631 632 633
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[5, 6], [3, 4]])
            res = paddle.subtract(x, y)
            print(res)
634 635 636
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[-4, -4],
            #         [ 4,  4]])
637 638 639 640 641

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 0, 4])
            res = paddle.subtract(x, y)
            print(res)
642 643 644
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[ 0,  2, -1],
            #          [ 0,  2, -1]]])
645

646 647
            x = paddle.to_tensor([2, float('nan'), 5], dtype='float32')
            y = paddle.to_tensor([1, 4, float('nan')], dtype='float32')
648 649
            res = paddle.subtract(x, y)
            print(res)
650 651
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
652

653
            x = paddle.to_tensor([5, float('inf'), -float('inf')], dtype='float64')
654 655 656
            y = paddle.to_tensor([1, 4, 5], dtype='float64')
            res = paddle.subtract(x, y)
            print(res)
657 658
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 4.  ,  inf., -inf.])
659 660 661 662
    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
J
Jiabin Yang 已提交
663
    if in_dygraph_mode():
664
        return _C_ops.subtract(x, y)
J
Jiabin Yang 已提交
665 666
    else:
        if _in_legacy_dygraph():
667 668 669 670 671
            return _elementwise_op_in_dygraph(x,
                                              y,
                                              axis=axis,
                                              act=act,
                                              op_name=op_type)
J
Jiabin Yang 已提交
672 673
        else:
            return _elementwise_op(LayerHelper(op_type, **locals()))
674 675


676 677 678 679 680 681 682 683 684 685 686
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_subtract`.
    """
    axis = -1
    act = None

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
687 688 689
        raise ValueError(
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation."
            .format(out_shape, x.shape))
690

691
    if in_dygraph_mode():
692
        return _C_ops.subtract_(x, y)
693
    else:
694 695 696 697 698
        out = _elementwise_op_in_dygraph(x,
                                         y,
                                         axis=axis,
                                         act=act,
                                         op_name='elementwise_sub_')
699
        return out
700 701


702
def divide(x, y, name=None):
703
    """
704
    Divide two tensors element-wise. The equation is:
705

706 707
    .. math::
        out = x / y
708

709 710
    Note:
        ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
711

712 713 714 715
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
716

717
    Returns:
718
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
719

720
    Examples:
721

722
        ..  code-block:: python
723

724
            import paddle
725

726 727
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
728
            z = paddle.divide(x, y)
729
            print(z)  # [2., 0.6, 2.]
730

731 732 733 734
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
J
Jiabin Yang 已提交
735
    if in_dygraph_mode():
736
        return _C_ops.divide(x, y)
J
Jiabin Yang 已提交
737 738
    else:
        if _in_legacy_dygraph():
739 740 741 742 743
            return _elementwise_op_in_dygraph(x,
                                              y,
                                              axis=axis,
                                              act=act,
                                              op_name=op_type)
J
Jiabin Yang 已提交
744 745
        else:
            return _elementwise_op(LayerHelper(op_type, **locals()))
746 747


748 749
def floor_divide(x, y, name=None):
    """
L
Lin Manhui 已提交
750
    Floor divide two tensors element-wise and rounds the quotinents to the nearest integer toward zero. The equation is:
751

752
    .. math::
L
Lin Manhui 已提交
753
        out = trunc(x / y)
754

755 756
    Note:
        ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
L
Lin Manhui 已提交
757
        Also note that the name ``floor_divide`` can be misleading, as the quotinents are actually rounded toward zero, not toward negative infinite.
758

759 760 761 762
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
763

764 765
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
766

767
    Examples:
768

769
        ..  code-block:: python
770

771
            import paddle
772

773 774
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
775
            z = paddle.floor_divide(x, y)
776
            print(z)  # [2, 0, 2, 2]
777

778 779 780
    """
    op_type = 'elementwise_floordiv'
    axis = -1
781 782 783
    if in_dygraph_mode():
        return _C_ops.floor_divide(x, y)
    elif _in_legacy_dygraph():
784
        return _elementwise_op_in_dygraph(x, y, axis=axis, op_name=op_type)
785

786
    return _elementwise_op(LayerHelper(op_type, **locals()))
787 788


789
def remainder(x, y, name=None):
790
    r"""
791 792 793
    Mod two tensors element-wise. The equation is:

    .. math::
794

795 796
        out = x \% y

797 798
    Note:
        ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
799 800

    Args:
801 802
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
803 804 805
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
806
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
807 808 809 810 811 812 813

    Examples:

        ..  code-block:: python

            import paddle

814 815
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
816
            z = paddle.remainder(x, y)
W
WangXi 已提交
817
            print(z)  # [0, 3, 2, 1]
818 819 820

    """
    op_type = 'elementwise_mod'
821
    axis = -1
822 823 824 825

    if in_dygraph_mode():
        return _C_ops.remainder(x, y)
    elif _in_legacy_dygraph():
826
        return _elementwise_op_in_dygraph(x, y, axis=axis, op_name=op_type)
827 828 829 830

    return _elementwise_op(LayerHelper(op_type, **locals()))


831 832 833 834 835 836 837 838 839 840 841 842
@inplace_apis_in_dygraph_only
def remainder_(x, y, name=None):
    r"""
    Inplace version of ``remainder`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_remainder`.
    """
    op_type = 'elementwise_mod_'
    axis = -1

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
843 844
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation."
            .format(out_shape, x.shape))
845 846 847 848

    return _elementwise_op_in_dygraph(x, y, axis=axis, op_name=op_type)


849 850
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
851 852


853
def multiply(x, y, name=None):
854
    """
855
    multiply two tensors element-wise. The equation is:
856

857 858
    .. math::
        out = x * y
859

860 861
    Note:
        ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.
862

863
    Args:
W
will-jl944 已提交
864 865
        x (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
        y (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
866
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
867

868
    Returns:
869
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
870

871 872 873 874 875 876
    Examples:

        ..  code-block:: python

            import paddle

877 878
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
879
            res = paddle.multiply(x, y)
880
            print(res) # [[5, 12], [21, 32]]
881

882
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
883 884 885
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
886 887 888 889

    """
    op_type = 'elementwise_mul'
    act = None
890
    axis = -1
891

J
Jiabin Yang 已提交
892
    if in_dygraph_mode():
893
        return _C_ops.multiply(x, y)
J
Jiabin Yang 已提交
894 895
    else:
        if _in_legacy_dygraph():
896 897 898 899 900
            return _elementwise_op_in_dygraph(x,
                                              y,
                                              axis=axis,
                                              act=act,
                                              op_name=op_type)
J
Jiabin Yang 已提交
901 902 903 904 905
        else:
            if x.dtype != y.dtype:
                raise TypeError(
                    'Input tensors must be same type, but received type of x: %s, type of y: %s '
                    % (x.dtype, y.dtype))
906

J
Jiabin Yang 已提交
907
            return _elementwise_op(LayerHelper(op_type, **locals()))
908

909

910
def maximum(x, y, name=None):
911
    """
W
Wei Shengyu 已提交
912
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
913

914 915
    .. math::
        out = max(x, y)
916

917 918
    Note:
        ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 4],
            #     [7, 8]]

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 2, 4],
            #     [3, 2, 4]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [ 2., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [  5.,   3., inf.]
960 961
    """
    op_type = 'elementwise_max'
962
    axis = -1
963
    act = None
964 965 966
    if in_dygraph_mode():
        return _C_ops.maximum(x, y)
    elif _in_legacy_dygraph():
967 968 969 970 971
        return _elementwise_op_in_dygraph(x,
                                          y,
                                          axis=axis,
                                          act=act,
                                          op_name=op_type)
972 973
    return _elementwise_op(LayerHelper(op_type, **locals()))

974

975
def minimum(x, y, name=None):
976
    """
C
Chen Long 已提交
977
    Compare two tensors and return a new tensor containing the element-wise minima. The equation is:
978

979 980
    .. math::
        out = min(x, y)
981

982 983
    Note:
        ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
984 985 986 987 988 989 990

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
C
Chen Long 已提交
991
        Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.minimum(x, y)
            print(res)
            #       [[1, 2],
            #        [5, 6]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.minimum(x, y)
            print(res)
            #       [[[1, 0, 3],
            #         [1, 0, 3]]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.minimum(x, y)
            print(res)
            #       [ 1., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float64')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float64')
            res = paddle.minimum(x, y)
            print(res)
            #       [   1., -inf.,    5.]
1025 1026
    """
    op_type = 'elementwise_min'
1027
    axis = -1
1028
    act = None
1029 1030 1031
    if in_dygraph_mode():
        return _C_ops.minimum(x, y)
    elif _in_legacy_dygraph():
1032 1033 1034 1035 1036
        return _elementwise_op_in_dygraph(x,
                                          y,
                                          axis=axis,
                                          act=act,
                                          op_name=op_type)
1037
    return _elementwise_op(LayerHelper(op_type, **locals()))
1038

1039

L
LJQ❤️ 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048
def fmax(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the maximum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmax(x, y)

1049 1050
    Note:
        ``paddle.fmax`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
L
LJQ❤️ 已提交
1051 1052

    Args:
1053 1054
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmax(x, y)
            print(res)
            #    [[3, 4],
            #     [7, 8]]

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmax(x, y)
            print(res)
            #    [[3, 2, 4],
            #     [3, 2, 4]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.fmax(x, y)
            print(res)
            #    [ 2., 3., 5.]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float32')
            res = paddle.fmax(x, y)
            print(res)
            #    [  5.,   3., inf.]
    """
    op_type = 'elementwise_fmax'
    axis = -1
    act = None
1096
    if in_dygraph_mode():
1097
        return _C_ops.fmax(x, y, axis)
1098
    if _in_legacy_dygraph():
1099 1100 1101 1102 1103
        return _elementwise_op_in_dygraph(x,
                                          y,
                                          axis=axis,
                                          act=act,
                                          op_name=op_type)
L
LJQ❤️ 已提交
1104 1105
    return _elementwise_op(LayerHelper(op_type, **locals()))

1106

L
LJQ❤️ 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115
def fmin(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the minimum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmin(x, y)

1116 1117
    Note:
        ``paddle.fmin`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
L
LJQ❤️ 已提交
1118 1119

    Args:
1120 1121
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmin(x, y)
            print(res)
            #       [[1, 2],
            #        [5, 6]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmin(x, y)
            print(res)
            #       [[[1, 0, 3],
            #         [1, 0, 3]]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.fmin(x, y)
            print(res)
            #       [ 1., 3., 5.]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float64')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float64')
            res = paddle.fmin(x, y)
            print(res)
            #       [   1., -inf.,    5.]
    """
    op_type = 'elementwise_fmin'
    axis = -1
    act = None
1163
    if in_dygraph_mode():
1164
        return _C_ops.fmin(x, y, axis)
1165
    if _in_legacy_dygraph():
1166 1167 1168 1169 1170
        return _elementwise_op_in_dygraph(x,
                                          y,
                                          axis=axis,
                                          act=act,
                                          op_name=op_type)
L
LJQ❤️ 已提交
1171 1172
    return _elementwise_op(LayerHelper(op_type, **locals()))

Y
Yang Zhang 已提交
1173

1174
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
1175 1176 1177 1178
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
1179
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
1180 1181
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
1182
            Tensor with a single element, otherwise must be in the
1183 1184 1185 1186 1187 1188 1189
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
1190
            value is False.
1191
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1192 1193

    Returns:
1194
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
1195
        if `x.dtype='bool'`, `x.dtype='int32'`, it's data type is `'int64'`,
1196
        otherwise it's data type is the same as `x`.
1197 1198 1199 1200 1201

    Examples:
        .. code-block:: python

            import paddle
1202

1203
            # x is a Tensor with following elements:
1204 1205 1206
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
1207 1208
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1209
            out1 = paddle.sum(x)  # [3.5]
1210 1211 1212
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
1213

1214
            # y is a Tensor with shape [2, 2, 2] and elements as below:
1215 1216 1217
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
1218
            y = paddle.to_tensor([[[1, 2], [3, 4]],
1219
                                  [[5, 6], [7, 8]]])
1220 1221
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
1222

1223 1224 1225 1226 1227 1228 1229 1230 1231
            # x is a Tensor with following elements:
            #    [[True, True, True, True]
            #     [False, False, False, False]]
            # Each example is followed by the corresponding output tensor.
            x = paddle.to_tensor([[True, True, True, True],
                                  [False, False, False, False]])
            out7 = paddle.sum(x)  # [4]
            out8 = paddle.sum(x, axis=0)  # [1, 1, 1, 1]
            out9 = paddle.sum(x, axis=1)  # [4, 0]
1232
    """
1233 1234 1235 1236 1237
    if isinstance(axis, Variable):
        reduce_all_flag = True if axis.shape[0] == len(x.shape) else False
    else:
        if axis is not None and not isinstance(axis, (list, tuple)):
            axis = [axis]
1238

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
        if not axis:
            axis = []

        if len(axis) == 0:
            reduce_all_flag = True
        else:
            if len(axis) == len(x.shape):
                reduce_all_flag = True
            else:
                reduce_all_flag = False
1249

1250 1251 1252 1253
    dtype_flag = False
    if dtype is not None:
        dtype_flag = True
        dtype = convert_np_dtype_to_dtype_(dtype)
F
From00 已提交
1254 1255

    if in_dygraph_mode():
1256
        return _C_ops.sum(x, axis, dtype, keepdim)
F
From00 已提交
1257

1258 1259 1260 1261
    if not isinstance(axis, Variable):
        axis = axis if axis != None and axis != [] and axis != () else [0]
        if utils._contain_var(axis):
            axis = utils._convert_to_tensor_list(axis)
1262

F
From00 已提交
1263
    if _in_legacy_dygraph():
1264
        if dtype_flag:
1265
            return _legacy_C_ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
1266 1267 1268
                                            'reduce_all', reduce_all_flag,
                                            'in_dtype', x.dtype, 'out_dtype',
                                            dtype)
1269
        else:
1270
            return _legacy_C_ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
1271
                                            'reduce_all', reduce_all_flag)
W
wanghuancoder 已提交
1272

1273
    attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all_flag}
W
wanghuancoder 已提交
1274

1275
    if dtype_flag:
1276
        attrs.update({'in_dtype': x.dtype, 'out_dtype': dtype})
W
wanghuancoder 已提交
1277

1278 1279 1280 1281 1282
    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64',
        'complex64', 'complex128', u'bool', u'float16', u'float32', u'float64',
        u'int32', u'int64', u'complex64', u'complex128'
    ], 'sum')
1283

1284
    check_type(axis, 'axis', (int, list, tuple, type(None), Variable), 'sum')
1285

1286 1287
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
1288
        out = helper.create_variable_for_type_inference(dtype=dtype)
1289
    else:
1290
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1291 1292 1293 1294
    helper.append_op(type='reduce_sum',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs=attrs)
1295
    return out
1296

1297

W
wangguanqun 已提交
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
def nansum(x, axis=None, dtype=None, keepdim=False, name=None):
    """
    Computes the sum of tensor elements over the given axis, treating Not a Numbers (NaNs) as zero.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the nansum is performed. If
            :attr:`None`, nansum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
1315
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
wangguanqun 已提交
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341

    Returns:
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            # x is a Tensor with following elements:
            #    [[nan, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, -nan, 0.7]]
            # Each example is followed by the corresponding output tensor.
            x = np.array([[float('nan'), 0.3, 0.5, 0.9],
                            [0.1, 0.2, float('-nan'), 0.7]]).astype(np.float32)
            x = paddle.to_tensor(x)
            out1 = paddle.nansum(x)  # [2.7]
            out2 = paddle.nansum(x, axis=0)  # [0.1, 0.5, 0.5, 1.6]
            out3 = paddle.nansum(x, axis=-1)  # [1.7, 1.0]
            out4 = paddle.nansum(x, axis=1, keepdim=True)  # [[1.7], [1.0]]

            # y is a Tensor with shape [2, 2, 2] and elements as below:
            #      [[[1, nan], [3, 4]],
            #      [[5, 6], [-nan, 8]]]
            # Each example is followed by the corresponding output tensor.
1342
            y = np.array([[[1, float('nan')], [3, 4]],
W
wangguanqun 已提交
1343 1344 1345 1346 1347
                            [[5, 6], [float('-nan'), 8]]])
            y = paddle.to_tensor(y)
            out5 = paddle.nansum(y, axis=[1, 2]) # [8, 19]
            out6 = paddle.nansum(y, axis=[0, 1]) # [9, 18]
    """
1348 1349
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'nansum')
W
wangguanqun 已提交
1350 1351 1352 1353 1354 1355 1356
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'nansum')

    zero_tensor = paddle.zeros_like(x)
    tmp_tensor = paddle.where(isnan(x), zero_tensor, x)
    return sum(tmp_tensor, axis, dtype, keepdim, name)


1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
def nanmean(x, axis=None, keepdim=False, name=None):
    r"""
    Compute the arithmetic mean along the specified axis, ignoring NaNs.

    Args:
        x (Tensor): The input Tensor with data type uint16, float16, float32, float64.
        axis (int|list|tuple, optional):The axis along which to perform nanmean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), nanmean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, nanmean is
            calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of arithmetic mean along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:

        .. code-block:: python
            :name: code-example1

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                                  [0.1, 0.2, float('-nan'), 0.7]])
            out1 = paddle.nanmean(x)
            # [0.44999996]
            out2 = paddle.nanmean(x, axis=0)
            # [0.1, 0.25, 0.5, 0.79999995]
            out3 = paddle.nanmean(x, axis=0, keepdim=True)
            # [[0.1, 0.25, 0.5, 0.79999995]]
            out4 = paddle.nanmean(x, axis=1)
            # [0.56666666 0.33333334]
            out5 = paddle.nanmean(x, axis=1, keepdim=True)
            # [[0.56666666]
            #  [0.33333334]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
                                   [[5, 6], [float('-nan'), 8]]])
            out6 = paddle.nanmean(y, axis=[1, 2])
            # [2.66666675, 6.33333349]
            out7 = paddle.nanmean(y, axis=[0, 1])
            # [3., 6.]
    """
    if isinstance(axis, int):
        axis = [axis]
    check_variable_and_dtype(x, 'x/input',
                             ['uint16', 'float16', 'float32', 'float64'],
1416
                             'nanmean')
1417 1418 1419
    if axis is not None:
        check_type(axis, 'axis/dim', (int, list, tuple), 'nanmean')

1420 1421 1422 1423
    cnt = paddle.sum(~paddle.isnan(x), axis=axis, keepdim=keepdim)
    return paddle.divide(
        paddle.nansum(x, axis=axis, keepdim=keepdim, name=name),
        cnt.astype(x.dtype))
1424 1425


1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
def count_nonzero(x, axis=None, keepdim=False, name=None):
    r"""
    Counts the number of non-zero values in the tensor x along the specified axis.

    Args:
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of count operation on the specified axis of input Tensor `x`, it's data type is `'int64'`.

    Examples:

        .. code-block:: python

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]])
            out1 = paddle.count_nonzero(x)
            # [3]
            out2 = paddle.count_nonzero(x, axis=0)
            # [0, 1, 2]
            out3 = paddle.count_nonzero(x, axis=0, keepdim=True)
            # [[0, 1, 2]]
            out4 = paddle.count_nonzero(x, axis=1)
            # [2, 1, 0]
            out5 = paddle.count_nonzero(x, axis=1, keepdim=True)
            #[[2],
            # [1],
            # [0]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]],
                                  [[0., 2.5, 2.6], [0., 0., 2.4], [2.1, 2.2, 2.3]]])
            out6 = paddle.count_nonzero(y, axis=[1, 2])
            # [3, 6]
            out7 = paddle.count_nonzero(y, axis=[0, 1])
            # [1, 3, 5]
    """

    if axis is not None:
        if isinstance(axis, int):
            axis = [axis]
        dims = len(x.shape)
        for i in range(len(axis)):
1480 1481
            if not isinstance(axis[i], int) or not (axis[i] < dims
                                                    and axis[i] >= -dims):
1482 1483 1484 1485 1486 1487 1488 1489 1490
                raise ValueError(
                    "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                )

    bool_tensor = paddle.cast(x, 'bool')
    int_tensor = paddle.cast(bool_tensor, 'int64')
    return paddle.sum(int_tensor, axis=axis, keepdim=keepdim, name=name)


1491
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
1492
def add_n(inputs, name=None):
1493
    """
1494
    Sum one or more Tensor of the input.
1495

S
Steffy-zxf 已提交
1496 1497 1498
    For example:

    .. code-block:: text
1499

S
Steffy-zxf 已提交
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
1513

S
Steffy-zxf 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
1529 1530

    Args:
1531
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
1532
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
1533
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1534 1535

    Returns:
S
Steffy-zxf 已提交
1536
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
1537 1538 1539

    Examples:
        .. code-block:: python
1540

1541 1542
            import paddle

S
Steffy-zxf 已提交
1543 1544 1545
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
1546
            # [[8., 10., 12.],
S
Steffy-zxf 已提交
1547
            #  [14., 16., 18.]]
1548
    """
1549 1550 1551
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
1552
        return _C_ops.add_n(inputs)
1553
    if _in_legacy_dygraph():
S
Steffy-zxf 已提交
1554 1555
        if isinstance(inputs, Variable):
            inputs = [inputs]
1556
        return _legacy_C_ops.sum(inputs, 'use_mkldnn', False)
1557

S
Steffy-zxf 已提交
1558 1559
    helper = LayerHelper('add_n', **locals())
    check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
1560 1561 1562 1563
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
W
WangXi 已提交
1564
                   ['float16', 'float32', 'float64', 'int32', 'int64'], 'add_n')
1565 1566
    else:
        check_variable_and_dtype(inputs, "inputs", \
W
WangXi 已提交
1567
                ['float16', 'float32', 'float64', 'int32', 'int64'], 'add_n')
1568

1569 1570
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
1571 1572 1573 1574
    helper.append_op(type='sum',
                     inputs={'X': inputs},
                     outputs={'Out': out},
                     attrs={'use_mkldnn': False})
1575 1576 1577 1578

    return out


1579 1580 1581
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
1582

1583 1584 1585
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1586

1587 1588
    Returns:
        Tensor: The output Tensor of trunc.
1589

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand([2,2],'float32')
            print(input)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0.02331470, 0.42374918],
            #         [0.79647720, 0.74970269]])

            output = paddle.trunc(input)
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0., 0.],
            #         [0., 0.]]))
    '''
J
Jiabin Yang 已提交
1607
    if in_dygraph_mode():
1608
        return _C_ops.trunc(input)
1609
    else:
J
Jiabin Yang 已提交
1610
        if _in_legacy_dygraph():
1611
            return _legacy_C_ops.trunc(input)
J
Jiabin Yang 已提交
1612 1613 1614
        else:
            inputs = {"X": input}
            attrs = {}
1615

J
Jiabin Yang 已提交
1616
            helper = LayerHelper("trunc", **locals())
1617 1618 1619
            check_variable_and_dtype(input, 'X',
                                     ['int32', 'int64', 'float32', 'float64'],
                                     'trunc')
J
Jiabin Yang 已提交
1620
            out = helper.create_variable_for_type_inference(dtype=input.dtype)
1621

1622 1623 1624 1625
            helper.append_op(type="trunc",
                             inputs=inputs,
                             attrs=attrs,
                             outputs={"Out": out})
J
Jiabin Yang 已提交
1626
            return out
1627 1628


W
WuHaobo 已提交
1629
def mm(input, mat2, name=None):
1630
    """
S
swtkiwi 已提交
1631

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
1643
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
1644
        mat2 (Tensor): The input tensor which is a Tensor.
1645
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1646 1647

    Returns:
N
Noel 已提交
1648
        Tensor: The product Tensor.
1649

W
wawltor 已提交
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
    ::

        * example 1:

        input: [B, ..., M, K], mat2: [B, ..., K, N]
        out: [B, ..., M, N]

        * example 2:

        input: [B, M, K], mat2: [B, K, N]
        out: [B, M, N]

        * example 3:

        input: [B, M, K], mat2: [K, N]
        out: [B, M, N]

        * example 4:

        input: [M, K], mat2: [K, N]
        out: [M, N]

        * example 5:

        input: [B, M, K], mat2: [K]
        out: [B, M]

        * example 6:

        input: [K], mat2: [K]
        out: [1]

1682 1683 1684 1685
    Examples:
        .. code-block:: python

            import paddle
1686 1687 1688 1689 1690 1691 1692 1693
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
1694

1695
    """
1696
    if in_dygraph_mode():
1697
        return _C_ops.matmul(input, mat2, False, False)
1698
    elif paddle.in_dynamic_mode():
1699
        return _legacy_C_ops.matmul_v2(input, mat2)
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
1737
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
1738 1739 1740 1741 1742 1743
    helper.append_op(type='matmul_v2',
                     inputs={
                         'X': input,
                         'Y': mat2
                     },
                     outputs={'Out': out})
1744
    return out
1745

1746

Y
yaoxuefeng 已提交
1747
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
1748 1749 1750
    """
    **addmm**

1751
    Perform matrix multiplication for input $x$ and $y$.
1752 1753 1754 1755 1756 1757 1758 1759 1760
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
1761 1762 1763
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
1764 1765
        beta (float, optional): Coefficient of $input$, default is 1.
        alpha (float, optional): Coefficient of $x*y$, default is 1.
1766
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1767 1768

    Returns:
1769
        Tensor: The output Tensor of addmm.
1770 1771 1772

    Examples:
        ..  code-block:: python
1773

1774 1775
            import paddle

Y
yaoxuefeng 已提交
1776 1777 1778
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
1779

Y
yaoxuefeng 已提交
1780
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
1781

N
Noel 已提交
1782
            print(out)
1783 1784 1785
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
1786 1787 1788
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
1789
    if not len(x_shape) == len(y_shape) == 2:
1790 1791 1792
        raise ValueError(
            "The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}"
            .format(x_shape, y_shape))
Y
yaoxuefeng 已提交
1793
    if x_shape[1] != y_shape[0]:
1794 1795 1796
        raise ValueError(
            "The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}."
            .format(x_shape, y_shape))
1797 1798 1799
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
1800 1801 1802
                raise ValueError(
                    "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}"
                    .format(input_shape[0]))
1803
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
1804 1805 1806
                raise ValueError(
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}"
                    .format(input_shape[1]))
1807 1808
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
1809 1810 1811
                raise ValueError(
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}"
                    .format(input_shape[1]))
1812 1813
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
1814 1815 1816
            raise ValueError(
                "The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]"
                .format(input_shape, x_shape[0], y_shape[1]))
1817
    else:
1818 1819 1820
        raise ValueError(
            "The dimention of input should be 2 or 1 but receive input's shape: {}"
            .format(input_shape))
Y
yaoxuefeng 已提交
1821

J
Jiabin Yang 已提交
1822
    if in_dygraph_mode():
1823
        return _C_ops.addmm(input, x, y, alpha, beta)
J
Jiabin Yang 已提交
1824 1825
    else:
        if _in_legacy_dygraph():
1826
            out = _legacy_C_ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
J
Jiabin Yang 已提交
1827 1828 1829 1830
            return out
        else:
            inputs = {'Input': input, "X": x, "Y": y}
            attrs = {'Alpha': alpha, 'Beta': beta}
1831

J
Jiabin Yang 已提交
1832
            helper = LayerHelper("addmm", **locals())
1833 1834
            check_variable_and_dtype(input, 'Input', ['float32', 'float64'],
                                     'addmm')
J
Jiabin Yang 已提交
1835 1836 1837
            check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
            check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1838

1839 1840 1841 1842
            helper.append_op(type="addmm",
                             inputs=inputs,
                             attrs=attrs,
                             outputs={"Out": out})
J
Jiabin Yang 已提交
1843
            return out
1844

1845

S
seemingwang 已提交
1846 1847 1848 1849 1850 1851 1852
def renorm(x, p, axis, max_norm):
    """
    **renorm**

    This operator is used to calculate the p-norm along the axis,
    suppose the input-shape on axis dimension has the value of T, then
    the tensor is split into T parts, the p-norm should be calculated for each
1853
    part, if the p-norm for part i is larger than max-norm, then each element
S
seemingwang 已提交
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
    in part i should be re-normalized at the same scale so that part-i' p-norm equals
    max-norm exactly, otherwise part-i stays unchanged.

    Args:
        x (Tensor): The input Tensor
        p (float): The power of the norm operation.
        axis (int): the dimension to slice the tensor.
        max-norm (float): the maximal norm limit.

    Returns:
        Tensor: the renorm Tensor.

    Examples:
        ..  code-block:: python
1868

S
seemingwang 已提交
1869 1870 1871 1872
            import paddle
            input = [[[2.0,2,-2],[3,0.3,3]],[[2,-8,2],[3.1,3.7,3]]]
            x = paddle.to_tensor(input,dtype='float32')
            y = paddle.renorm(x, 1.0, 2, 2.05)
1873
            print(y)
S
seemingwang 已提交
1874 1875 1876 1877
    #        [[[ 0.40594056,  0.29285714, -0.41000000],
    #          [ 0.60891086,  0.04392857,  0.61500001]],
    #         [[ 0.40594056, -1.17142856,  0.41000000],
    #          [ 0.62920785,  0.54178572,  0.61500001]]])
1878

S
seemingwang 已提交
1879 1880 1881 1882
    """
    input_shape = x.shape
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'renorm')
    if not axis < len(input_shape):
1883 1884 1885 1886
        raise ValueError(
            "the axis:{} should be less then the shape's size {}:{}".format(
                axis, len(input_shape), input_shape))
    if not axis >= 0:
S
seemingwang 已提交
1887
        if not axis >= -1 * len(input_shape):
1888 1889 1890
            raise ValueError(
                "the axis:{} should not be less than -1 * length of input_shape:{}"
                .format(axis, -1 * len(input_shape)))
S
seemingwang 已提交
1891
        axis = axis + len(input_shape)
S
seemingwang 已提交
1892
    if in_dygraph_mode():
1893
        out = _C_ops.renorm(x, p, axis, max_norm)
S
seemingwang 已提交
1894 1895
        return out
    elif _in_legacy_dygraph():
1896 1897
        out = _legacy_C_ops.renorm(x, 'p', p, 'axis', axis, 'max_norm',
                                   max_norm)
S
seemingwang 已提交
1898 1899 1900
        return out

    inputs = {'X': x}
1901
    attrs = {'p': p, 'axis': axis, 'max_norm': max_norm}
S
seemingwang 已提交
1902 1903 1904 1905

    helper = LayerHelper("renorm", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

1906 1907 1908 1909
    helper.append_op(type="renorm",
                     inputs=inputs,
                     attrs=attrs,
                     outputs={"Out": out})
S
seemingwang 已提交
1910 1911
    return out

1912

Z
zhiboniu 已提交
1913 1914 1915 1916
def inner(x, y, name=None):
    """

    Inner product of two input Tensor.
1917

Z
zhiboniu 已提交
1918 1919 1920 1921 1922
    Ordinary inner product for 1-D Tensors, in higher dimensions a sum product over the last axes.

    Args:
        x (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match y's.
        y (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match x's.
1923
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945

    Returns:
        Tensor: The inner-product Tensor, the output shape is x.shape[:-1] + y.shape[:-1].

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 7).reshape((2, 3)).astype('float32')
            y = paddle.arange(1, 10).reshape((3, 3)).astype('float32')
            out = paddle.inner(x, y)
            print(out)
            #        ([[14, 32, 50],
            #         [32, 77, 122]])


    """
    if x.size == 1 or y.size == 1:
        return multiply(x, y)
    else:
        xshape = x.shape
        yshape = y.shape
1946 1947
        dstshape = list(xshape[:-1]) + list(yshape[:-1])
        if len(dstshape) == 0:
Z
zhiboniu 已提交
1948 1949 1950 1951
            dstshape = [1]
        nx = x.reshape((-1, xshape[-1]))
        ny = y.reshape((-1, yshape[-1]))

1952
        if in_dygraph_mode():
1953
            return _C_ops.matmul(nx, ny.T, False, False).reshape(dstshape)
1954
        elif paddle.in_dynamic_mode():
1955
            return _legacy_C_ops.matmul_v2(nx, ny.T).reshape(dstshape)
Z
zhiboniu 已提交
1956 1957 1958 1959 1960

        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(val, name,
1961 1962
                                         ['float16', 'float32', 'float64'],
                                         'inner')
Z
zhiboniu 已提交
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
            x_shape = list(xshape)
            y_shape = list(yshape)

            # check the inner 2 dimensions
            if x_shape[-1] != y_shape[-1]:
                if not ((x_shape[-1] == -1) or (y_shape[-1] == -1)):
                    raise ValueError(
                        "After performing an optional transpose, Input X's last dim should be "
                        "equal to Y's last dim for multiplication "
                        "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                        % (x_shape, y_shape))

        __check_input(nx, ny)

        helper = LayerHelper('inner', **locals())
        out = helper.create_variable_for_type_inference(dtype=nx.dtype)
1979 1980 1981 1982 1983 1984
        helper.append_op(type='matmul_v2',
                         inputs={
                             'X': nx,
                             'Y': ny.T
                         },
                         outputs={'Out': out})
Z
zhiboniu 已提交
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
        return out.reshape(dstshape)


def outer(x, y, name=None):
    """

    Outer product of two Tensors.

    Input is flattened if not already 1-dimensional.

    Args:
1996 1997
        x (Tensor): An N-D Tensor or a Scalar Tensor.
        y (Tensor): An N-D Tensor or a Scalar Tensor.
1998
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

    Returns:
        Tensor: The outer-product Tensor.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 4).astype('float32')
            y = paddle.arange(1, 6).astype('float32')
            out = paddle.outer(x, y)
            print(out)
            #        ([[1, 2, 3, 4, 5],
            #         [2, 4, 6, 8, 10],
            #         [3, 6, 9, 12, 15]])


    """
    nx = x.reshape((-1, 1))
    ny = y.reshape((1, -1))

2020
    if in_dygraph_mode():
2021
        return _C_ops.matmul(nx, ny, False, False)
2022
    elif paddle.in_dynamic_mode():
2023
        return _legacy_C_ops.matmul_v2(nx, ny)
Z
zhiboniu 已提交
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'inner')

    __check_input(nx, ny)

    helper = LayerHelper('outer', **locals())
    out = helper.create_variable_for_type_inference(dtype=nx.dtype)
2035 2036 2037 2038 2039 2040
    helper.append_op(type='matmul_v2',
                     inputs={
                         'X': nx,
                         'Y': ny
                     },
                     outputs={'Out': out})
Z
zhiboniu 已提交
2041 2042 2043
    return out


2044
def logsumexp(x, axis=None, keepdim=False, name=None):
2045
    r"""
2046
    Calculates the log of the sum of exponentials of ``x`` along ``axis`` .
2047

2048
    .. math::
2049
       logsumexp(x) = \log\sum exp(x)
2050

2051
    Args:
2052
        x (Tensor): The input Tensor with data type float32 or float64, which
S
Shang Zhizhou 已提交
2053
            have no more than 4 dimensions.
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2070

2071
    Returns:
2072 2073
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
2074

2075
    Examples:
2076

2077
    .. code-block:: python
2078

2079 2080
        import paddle

2081
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
2082 2083
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
2084 2085

    """
2086 2087 2088 2089 2090 2091 2092
    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]
2093

2094 2095 2096
    if in_dygraph_mode():
        if reduce_all:
            axis = range(len(x.shape))
2097
        return _C_ops.logsumexp(x, axis, keepdim, reduce_all)
2098
    if _in_legacy_dygraph():
2099 2100
        return _legacy_C_ops.logsumexp(x, 'axis', axis, 'keepdim', keepdim,
                                       'reduce_all', reduce_all)
2101

2102
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'logsumexp')
2103

2104
    helper = LayerHelper('logsumexp', **locals())
2105
    attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all': reduce_all}
2106
    out = helper.create_variable_for_type_inference(x.dtype)
2107 2108 2109 2110
    helper.append_op(type='logsumexp',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs=attrs)
2111
    return out
2112

S
swtkiwi 已提交
2113

2114 2115
def inverse(x, name=None):
    """
2116 2117 2118 2119 2120
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
2121
        x (Tensor): The input tensor. The last two
2122 2123 2124
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
2125
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2126 2127

    Returns:
2128
        Tensor: A Tensor holds the inverse of x. The shape and data type
2129
                        is the same as x.
2130 2131 2132 2133 2134

    Examples:
        .. code-block:: python

            import paddle
2135 2136

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
2137 2138
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
2139 2140

    """
2141
    if in_dygraph_mode():
W
wanghuancoder 已提交
2142
        return _C_ops.inverse(x)
2143 2144
    elif paddle.in_dynamic_mode():
        return _legacy_C_ops.inverse(x)
2145

2146
    def _check_input(x):
2147
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'inverse')
2148
        if len(x.shape) < 2:
2149 2150 2151
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
2152
                "x's shape: %s." % (len(x.shape), x.shape))
2153

2154
    _check_input(x)
2155
    helper = LayerHelper('inverse', **locals())
2156
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2157 2158 2159
    helper.append_op(type='inverse',
                     inputs={'Input': [x]},
                     outputs={'Output': [out]})
2160 2161
    return out

2162

2163 2164
def _get_reduce_axis(axis):
    """
2165
    Internal function for max, min, amax and amin.
2166 2167 2168 2169 2170 2171
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
2172
            axis = [axis]
2173 2174
        else:
            raise TypeError(
2175 2176
                "The type of axis must be int, list or tuple, but received {}".
                format(type(axis)))
2177 2178 2179 2180 2181
    reduce_all = True if axis == None or axis == [] else False
    if axis == None:
        axis = []
    return reduce_all, axis

2182

2183 2184 2185 2186 2187
def _get_reduce_axis_with_tensor(axis):
    if isinstance(axis, Variable):
        return False, axis
    return _get_reduce_axis(axis)

2188

T
Tao Luo 已提交
2189 2190
def _get_reduce_all_value(axis):
    """
2191
    Internal function for max, min, amax and amin.
T
Tao Luo 已提交
2192 2193 2194 2195 2196 2197
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
2198
            axis = [axis]
T
Tao Luo 已提交
2199 2200
        else:
            raise TypeError(
2201 2202
                "The type of axis must be int, list or tuple, but received {}".
                format(type(axis)))
T
Tao Luo 已提交
2203 2204 2205 2206

    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    return reduce_all, axis
2207

2208

2209
def max(x, axis=None, keepdim=False, name=None):
2210
    """
S
swtkiwi 已提交
2211

2212
    Computes the maximum of tensor elements over the given axis.
2213

T
Tao Luo 已提交
2214 2215
    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2216
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2217 2218 2219
        while max propagates gradient to all of them.


2220
    Args:
2221 2222
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
2223
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
2224
            `x` and return a Tensor with a single element,
2225 2226
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2227
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2228
            output Tensor. The result tensor will have one fewer dimension
2229
            than the `x` unless :attr:`keepdim` is true, default
2230
            value is False.
2231
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2232 2233

    Returns:
2234
        Tensor, results of maximum on the specified axis of input tensor,
2235
        it's data type is the same as `x`.
2236 2237 2238

    Examples:
        .. code-block:: python
2239

2240
            import paddle
2241

N
Noel 已提交
2242
            # data_x is a Tensor with shape [2, 4]
2243
            # the axis is a int element
2244
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2245
                                  [0.1, 0.2, 0.6, 0.7]],
2246
                                 dtype='float64', stop_gradient=False)
2247
            result1 = paddle.max(x)
2248
            result1.backward()
2249
            print(result1, x.grad)
2250 2251 2252
            #[0.9], [[0., 0., 0., 1.], [0., 0., 0., 0.]]

            x.clear_grad()
2253
            result2 = paddle.max(x, axis=0)
2254
            result2.backward()
2255
            print(result2, x.grad)
2256 2257 2258
            #[0.2, 0.3, 0.6, 0.9], [[1., 1., 0., 1.], [0., 0., 1., 0.]]

            x.clear_grad()
2259
            result3 = paddle.max(x, axis=-1)
2260
            result3.backward()
2261
            print(result3, x.grad)
2262 2263 2264
            #[0.9, 0.7], [[0., 0., 0., 1.], [0., 0., 0., 1.]]

            x.clear_grad()
2265
            result4 = paddle.max(x, axis=1, keepdim=True)
2266
            result4.backward()
2267
            print(result4, x.grad)
2268
            #[[0.9], [0.7]], [[0., 0., 0., 1.], [0., 0., 0., 1.]]
2269

N
Noel 已提交
2270
            # data_y is a Tensor with shape [2, 2, 2]
2271
            # the axis is list
2272
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2273 2274
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2275
            result5 = paddle.max(y, axis=[1, 2])
2276
            result5.backward()
2277
            print(result5, y.grad)
2278 2279 2280
            #[4., 8.], [[[0., 0.], [0., 1.]], [[0., 0.], [0., 1.]]]

            y.clear_grad()
2281
            result6 = paddle.max(y, axis=[0, 1])
2282
            result6.backward()
2283
            print(result6, y.grad)
2284
            #[7., 8.], [[[0., 0.], [0., 0.]], [[0., 0.], [1., 1.]]]
2285 2286
    """

2287
    reduce_all, axis = _get_reduce_axis_with_tensor(axis)
2288
    if in_dygraph_mode():
2289
        return _C_ops.max(x, axis, keepdim)
2290
    if _in_legacy_dygraph():
2291
        return _legacy_C_ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
2292
                                        'reduce_all', reduce_all)
2293

2294
    helper = LayerHelper('max', **locals())
2295 2296
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'max')
2297 2298
    if not isinstance(axis, Variable) and utils._contain_var(axis):
        axis = utils._convert_to_tensor_list(axis)
2299

2300 2301 2302 2303 2304 2305 2306 2307 2308
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='reduce_max',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'dim': axis,
                         'keep_dim': keepdim,
                         'reduce_all': reduce_all
                     })
2309 2310
    return out

2311

2312
def min(x, axis=None, keepdim=False, name=None):
2313
    """
S
swtkiwi 已提交
2314

2315
    Computes the minimum of tensor elements over the given axis
2316

T
Tao Luo 已提交
2317 2318
    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2319
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2320 2321
        while min propagates gradient to all of them.

2322
    Args:
2323 2324
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
2325
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
2326
            `x` and return a Tensor with a single element,
2327 2328
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2329
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2330
            output Tensor. The result tensor will have one fewer dimension
2331
            than the `x` unless :attr:`keepdim` is true, default
2332
            value is False.
2333
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2334

2335
    Returns:
2336
        Tensor, results of minimum on the specified axis of input tensor,
2337
        it's data type is the same as input's Tensor.
2338

2339 2340 2341
    Examples:
        .. code-block:: python

2342
            import paddle
2343

2344
            # data_x is a Tensor with shape [2, 4]
2345
            # the axis is a int element
2346
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2347
                                  [0.1, 0.2, 0.6, 0.7]],
2348
                                 dtype='float64', stop_gradient=False)
2349
            result1 = paddle.min(x)
2350
            result1.backward()
2351
            print(result1, x.grad)
2352 2353 2354
            #[0.1], [[0., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2355
            result2 = paddle.min(x, axis=0)
2356
            result2.backward()
2357
            print(result2, x.grad)
2358 2359 2360
            #[0.1, 0.2, 0.5, 0.7], [[0., 0., 1., 0.], [1., 1., 0., 1.]]

            x.clear_grad()
2361
            result3 = paddle.min(x, axis=-1)
2362
            result3.backward()
2363
            print(result3, x.grad)
2364 2365 2366
            #[0.2, 0.1], [[1., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2367
            result4 = paddle.min(x, axis=1, keepdim=True)
2368
            result4.backward()
2369
            print(result4, x.grad)
2370
            #[[0.2], [0.1]], [[1., 0., 0., 0.], [1., 0., 0., 0.]]
2371

2372
            # data_y is a Tensor with shape [2, 2, 2]
2373
            # the axis is list
2374
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2375 2376
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2377
            result5 = paddle.min(y, axis=[1, 2])
2378
            result5.backward()
2379
            print(result5, y.grad)
2380 2381 2382
            #[1., 5.], [[[1., 0.], [0., 0.]], [[1., 0.], [0., 0.]]]

            y.clear_grad()
2383
            result6 = paddle.min(y, axis=[0, 1])
2384
            result6.backward()
2385
            print(result6, y.grad)
2386
            #[1., 2.], [[[1., 1.], [0., 0.]], [[0., 0.], [0., 0.]]]
2387
    """
2388

2389
    reduce_all, axis = _get_reduce_axis_with_tensor(axis)
2390
    if in_dygraph_mode():
2391
        return _C_ops.min(x, axis, keepdim)
2392 2393

    if _in_legacy_dygraph():
2394
        return _legacy_C_ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
2395
                                        'reduce_all', reduce_all)
2396 2397

    helper = LayerHelper('min', **locals())
2398 2399
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'min')
2400 2401
    if not isinstance(axis, Variable) and utils._contain_var(axis):
        axis = utils._convert_to_tensor_list(axis)
2402

2403 2404 2405 2406 2407 2408 2409 2410 2411
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='reduce_min',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'dim': axis,
                         'keep_dim': keepdim,
                         'reduce_all': reduce_all
                     })
2412 2413
    return out

2414

T
Tao Luo 已提交
2415 2416 2417 2418 2419 2420
def amax(x, axis=None, keepdim=False, name=None):
    """
    Computes the maximum of tensor elements over the given axis.

    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2421
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2422 2423 2424
        while max propagates gradient to all of them.

    Args:
2425
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2426
            the dimension is no more than 4.
2427
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
T
Tao Luo 已提交
2428 2429 2430 2431
            If :attr:`None`, compute the maximum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2432
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2433 2434 2435
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2436
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449

    Returns:
        Tensor, results of maximum on the specified axis of input tensor,
        it's data type is the same as `x`.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple maximum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.1, 0.9, 0.9, 0.9],
2450
                                  [0.9, 0.9, 0.6, 0.7]],
T
Tao Luo 已提交
2451
                                 dtype='float64', stop_gradient=False)
2452 2453
            # There are 5 maximum elements:
            # 1) amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2454
            #    thus the corresponding gradients are 1/5=0.2;
2455
            # 2) while max propagates gradient to all of them,
T
Tao Luo 已提交
2456
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2457 2458
            result1 = paddle.amax(x)
            result1.backward()
2459
            print(result1, x.grad)
T
Tao Luo 已提交
2460 2461
            #[0.9], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2462 2463 2464
            x.clear_grad()
            result1_max = paddle.max(x)
            result1_max.backward()
2465
            print(result1_max, x.grad)
T
Tao Luo 已提交
2466 2467 2468 2469
            #[0.9], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2470 2471 2472
            x.clear_grad()
            result2 = paddle.amax(x, axis=0)
            result2.backward()
2473
            print(result2, x.grad)
T
Tao Luo 已提交
2474 2475 2476 2477 2478
            #[0.9, 0.9, 0.9, 0.9], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amax(x, axis=-1)
            result3.backward()
2479
            print(result3, x.grad)
T
Tao Luo 已提交
2480 2481 2482 2483 2484
            #[0.9, 0.9], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amax(x, axis=1, keepdim=True)
            result4.backward()
2485
            print(result4, x.grad)
T
Tao Luo 已提交
2486 2487 2488
            #[[0.9], [0.9]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
2489
            # the axis is list
T
Tao Luo 已提交
2490 2491 2492 2493 2494
            y = paddle.to_tensor([[[0.1, 0.9], [0.9, 0.9]],
                                  [[0.9, 0.9], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amax(y, axis=[1, 2])
            result5.backward()
2495
            print(result5, y.grad)
T
Tao Luo 已提交
2496 2497 2498 2499 2500
            #[0.9., 0.9], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amax(y, axis=[0, 1])
            result6.backward()
2501
            print(result6, y.grad)
T
Tao Luo 已提交
2502 2503 2504
            #[0.9., 0.9], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """

2505
    reduce_all, axis = _get_reduce_axis(axis)
2506
    if in_dygraph_mode():
2507
        return _C_ops.amax(x, axis, keepdim)
2508
    if _in_legacy_dygraph():
2509 2510
        return _legacy_C_ops.reduce_amax(x, 'dim', axis, 'keep_dim', keepdim,
                                         'reduce_all', reduce_all)
T
Tao Luo 已提交
2511 2512

    helper = LayerHelper('amax', **locals())
2513 2514
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'amax')
T
Tao Luo 已提交
2515

2516 2517 2518 2519 2520 2521 2522 2523 2524
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='reduce_amax',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'dim': axis,
                         'keep_dim': keepdim,
                         'reduce_all': reduce_all
                     })
T
Tao Luo 已提交
2525 2526
    return out

2527

T
Tao Luo 已提交
2528 2529 2530 2531 2532 2533 2534
def amin(x, axis=None, keepdim=False, name=None):
    """

    Computes the minimum of tensor elements over the given axis

    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2535
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2536 2537 2538
        while min propagates gradient to all of them.

    Args:
2539
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2540
            the dimension is no more than 4.
2541
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
T
Tao Luo 已提交
2542 2543 2544 2545
            If :attr:`None`, compute the minimum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2546
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2547 2548 2549
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2550
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563

    Returns:
        Tensor, results of minimum on the specified axis of input tensor,
        it's data type is the same as input's Tensor.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple minimum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.2, 0.1, 0.1, 0.1],
2564
                                  [0.1, 0.1, 0.6, 0.7]],
T
Tao Luo 已提交
2565
                                 dtype='float64', stop_gradient=False)
2566 2567
            # There are 5 minimum elements:
            # 1) amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2568
            #    thus the corresponding gradients are 1/5=0.2;
2569
            # 2) while min propagates gradient to all of them,
T
Tao Luo 已提交
2570
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2571 2572
            result1 = paddle.amin(x)
            result1.backward()
2573
            print(result1, x.grad)
T
Tao Luo 已提交
2574 2575
            #[0.1], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2576 2577 2578
            x.clear_grad()
            result1_min = paddle.min(x)
            result1_min.backward()
2579
            print(result1_min, x.grad)
T
Tao Luo 已提交
2580 2581 2582 2583
            #[0.1], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2584 2585 2586
            x.clear_grad()
            result2 = paddle.amin(x, axis=0)
            result2.backward()
2587
            print(result2, x.grad)
T
Tao Luo 已提交
2588 2589 2590 2591 2592
            #[0.1, 0.1, 0.1, 0.1], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amin(x, axis=-1)
            result3.backward()
2593
            print(result3, x.grad)
T
Tao Luo 已提交
2594 2595 2596 2597 2598
            #[0.1, 0.1], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amin(x, axis=1, keepdim=True)
            result4.backward()
2599
            print(result4, x.grad)
T
Tao Luo 已提交
2600 2601 2602
            #[[0.1], [0.1]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
2603
            # the axis is list
T
Tao Luo 已提交
2604 2605 2606 2607 2608
            y = paddle.to_tensor([[[0.2, 0.1], [0.1, 0.1]],
                                  [[0.1, 0.1], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amin(y, axis=[1, 2])
            result5.backward()
2609
            print(result5, y.grad)
T
Tao Luo 已提交
2610 2611 2612 2613 2614
            #[0.1., 0.1], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amin(y, axis=[0, 1])
            result6.backward()
2615
            print(result6, y.grad)
T
Tao Luo 已提交
2616 2617 2618
            #[0.1., 0.1], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """

2619
    reduce_all, axis = _get_reduce_axis(axis)
2620
    if in_dygraph_mode():
2621
        return _C_ops.amin(x, axis, keepdim)
2622
    elif _in_legacy_dygraph():
2623 2624
        return _legacy_C_ops.reduce_amin(x, 'dim', axis, 'keep_dim', keepdim,
                                         'reduce_all', reduce_all)
T
Tao Luo 已提交
2625
    helper = LayerHelper('amin', **locals())
2626 2627
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'amin')
T
Tao Luo 已提交
2628

2629 2630 2631 2632 2633 2634 2635 2636 2637
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='reduce_amin',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'dim': axis,
                         'keep_dim': keepdim,
                         'reduce_all': reduce_all
                     })
T
Tao Luo 已提交
2638 2639
    return out

2640

W
WuHaobo 已提交
2641
def log1p(x, name=None):
2642
    r"""
2643
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
2644

2645
    .. math::
2646
        Out = \ln(x+1)
S
Steffy-zxf 已提交
2647

2648
    Args:
S
Steffy-zxf 已提交
2649
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
2650
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2651

2652
    Returns:
S
Steffy-zxf 已提交
2653
        Tensor, the natural log of the input Tensor computed element-wise.
2654

2655 2656
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
2657

2658
            import paddle
S
Steffy-zxf 已提交
2659 2660 2661 2662

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
2663 2664
    """

2665
    if in_dygraph_mode():
W
wanghuancoder 已提交
2666
        return _C_ops.log1p(x)
2667 2668
    if _in_legacy_dygraph():
        return _legacy_C_ops.log1p(x)
2669 2670 2671 2672 2673

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
2674
    out = helper.create_variable_for_type_inference(dtype)
2675 2676
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
2677

2678

J
joejiong 已提交
2679
def log2(x, name=None):
2680
    r"""
J
joejiong 已提交
2681 2682 2683 2684
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

2685
        Out = \log_2x
J
joejiong 已提交
2686 2687 2688

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2689
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2690 2691 2692 2693 2694 2695 2696 2697


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
2698

J
joejiong 已提交
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
2717
    if in_dygraph_mode():
W
wanghuancoder 已提交
2718
        return _C_ops.log2(x)
2719 2720
    if _in_legacy_dygraph():
        return _legacy_C_ops.log2(x)
J
joejiong 已提交
2721 2722 2723 2724 2725 2726 2727 2728

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log2")
    inputs = {'X': [x]}
    helper = LayerHelper('log2', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
    return out
W
WuHaobo 已提交
2729

J
joejiong 已提交
2730 2731

def log10(x, name=None):
2732
    r"""
J
joejiong 已提交
2733 2734 2735 2736
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

2737
        Out = \log_10_x
J
joejiong 已提交
2738 2739 2740

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2741
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2742 2743 2744 2745 2746 2747 2748 2749


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
2750

J
joejiong 已提交
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
2769
    if in_dygraph_mode():
W
wanghuancoder 已提交
2770
        return _C_ops.log10(x)
2771 2772
    if _in_legacy_dygraph():
        return _legacy_C_ops.log10(x)
J
joejiong 已提交
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log10")
    inputs = {'X': [x]}
    helper = LayerHelper('log10', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
    return out


Y
Yang Zhang 已提交
2783
def clip(x, min=None, max=None, name=None):
2784
    """
Y
Yang Zhang 已提交
2785
    This operator clip all elements in input into the range [ min, max ] and return
2786 2787 2788 2789
    a resulting tensor as the following equation:

    .. math::

2790
        Out = MIN(MAX(x, min), max)
2791 2792

    Args:
2793
        x (Tensor): An N-D Tensor with data type float32, float64, int32 or int64.
2794
        min (float|int|Tensor, optional): The lower bound with type ``float`` , ``int`` or a ``Tensor``
2795
            with shape [1] and type ``int32``, ``float32``, ``float64``.
2796
        max (float|int|Tensor, optional): The upper bound with type ``float``, ``int`` or a ``Tensor``
2797
            with shape [1] and type ``int32``, ``float32``, ``float64``.
2798
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2799 2800

    Returns:
Y
Yang Zhang 已提交
2801
        Tensor: A Tensor with the same data type and data shape as input.
2802 2803 2804 2805 2806

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
2807

2808
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
2809 2810
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
2811
            print(out1)
Y
Yang Zhang 已提交
2812 2813
            # [[3.5, 3.5]
            # [4.5, 5.0]]
2814
            print(out2)
Y
Yang Zhang 已提交
2815 2816
            # [[2.5, 3.5]
            # [[4.5, 6.4]
2817 2818
    """

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
2829

C
chentianyu03 已提交
2830 2831 2832 2833 2834 2835 2836
    if in_dygraph_mode():
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
        min = min_ if min is None else min
        max = max_ if max is None else max
2837
        return _C_ops.clip(x, min, max)
C
chentianyu03 已提交
2838 2839

    if _in_legacy_dygraph():
2840 2841 2842 2843
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
2844 2845
        min = min_ if min is None else min
        max = max_ if max is None else max
2846
        return _legacy_C_ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
2847

2848
    if min is not None:
Y
Yang Zhang 已提交
2849
        check_type(min, 'min', (float, int, Variable), 'clip')
2850 2851
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
2852
                        'clip', '(When the type of min in clip is Variable.)')
2853
    if max is not None:
Y
Yang Zhang 已提交
2854
        check_type(max, 'max', (float, int, Variable), 'clip')
2855 2856
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
2857
                        'clip', '(When the type of max in clip is Variable.)')
2858

2859 2860
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'clip')
Y
Yang Zhang 已提交
2861 2862

    inputs = {'X': x}
2863
    attrs = {'min': min_, 'max': max_}
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
2877
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
2878
    output = helper.create_variable_for_type_inference(
Y
Yang Zhang 已提交
2879
        dtype=helper.input_dtype('x'))
2880 2881 2882 2883
    helper.append_op(type='clip',
                     inputs=inputs,
                     outputs={'Out': [output]},
                     attrs=attrs)
2884 2885

    return output
F
Feiyu Chan 已提交
2886

W
WuHaobo 已提交
2887

2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_clip`.
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
        min = min.numpy().item(0)
    if isinstance(max, Variable):
        max = max.numpy().item(0)
    min = fmin if min is None else min
    max = fmax if max is None else max
C
chentianyu03 已提交
2902 2903

    if in_dygraph_mode():
2904
        return _C_ops.clip_(x, min, max)
C
chentianyu03 已提交
2905 2906

    if _in_legacy_dygraph():
2907
        return _legacy_C_ops.clip_(x, "min", min, "max", max)
2908 2909


2910
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
2911
    """
S
swtkiwi 已提交
2912

2913
    Computes the sum along diagonals of the input tensor x.
2914 2915

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
2916

2917
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
2918
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
2919
    of the input tensor x.
L
Li Fuchen 已提交
2920

2921
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
2922 2923 2924 2925

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
2926
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
2927

L
Li Fuchen 已提交
2928
    Args:
2929 2930 2931 2932 2933
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
L
Li Fuchen 已提交
2934 2935

    Returns:
2936
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
2937 2938 2939 2940 2941

    Examples:
        .. code-block:: python

            import paddle
2942

2943 2944 2945
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
2946 2947 2948
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
2949
    """
2950

Z
zyfncg 已提交
2951
    def __check_input(x, offset, axis1, axis2):
2952
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
2953 2954 2955
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

2956
        input_shape = list(x.shape)
L
Li Fuchen 已提交
2957
        assert len(input_shape) >= 2,                     \
2958 2959
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
2960 2961
                len(input_shape)

2962 2963
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
2964

X
XiangGao 已提交
2965
        assert ((0 <= axis1_) and (axis1_ < len(input_shape))),     \
2966 2967
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
2968

X
XiangGao 已提交
2969
        assert ((0 <= axis2_) and (axis2_ < len(input_shape))),   \
2970 2971
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
2972 2973


2974 2975 2976
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
2977

H
hong 已提交
2978
    if in_dygraph_mode():
2979
        return _C_ops.trace(x, offset, axis1, axis2)
H
hong 已提交
2980 2981

    if _in_legacy_dygraph():
2982 2983
        return _legacy_C_ops.trace(x, 'offset', offset, 'axis1', axis1, 'axis2',
                                   axis2)
X
XiangGao 已提交
2984

Z
zyfncg 已提交
2985
    __check_input(x, offset, axis1, axis2)
L
Li Fuchen 已提交
2986

Z
zyfncg 已提交
2987
    helper = LayerHelper('trace', **locals())
2988
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
2989

2990 2991 2992 2993 2994 2995 2996 2997
    helper.append_op(type='trace',
                     inputs={'Input': [x]},
                     attrs={
                         'offset': offset,
                         'axis1': axis1,
                         'axis2': axis2
                     },
                     outputs={'Out': [out]})
L
Li Fuchen 已提交
2998 2999
    return out

3000

3001 3002 3003 3004 3005
def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
    """
    This OP computes the diagonals of the input tensor x.

    If ``x`` is 2D, returns the diagonal.
3006
    If ``x`` has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2.
3007 3008 3009 3010 3011 3012 3013
    By default, the 2D planes formed by the first and second axis of the input tensor x.

    The argument ``offset`` determines where diagonals are taken from input tensor x:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
3014

3015
    Args:
3016 3017 3018 3019 3020
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063

    Returns:
        Tensor: a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([2,2,3],'float32')
            print(x)
            # Tensor(shape=[2, 2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[[0.45661032, 0.03751532, 0.90191704],
            #          [0.43760979, 0.86177313, 0.65221709]],

            #         [[0.17020577, 0.00259554, 0.28954273],
            #          [0.51795638, 0.27325270, 0.18117726]]])

            out1 = paddle.diagonal(x)
            print(out1)
            #Tensor(shape=[3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.51795638],
            #        [0.03751532, 0.27325270],
            #        [0.90191704, 0.18117726]])

            out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1)
            print(out2)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])

            out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1)
            print(out3)
            #Tensor(shape=[3, 1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.43760979],
            #        [0.86177313],
            #        [0.65221709]])

            out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2)
            print(out4)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])
3064

3065
    """
J
Jiabin Yang 已提交
3066
    if in_dygraph_mode():
3067
        return _C_ops.diagonal(x, offset, axis1, axis2)
J
Jiabin Yang 已提交
3068 3069
    else:
        if _in_legacy_dygraph():
3070 3071
            return _legacy_C_ops.diagonal(x, 'offset', offset, 'axis1', axis1,
                                          'axis2', axis2)
W
wanghuancoder 已提交
3072

Z
zyfncg 已提交
3073
    def __check_input(x, offset, axis1, axis2):
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
        check_dtype(x.dtype, 'Input',
                    ['bool', 'int32', 'int64', 'float16', 'float32', 'float64'],
                    'diagonal')

        input_shape = list(x.shape)
        assert len(input_shape) >= 2,                     \
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
                len(input_shape)

        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2

        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)

        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)

        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)

Z
zyfncg 已提交
3099
    __check_input(x, offset, axis1, axis2)
3100 3101 3102
    helper = LayerHelper('diagonal', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3103 3104 3105 3106 3107 3108 3109 3110
    helper.append_op(type='diagonal',
                     inputs={'Input': [x]},
                     attrs={
                         'offset': offset,
                         'axis1': axis1,
                         'axis2': axis2
                     },
                     outputs={'Out': [out]})
3111 3112 3113
    return out


F
Feiyu Chan 已提交
3114
@templatedoc(op_type="kron")
W
WuHaobo 已提交
3115
def kron(x, y, name=None):
S
swtkiwi 已提交
3116 3117
    """

3118
    ${comment}
F
Feiyu Chan 已提交
3119 3120

    Args:
3121 3122
        x (Tensor): the fist operand of kron op, data type: float16, float32, float64, int32 or int64.
        y (Tensor): the second operand of kron op, data type: float16, float32, float64, int32 or int64. Its data type should be the same with x.
3123
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
F
Feiyu Chan 已提交
3124 3125

    Returns:
3126
        Tensor: The output of kron, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
3127 3128 3129

    Examples:
        .. code-block:: python
3130

3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
3142
    """
3143
    if _in_legacy_dygraph():
3144
        return _legacy_C_ops.kron(x, y)
3145
    if in_dygraph_mode():
3146
        return _C_ops.kron(x, y)
F
Feiyu Chan 已提交
3147
    helper = LayerHelper('kron', **locals())
3148 3149 3150 3151
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
F
Feiyu Chan 已提交
3152

W
WuHaobo 已提交
3153
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
3154 3155
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
3156 3157 3158 3159


def cumsum(x, axis=None, dtype=None, name=None):
    """
3160 3161
    The cumulative sum of the elements along a given axis.

3162
    Note:
3163
        The first element of the result is the same as the first element of the input.
3164 3165

    Args:
3166
        x (Tensor): The input tensor needed to be cumsumed.
3167
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3168
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3169 3170 3171
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3172
        Tensor, the result of cumsum operator.
3173 3174 3175

    Examples:
        .. code-block:: python
3176

3177
            import paddle
3178

3179 3180
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
3181 3182 3183 3184 3185 3186 3187 3188

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
3189

3190 3191 3192 3193 3194 3195 3196
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
3197
            # paddle.float64
3198 3199 3200 3201 3202 3203
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3204
        x = cast(x, dtype)
3205

H
hong 已提交
3206
    if in_dygraph_mode():
3207
        if axis is None: axis = -1
3208
        return _C_ops.cumsum(x, axis, flatten, False, False)
H
hong 已提交
3209
    if _in_legacy_dygraph():
3210
        if axis is None:
3211
            return _legacy_C_ops.cumsum(x, 'flatten', flatten)
3212
        else:
3213
            return _legacy_C_ops.cumsum(x, 'axis', axis, 'flatten', flatten)
3214 3215 3216 3217 3218 3219 3220 3221 3222

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
3223

3224 3225 3226

def logcumsumexp(x, axis=None, dtype=None, name=None):
    r"""
3227
    The logarithm of the cumulative summation of the exponentiation of the elements along a given axis.
3228 3229 3230 3231 3232 3233

    For summation index j given by `axis` and other indices i, the result is

    .. math::

        logcumsumexp(x)_{ij} = log \sum_{i=0}^{j}exp(x_{ij})
3234

3235 3236 3237 3238 3239 3240
    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor.
        axis (int, optional): The dimension to do the operation along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3241
        dtype (str, optional): The data type of the output tensor, can be float32, float64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3242 3243 3244
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3245
        Tensor, the result of logcumsumexp operator.
3246 3247 3248

    Examples:
        .. code-block:: python
3249

3250
            import paddle
3251

3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
            data = paddle.arange(12, dtype='float64')
            data = paddle.reshape(data, (3, 4))

            y = paddle.logcumsumexp(data)
            # [ 0.         1.3132617  2.4076061  3.4401898  4.4519143  5.4561934
            #   6.4577627  7.4583397  8.458551   9.45863   10.458658  11.458669 ]

            y = paddle.logcumsumexp(data, axis=0)
            # [[ 0.        1.        2.        3.      ]
            #  [ 4.01815   5.01815   6.01815   7.01815 ]
            #  [ 8.018479  9.018479 10.018479 11.018479]]
3263

3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
            y = paddle.logcumsumexp(data, axis=-1)
            # [[ 0.         1.3132617  2.4076061  3.4401898]
            #  [ 4.         5.3132615  6.407606   7.44019  ]
            #  [ 8.         9.313262  10.407606  11.440189 ]]

            y = paddle.logcumsumexp(data, dtype='float64')
            print(y.dtype)
            # paddle.float64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = cast(x, dtype)

    if in_dygraph_mode():
        if axis is None: axis = -1
3282
        return _C_ops.logcumsumexp(x, axis, flatten, False, False)
3283 3284
    if _in_legacy_dygraph():
        if axis is None:
3285
            return _legacy_C_ops.logcumsumexp(x, 'flatten', flatten)
3286
        else:
3287 3288
            return _legacy_C_ops.logcumsumexp(x, 'axis', axis, 'flatten',
                                              flatten)
3289 3290 3291 3292 3293

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "logcumsumexp")

    helper = LayerHelper('logcumsumexp', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
3294 3295 3296 3297 3298 3299 3300
    helper.append_op(type='logcumsumexp',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'axis': axis,
                         'flatten': flatten
                     })
3301 3302 3303
    return out


H
hlygit66666 已提交
3304 3305 3306 3307
def cumprod(x, dim=None, dtype=None, name=None):
    """
    Compute the cumulative product of the input tensor x along a given dimension dim.

3308 3309
    Note:
        The first element of the result is the same as the first element of the input.
H
hlygit66666 已提交
3310 3311 3312 3313 3314

    Args:
        x (Tensor): the input tensor need to be cumproded.
        dim (int): the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank), where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64, complex64, complex128. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
H
hlygit66666 已提交
3315
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
H
hlygit66666 已提交
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351

    Returns:
        Tensor, the result of cumprod operator.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
            # [[ 0  1  2  3 ]
            #  [ 4  5  6  7 ]
            #  [ 8  9  10 11]]

            y = paddle.cumprod(data, dim=0)
            # [[ 0  1   2   3]
            #  [ 0  5  12  21]
            #  [ 0 45 120 231]]

            y = paddle.cumprod(data, dim=-1)
            # [[ 0   0   0    0]
            #  [ 4  20 120  840]
            #  [ 8  72 720 7920]]

            y = paddle.cumprod(data, dim=1, dtype='float64')
            # [[ 0.   0.   0.    0.]
            #  [ 4.  20. 120.  840.]
            #  [ 8.  72. 720. 7920.]]

            print(y.dtype)
            # paddle.float64

    """

    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3352
        x = cast(x, dtype)
H
hlygit66666 已提交
3353

3354
    if in_dygraph_mode():
3355
        return _C_ops.cumprod(x, dim)
3356
    if _in_legacy_dygraph():
3357
        return _legacy_C_ops.cumprod(x, 'dim', dim)
H
hlygit66666 已提交
3358

3359 3360 3361 3362
    check_variable_and_dtype(
        x, "x",
        ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'],
        'cumprod')
H
hlygit66666 已提交
3363 3364 3365 3366
    check_type(dim, 'dim', int, 'cumprod')

    helper = LayerHelper('cumprod', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
3367 3368 3369 3370
    helper.append_op(type='cumprod',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'dim': dim})
H
hlygit66666 已提交
3371 3372
    return out

3373

J
Jack Zhou 已提交
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
3390

3391
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3392
            out = paddle.isfinite(x)
N
Noel 已提交
3393
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
3394
    """
H
hong 已提交
3395
    if in_dygraph_mode():
3396
        return _C_ops.isfinite(x)
H
hong 已提交
3397
    if _in_legacy_dygraph():
3398
        return _legacy_C_ops.isfinite_v2(x)
J
Jack Zhou 已提交
3399
    helper = LayerHelper("isfinite_v2", **locals())
3400 3401
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite')
J
Jack Zhou 已提交
3402 3403 3404 3405
    out = helper.create_variable_for_type_inference('bool')
    helper.append_op(type="isfinite_v2", inputs={"X": x}, outputs={"Out": out})
    return out

3406

J
Jack Zhou 已提交
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3423

3424
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3425
            out = paddle.isinf(x)
N
Noel 已提交
3426
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
3427
    """
H
hong 已提交
3428
    if in_dygraph_mode():
3429
        return _C_ops.isinf(x)
H
hong 已提交
3430
    if _in_legacy_dygraph():
3431
        return _legacy_C_ops.isinf_v2(x)
J
Jack Zhou 已提交
3432
    helper = LayerHelper("isinf_v2", **locals())
3433 3434
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf')
J
Jack Zhou 已提交
3435 3436 3437 3438
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
    return out

3439

J
Jack Zhou 已提交
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
3456

3457
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3458
            out = paddle.isnan(x)
N
Noel 已提交
3459
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
3460
    """
H
hong 已提交
3461
    if in_dygraph_mode():
3462
        return _C_ops.isnan(x)
H
hong 已提交
3463 3464

    if _in_legacy_dygraph():
3465
        return _legacy_C_ops.isnan_v2(x)
J
Jack Zhou 已提交
3466
    helper = LayerHelper("isnan_v2", **locals())
3467 3468
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan')
J
Jack Zhou 已提交
3469 3470 3471 3472 3473
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
    return out


G
guofei 已提交
3474 3475 3476 3477 3478
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
3479
        x (Tensor): The input tensor, its data type should be float32, float64, int32, int64.
3480 3481 3482
        axis (int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`,
            multiply all elements of `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`,
G
guofei 已提交
3483
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
3484
        keepdim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result
3485
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
3486 3487 3488
        dtype (str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64,
            int32, int64. If specified, the input tensor is casted to dtype before operator performed.
            This is very useful for avoiding data type overflows. The default value is None, the dtype
G
guofei 已提交
3489
            of output is the same as input Tensor `x`.
3490
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
G
guofei 已提交
3491 3492 3493

    Returns:
        Tensor, result of product on the specified dim of input tensor.
3494

G
guofei 已提交
3495 3496 3497 3498 3499 3500
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
3501 3502
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
            out1 = paddle.prod(x)
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
3519 3520
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
3521 3522 3523 3524 3525 3526 3527 3528
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
3529 3530
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                    'prod')
G
guofei 已提交
3531
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3532
            x = cast(x, dtype)
G
guofei 已提交
3533

3534
    dim = axis
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
    if isinstance(dim, Variable):
        reduce_all = True if axis.shape[0] == len(x.shape) else False
    else:
        if dim is not None and not isinstance(dim, list):
            if isinstance(dim, tuple):
                dim = list(dim)
            elif isinstance(dim, int):
                dim = [dim]
            else:
                raise TypeError(
3545 3546
                    "The type of axis must be int, list or tuple, but received {}"
                    .format(type(dim)))
3547

3548 3549
        reduce_all = True if dim is None or len(dim) == 0 or len(dim) == len(
            x.shape) else False
3550 3551
        if dim is None or len(dim) == 0:
            dim = [0]
3552

3553
    if in_dygraph_mode():
3554
        return _C_ops.reduce_prod(x, dim, keepdim, reduce_all)
3555
    if _in_legacy_dygraph():
3556 3557
        return _legacy_C_ops.reduce_prod(x, 'dim', dim, 'keep_dim', keepdim,
                                         'reduce_all', reduce_all)
3558 3559

    helper = LayerHelper('reduce_prod', **locals())
3560 3561 3562
    check_variable_and_dtype(x, 'x/input',
                             ['float32', 'float64', 'int32', 'int64'],
                             'reduce_prod')
3563
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
3564 3565
    if not isinstance(dim, Variable) and utils._contain_var(dim):
        dim = utils._convert_to_tensor_list(dim)
3566 3567 3568 3569 3570 3571 3572 3573
    helper.append_op(type='reduce_prod',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'dim': dim,
                         'keep_dim': keepdim,
                         'reduce_all': reduce_all
                     })
3574
    return out
W
WangXi 已提交
3575 3576 3577 3578


def sign(x, name=None):
    """
3579
    Returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
W
WangXi 已提交
3580 3581

    Args:
3582 3583
        x (Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
WangXi 已提交
3584 3585 3586 3587 3588 3589 3590 3591 3592

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

3593
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
3594 3595 3596
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
H
hong 已提交
3597
    if in_dygraph_mode():
3598
        return _C_ops.sign(x)
H
hong 已提交
3599 3600

    if _in_legacy_dygraph():
3601
        return _legacy_C_ops.sign(x)
W
WangXi 已提交
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sign')
    helper = LayerHelper("sign", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out


def tanh(x, name=None):
3613
    r"""
W
WangXi 已提交
3614 3615 3616
    Tanh Activation Operator.

    .. math::
3617
        out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

3632
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
3633
            out = paddle.tanh(x)
N
Noel 已提交
3634
            print(out)
W
WangXi 已提交
3635 3636
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
H
hong 已提交
3637
    if in_dygraph_mode():
3638
        return _C_ops.tanh(x)
H
hong 已提交
3639 3640

    if _in_legacy_dygraph():
3641
        return _legacy_C_ops.tanh(x)
W
WangXi 已提交
3642 3643

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanh')
S
ShenLiang 已提交
3644
    check_type(x, 'x', (Variable), 'tanh')
W
WangXi 已提交
3645 3646 3647 3648
    helper = LayerHelper('tanh', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
    return out
S
Steffy-zxf 已提交
3649

3650

3651
@inplace_apis_in_dygraph_only
3652 3653 3654 3655 3656
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
3657
    if in_dygraph_mode():
3658
        return _C_ops.tanh_(x)
3659
    return _legacy_C_ops.tanh_(x)
3660 3661


S
Steffy-zxf 已提交
3662 3663
def increment(x, value=1.0, name=None):
    """
3664
    The API is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
S
Steffy-zxf 已提交
3665 3666 3667 3668
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
3669
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
S
Steffy-zxf 已提交
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
H
hong 已提交
3685
    if in_dygraph_mode():
3686
        return _C_ops.increment_(x, value)
H
hong 已提交
3687 3688

    if _in_legacy_dygraph():
3689
        return _legacy_C_ops.increment(x, 'step', value)
S
Steffy-zxf 已提交
3690 3691 3692 3693

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
    helper = LayerHelper("increment", **locals())
3694 3695 3696 3697
    helper.append_op(type='increment',
                     inputs={'X': [x]},
                     outputs={'Out': [x]},
                     attrs={'step': float(value)})
S
Steffy-zxf 已提交
3698
    return x
3699 3700 3701 3702


def all(x, axis=None, keepdim=False, name=None):
    """
3703
    Computes the ``logical and`` of tensor elements over the given dimension.
3704 3705 3706 3707 3708

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3709
            Tensor with a single element, otherwise must be in the
3710 3711 3712 3713 3714 3715
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3716
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3717 3718 3719 3720 3721 3722 3723 3724

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3725

N
Noel 已提交
3726
            # x is a bool Tensor with following elements:
3727 3728
            #    [[True, False]
            #     [True, True]]
C
Chen Long 已提交
3729
            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
3730
            print(x)
S
syyxsxx 已提交
3731
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3732

3733 3734 3735
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
C
Chen Long 已提交
3736

3737 3738 3739
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
C
Chen Long 已提交
3740 3741

            # keepdim=False, out3 should be [False, True], out.shape should be (2,)
3742 3743
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
C
Chen Long 已提交
3744 3745 3746

            # keepdim=True, out4 should be [[False], [True]], out.shape should be (2,1)
            out4 = paddle.all(x, axis=1, keepdim=True) # [[False], [True]]
3747
            print(out4)
3748

3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

3761 3762 3763
    if in_dygraph_mode():
        if reduce_all_flag:
            axis = range(len(x.shape))
3764
        return _C_ops.all(x, axis, keepdim)
3765 3766

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3767
        axis = axis if axis != None and axis != [] else [0]
3768
        return _legacy_C_ops.reduce_all(x, 'dim', axis, 'keep_dim', keepdim,
3769
                                        'reduce_all', reduce_all_flag)
W
wanghuancoder 已提交
3770

3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    check_variable_and_dtype(x, 'x', ['bool'], 'all')

    check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')

    helper = LayerHelper('all', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
3782 3783 3784 3785
    helper.append_op(type='reduce_all',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs=attrs)
3786 3787 3788 3789 3790
    return out


def any(x, axis=None, keepdim=False, name=None):
    """
C
Chen Long 已提交
3791
    Computes the ``logical or`` of tensor elements over the given dimension, and return the result.
3792 3793 3794 3795 3796

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3797
            Tensor with a single element, otherwise must be in the
3798 3799 3800 3801 3802 3803
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3804
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3805 3806 3807 3808 3809 3810 3811 3812

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3813 3814 3815

            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
            x = paddle.assign(x)
3816
            print(x)
S
syyxsxx 已提交
3817
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3818 3819 3820 3821
            # x is a bool Tensor with following elements:
            #    [[True, False]
            #     [True, True]]

3822 3823 3824
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
C
Chen Long 已提交
3825

3826 3827
            # out2 should be [True, True]
            out2 = paddle.any(x, axis=0)  # [True, True]
3828
            print(out2)
C
Chen Long 已提交
3829 3830

            # keepdim=False, out3 should be [True, True], out.shape should be (2,)
3831
            out3 = paddle.any(x, axis=-1)  # [True, True]
3832
            print(out3)
C
Chen Long 已提交
3833 3834 3835

            # keepdim=True, result should be [[True], [True]], out.shape should be (2,1)
            out4 = paddle.any(x, axis=1, keepdim=True)  # [[True], [True]]
3836 3837
            print(out4)

3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

3850 3851 3852
    if in_dygraph_mode():
        if reduce_all_flag:
            axis = range(len(x.shape))
3853
        return _C_ops.any(x, axis, keepdim)
3854 3855

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3856
        axis = axis if axis != None and axis != [] else [0]
3857
        return _legacy_C_ops.reduce_any(x, 'dim', axis, 'keep_dim', keepdim,
3858
                                        'reduce_all', reduce_all_flag)
W
wanghuancoder 已提交
3859

3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }

    check_variable_and_dtype(x, 'x', ['bool'], 'any')

    check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')

    helper = LayerHelper('any', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
3872 3873 3874 3875
    helper.append_op(type='reduce_any',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs=attrs)
3876
    return out
L
Leo Chen 已提交
3877

3878

L
Leo Chen 已提交
3879 3880 3881 3882 3883 3884 3885
def broadcast_shape(x_shape, y_shape):
    """
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape, please refer to :ref:`user_guide_broadcasting` for more details.

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
3886

L
Leo Chen 已提交
3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
3898

L
Leo Chen 已提交
3899 3900 3901 3902 3903 3904
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)
3905

3906

3907 3908 3909 3910 3911
def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
3912
        x (Tensor): The input Tensor which hold the complex numbers.
3913
            Optional data types are: complex64, complex128, float32, float64, int32 or int64.
3914
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3915 3916

    Returns:
C
Chen Long 已提交
3917
        out (Tensor): The conjugate of input. The shape and data type is the same with input. If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.
3918 3919 3920 3921 3922

    Examples:
        .. code-block:: python

          import paddle
3923

3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
          data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1+1j), (2+2j), (3+3j)],
          #        [(4+4j), (5+5j), (6+6j)]])

          conj_data=paddle.conj(data)
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1-1j), (2-2j), (3-3j)],
          #        [(4-4j), (5-5j), (6-6j)]])

    """
H
hong 已提交
3935
    if in_dygraph_mode():
3936
        return _C_ops.conj(x)
H
hong 已提交
3937

Z
zhiboniu 已提交
3938
    if paddle.in_dynamic_mode():
3939
        return _legacy_C_ops.conj(x)
3940

3941 3942 3943 3944
    check_variable_and_dtype(
        x, "x",
        ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'],
        'conj')
3945 3946

    helper = LayerHelper('conj', **locals())
3947
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
3948 3949 3950

    helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
    return out
3951

3952

Z
zyfncg 已提交
3953 3954 3955 3956 3957 3958 3959 3960 3961
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
3962
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zyfncg 已提交
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            res = paddle.digamma(data)
            print(res)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[-0.57721591,  0.03648996],
            #        [ nan       ,  5.32286835]])
    """

J
Jiabin Yang 已提交
3979
    if in_dygraph_mode():
3980
        return _C_ops.digamma(x)
J
Jiabin Yang 已提交
3981 3982
    else:
        if _in_legacy_dygraph():
3983
            return _legacy_C_ops.digamma(x)
Z
zyfncg 已提交
3984 3985 3986 3987 3988 3989 3990

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'digamma')
    helper = LayerHelper('digamma', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
    return out

3991

3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
def lgamma(x, name=None):
    r"""
    Calculates the lgamma of the given input tensor, element-wise.

    This operator performs elementwise lgamma for input $X$.
    :math:`out = log\Gamma(x)`


    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the lgamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.lgamma(x)
            print(out)
            # [1.31452441, 1.76149750, 2.25271273, 1.09579802]
    """
    if in_dygraph_mode():
        return _C_ops.lgamma(x)
4019 4020
    elif _in_legacy_dygraph():
        return _legacy_C_ops.lgamma(x)
4021 4022 4023 4024 4025 4026 4027 4028

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'lgamma')
    helper = LayerHelper('lgamma', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='lgamma', inputs={'X': x}, outputs={'Out': out})
    return out


4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.neg(x)
            print(out)
            # [0.4 0.2 -0.1 -0.3]
    """

4051 4052 4053 4054 4055 4056 4057
    return scale(x,
                 scale=-1.0,
                 bias=0.0,
                 bias_after_scale=True,
                 act=None,
                 name=name)

R
ronnywang 已提交
4058

4059
def atan2(x, y, name=None):
R
ronnywang 已提交
4060
    r"""
4061
    Element-wise arctangent of x/y with consideration of the quadrant.
R
ronnywang 已提交
4062 4063 4064 4065

    Equation:
        .. math::

4066 4067 4068 4069 4070 4071 4072 4073
            atan2(x,y)=\left\{\begin{matrix}
            & tan^{-1}(\frac{x}{y}) & y > 0 \\
            & tan^{-1}(\frac{x}{y}) + \pi & x>=0, y < 0 \\
            & tan^{-1}(\frac{x}{y}) - \pi & x<0, y < 0 \\
            & +\frac{\pi}{2} & x>0, y = 0 \\
            & -\frac{\pi}{2} & x<0, y = 0 \\
            &\text{undefined} & x=0, y = 0
            \end{matrix}\right.
R
ronnywang 已提交
4074 4075

    Args:
4076 4077
        x (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
        y (Tensor): An N-D Tensor, must have the same type as `x`.
R
ronnywang 已提交
4078 4079 4080 4081 4082 4083 4084 4085
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).

    Examples:
        .. code-block:: python

4086
            import paddle
R
ronnywang 已提交
4087

4088 4089 4090
            x = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  1,  1, -1])
R
ronnywang 已提交
4091

4092 4093 4094
            y = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  -1,  1, 1])
R
ronnywang 已提交
4095

4096 4097 4098
            out = paddle.atan2(x, y)
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-2.35619450,  2.35619450,  0.78539819, -0.78539819])
R
ronnywang 已提交
4099 4100 4101

    """

J
Jiabin Yang 已提交
4102
    if in_dygraph_mode():
4103
        return _C_ops.atan2(x, y)
R
ronnywang 已提交
4104
    else:
J
Jiabin Yang 已提交
4105
        if _in_legacy_dygraph():
4106
            return _legacy_C_ops.atan2(x, y)
J
Jiabin Yang 已提交
4107
        else:
4108 4109 4110 4111 4112 4113
            check_variable_and_dtype(
                x, 'x', ['int32', 'int64', 'float16', 'float32', 'float64'],
                'atan2')
            check_variable_and_dtype(
                y, 'y', ['int32', 'int64', 'float16', 'float32', 'float64'],
                'atan2')
R
ronnywang 已提交
4114

J
Jiabin Yang 已提交
4115
            helper = LayerHelper('atan2', **locals())
4116
            inputs = {'X1': x, 'X2': y}
J
Jiabin Yang 已提交
4117
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
4118
            helper.append_op(type='atan2', inputs=inputs, outputs={'Out': out})
J
Jiabin Yang 已提交
4119
            return out
A
andyjpaddle 已提交
4120

4121

W
wangzhen38 已提交
4122 4123 4124 4125 4126
def logit(x, eps=None, name=None):
    r"""
    This function generates a new tensor with the logit of the elements of input x. x is clamped to [eps, 1-eps] when eps is not zero. When eps is zero and x < 0 or x > 1, the function will yields NaN.

    .. math::
4127

W
wangzhen38 已提交
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
        logit(x) = ln(\frac{x}{1 - x})

    where

    .. math::

        x_i=
            \left\{\begin{array}{rcl}
                x_i & &\text{if } eps == Default \\
                eps & &\text{if } x_i < eps \\
                x_i & &\text{if } eps <= x_i <= 1-eps \\
                1-eps & &\text{if } x_i > 1-eps
            \end{array}\right.

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        eps (float, optional):  the epsilon for input clamp bound. Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out(Tensor): A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0.2635, 0.0106, 0.2780, 0.2097, 0.8095])
            out1 = paddle.logit(x)
            print(out1)
4159
            # [-1.0277, -4.5365, -0.9544, -1.3269,  1.4468]
W
wangzhen38 已提交
4160 4161 4162 4163 4164

    """

    if eps == None:
        eps = 0.0
4165
    if _in_legacy_dygraph():
4166
        return _legacy_C_ops.logit(x, 'eps', eps)
4167
    if in_dygraph_mode():
4168
        return _C_ops.logit(x, eps)
W
wangzhen38 已提交
4169 4170 4171
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'logit')
    helper = LayerHelper("logit", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
4172 4173 4174 4175
    helper.append_op(type='logit',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'eps': eps})
W
wangzhen38 已提交
4176 4177
    return out

4178

4179 4180 4181 4182 4183 4184 4185 4186 4187 4188
def lerp(x, y, weight, name=None):
    r"""
    Does a linear interpolation between x and y based on weight.

    Equation:
        .. math::

            lerp(x, y, weight) = x + weight * (y - x).

    Args:
4189 4190 4191
        x (Tensor): An N-D Tensor with starting points, the data type is float32, float64.
        y (Tensor): An N-D Tensor with ending points, the data type is float32, float64.
        weight (float|Tensor): The weight for the interpolation formula. When weight is Tensor, the data type is float32, float64.
4192 4193 4194 4195 4196 4197 4198 4199 4200
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

            import paddle
4201

4202 4203 4204
            x = paddle.arange(1., 5., dtype='float32')
            y = paddle.empty([4], dtype='float32')
            y.fill_(10.)
4205
            out = paddle.lerp(x, y, 0.5)
4206
            # out: [5.5, 6., 6.5, 7.]
4207 4208

    """
H
hong 已提交
4209
    if in_dygraph_mode():
4210
        check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
H
hong 已提交
4211 4212 4213
        if isinstance(weight, float):
            weight = paddle.to_tensor(weight, dtype=x.dtype)

4214
        return _C_ops.lerp(x, y, weight)
H
hong 已提交
4215
    if _in_legacy_dygraph():
4216 4217
        if isinstance(weight, float):
            weight = paddle.to_tensor(weight, dtype=x.dtype)
4218
        return _legacy_C_ops.lerp(x, y, weight)
4219

4220 4221 4222
    if isinstance(weight, float):
        weight = paddle.full(shape=[1], fill_value=weight, dtype=x.dtype)

4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'lerp')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'lerp')
    check_variable_and_dtype(weight, 'weight', ['float32', 'float64'], 'lerp')

    helper = LayerHelper('lerp', **locals())
    inputs = {'X': x, 'Y': y, 'Weight': weight}
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='lerp', inputs=inputs, outputs={'Out': out})
    return out

4233

4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
@inplace_apis_in_dygraph_only
def lerp_(x, y, weight, name=None):
    r"""
    Inplace version of ``lerp`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_lerp`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
    if isinstance(weight, float):
        weight = paddle.to_tensor([weight], dtype=x.dtype)
    elif isinstance(weight, (paddle.Tensor, Variable)):
        out_shape = broadcast_shape(out_shape, weight.shape)
    if out_shape != x.shape:
4247 4248 4249
        raise ValueError(
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation."
            .format(out_shape, x.shape))
4250
    if in_dygraph_mode():
4251
        return _C_ops.lerp_(x, y, weight)
4252
    return _legacy_C_ops.lerp_(x, y, weight)
4253

4254

W
wuhuanzhou 已提交
4255 4256
def erfinv(x, name=None):
    r"""
4257
    The inverse error function of x. Please refer to :ref:`api_paddle_erf`
W
wuhuanzhou 已提交
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267

        .. math::

            erfinv(erf(x)) = x.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4268
        out (Tensor), an N-D Tensor, the shape and data type is the same with input.
W
wuhuanzhou 已提交
4269 4270 4271 4272 4273

    Example:
        .. code-block:: python

            import paddle
4274

W
wuhuanzhou 已提交
4275 4276 4277 4278 4279
            x = paddle.to_tensor([0, 0.5, -1.], dtype="float32")
            out = paddle.erfinv(x)
            # out: [0, 0.4769, -inf]

    """
H
hong 已提交
4280
    if in_dygraph_mode():
4281
        return _C_ops.erfinv(x)
H
hong 已提交
4282

W
wuhuanzhou 已提交
4283 4284
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'erfinv')

Z
zhiboniu 已提交
4285
    if paddle.in_dynamic_mode():
4286
        return _legacy_C_ops.erfinv(x)
W
wuhuanzhou 已提交
4287 4288 4289 4290 4291 4292

    helper = LayerHelper('erfinv', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='erfinv', inputs={'X': x}, outputs={'Out': out})
    return out

4293

W
wuhuanzhou 已提交
4294 4295 4296 4297 4298 4299 4300
@inplace_apis_in_dygraph_only
def erfinv_(x, name=None):
    r"""
    Inplace version of ``erfinv`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_erfinv`.
    """
    check_type(x, 'x', (paddle.Tensor, Variable), 'erfinv')
4301
    if in_dygraph_mode():
4302
        return _C_ops.erfinv_(x)
4303
    return _legacy_C_ops.erfinv_(x)
W
wuhuanzhou 已提交
4304

4305

4306
def rad2deg(x, name=None):
4307
    r"""
4308
    Convert each of the elements of input x from angles in radians to degrees.
4309

4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
    Equation:
        .. math::

            rad2deg(x)=180/ \pi * x

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
4327

4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
            x1 = paddle.to_tensor([3.142, -3.142, 6.283, -6.283, 1.570, -1.570])
            result1 = paddle.rad2deg(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [180.02334595, -180.02334595,  359.98937988, -359.98937988,
            #           9.95437622 , -89.95437622])

            x2 = paddle.to_tensor(np.pi/2)
            result2 = paddle.rad2deg(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [90.])
4340

4341 4342 4343 4344 4345 4346 4347
            x3 = paddle.to_tensor(1)
            result3 = paddle.rad2deg(x3)
            print(result3)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [57.29578018])
    """
    rad2deg_scale = 180 / np.pi
4348 4349 4350
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4351
        return _C_ops.scale(x, rad2deg_scale, 0.0, True)
4352
    elif paddle.in_dynamic_mode():
4353 4354
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4355
        return _legacy_C_ops.scale(x, 'scale', rad2deg_scale)
4356
    else:
4357 4358 4359
        check_variable_and_dtype(x, 'x',
                                 ['int32', 'int64', 'float32', 'float64'],
                                 'rad2deg')
4360 4361 4362
        helper = LayerHelper('rad2deg', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
4363 4364 4365 4366 4367 4368 4369 4370 4371
            out_cast = helper.create_variable_for_type_inference(
                dtype=paddle.float32)
            helper.append_op(type='cast',
                             inputs={'X': x},
                             outputs={'Out': out_cast},
                             attrs={
                                 'in_dtype': x.dtype,
                                 'out_dtype': paddle.float32
                             })
4372
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
4373 4374 4375 4376
        helper.append_op(type='scale',
                         inputs={'X': out_cast},
                         outputs={'Out': out},
                         attrs={'scale': rad2deg_scale})
4377 4378
        return out

4379

4380
def deg2rad(x, name=None):
4381
    r"""
4382
    Convert each of the elements of input x from degrees to angles in radians.
4383

4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
        .. math::

            deg2rad(x)=\pi * x / 180

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
4399

4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
            x1 = paddle.to_tensor([180.0, -180.0, 360.0, -360.0, 90.0, -90.0])
            result1 = paddle.deg2rad(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274, -3.14159274,  6.28318548, -6.28318548,  1.57079637,
            #           -1.57079637])

            x2 = paddle.to_tensor(180)
            result2 = paddle.deg2rad(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274])
    """
    deg2rad_scale = np.pi / 180.0
4414 4415 4416
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4417
        return _C_ops.scale(x, deg2rad_scale, 0.0, True)
4418
    elif paddle.in_dynamic_mode():
4419 4420
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4421
        return _legacy_C_ops.scale(x, 'scale', deg2rad_scale)
4422
    else:
4423 4424 4425
        check_variable_and_dtype(x, 'x',
                                 ['int32', 'int64', 'float32', 'float64'],
                                 'deg2rad')
4426 4427 4428
        helper = LayerHelper('deg2rad', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
4429 4430 4431 4432 4433 4434 4435 4436 4437
            out_cast = helper.create_variable_for_type_inference(
                dtype=paddle.float32)
            helper.append_op(type='cast',
                             inputs={'X': x},
                             outputs={'Out': out_cast},
                             attrs={
                                 'in_dtype': x.dtype,
                                 'out_dtype': paddle.float32
                             })
4438
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
4439 4440 4441 4442
        helper.append_op(type='scale',
                         inputs={'X': out_cast},
                         outputs={'Out': out},
                         attrs={'scale': deg2rad_scale})
4443
        return out
A
andyjpaddle 已提交
4444

4445

T
Tao Luo 已提交
4446 4447 4448 4449
def gcd(x, y, name=None):
    """
    Computes the element-wise greatest common divisor (GCD) of input |x| and |y|.
    Both x and y must have integer types.
4450

T
Tao Luo 已提交
4451 4452 4453
    Note:
        gcd(0,0)=0, gcd(0, y)=|y|

T
Tao Luo 已提交
4454 4455
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4456
    Args:
4457 4458
        x (Tensor): An N-D Tensor, the data type is int32,int64.
        y (Tensor): An N-D Tensor, the data type is int32,int64.
T
Tao Luo 已提交
4459 4460 4461 4462 4463 4464 4465 4466 4467
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
4468

T
Tao Luo 已提交
4469 4470 4471 4472 4473 4474
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.gcd(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])

T
Tao Luo 已提交
4475
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487
            paddle.gcd(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20, 1 , 2 , 1 , 4 , 5])

            x4 = paddle.to_tensor(0)
            paddle.gcd(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20])

            paddle.gcd(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
4488

T
Tao Luo 已提交
4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
            x5 = paddle.to_tensor(-20)
            paddle.gcd(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])
    """
    shape = paddle.broadcast_shape(x.shape, y.shape)
    x = paddle.broadcast_to(x, shape)
    y = paddle.broadcast_to(y, shape)
    x = paddle.abs(x)
    y = paddle.abs(y)

    def _gcd_cond_fn(x, y):
        return paddle.any(y != 0)

    def _gcd_body_fn(x, y):
        # paddle.mod will raise an error when any element of y is 0. To avoid
        # that, we change those zeros to ones. Their values don't matter because
        # they won't be used.
        y_not_equal_0 = (y != 0)
        y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype))
        x, y = (paddle.where(y_not_equal_0, y, x),
4510 4511
                paddle.where(y_not_equal_0, paddle.mod(x, y_safe),
                             paddle.zeros(y.shape, y.dtype)))
T
Tao Luo 已提交
4512 4513
        return (paddle.where(x < y, y, x), paddle.where(x < y, x, y))

Z
zhiboniu 已提交
4514
    if paddle.in_dynamic_mode():
T
Tao Luo 已提交
4515 4516 4517 4518 4519
        while _gcd_cond_fn(x, y):
            x, y = _gcd_body_fn(x, y)

        return x
    else:
T
Tao Luo 已提交
4520 4521
        check_variable_and_dtype(x, 'x', ['int32', 'int64'], 'gcd')
        check_variable_and_dtype(y, 'y', ['int32', 'int64'], 'gcd')
T
Tao Luo 已提交
4522 4523 4524
        out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y])
        return out

4525

T
Tao Luo 已提交
4526 4527 4528 4529
def lcm(x, y, name=None):
    """
    Computes the element-wise least common multiple (LCM) of input |x| and |y|.
    Both x and y must have integer types.
4530

T
Tao Luo 已提交
4531 4532 4533
    Note:
        lcm(0,0)=0, lcm(0, y)=0

T
Tao Luo 已提交
4534 4535
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4536
    Args:
4537 4538
        x (Tensor): An N-D Tensor, the data type is int32,int64.
        y (Tensor): An N-D Tensor, the data type is int32,int64.
T
Tao Luo 已提交
4539 4540 4541 4542 4543 4544 4545 4546 4547
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
4548

T
Tao Luo 已提交
4549 4550 4551 4552 4553 4554
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.lcm(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])

T
Tao Luo 已提交
4555
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567
            paddle.lcm(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0, 20, 20, 60, 20, 20])

            x4 = paddle.to_tensor(0)
            paddle.lcm(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])

            paddle.lcm(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
4568

T
Tao Luo 已提交
4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
            x5 = paddle.to_tensor(-20)
            paddle.lcm(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])
    """
    d = paddle.gcd(x, y)
    # paddle.mod will raise an error when any element of y is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    d_equal_0 = paddle.equal(d, 0)
    d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d)
4580 4581
    out = paddle.where(d_equal_0, paddle.zeros(d.shape, d.dtype),
                       paddle.abs(x * y) // d_safe)
T
Tao Luo 已提交
4582 4583
    return out

4584

A
andyjpaddle 已提交
4585 4586 4587
def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
    r"""
    Computes the n-th forward difference along the given axis.
4588
    The first-order differences is computed by using the following formula:
A
andyjpaddle 已提交
4589 4590 4591 4592

    .. math::

        out[i] = x[i+1] - x[i]
4593 4594

    Higher-order differences are computed by using paddle.diff() recursively.
A
andyjpaddle 已提交
4595 4596 4597
    Only n=1 is currently supported.

    Args:
4598
        x (Tensor): The input tensor to compute the forward difference on
4599
        n (int, optional): The number of times to recursively compute the difference.
A
andyjpaddle 已提交
4600
                          Only support n=1. Default:1
4601 4602
        axis (int, optional): The axis to compute the difference along. Default:-1
        prepend (Tensor, optional): The tensor to prepend to input along axis before computing the difference.
4603
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
4604
                                   and its shapes must match x's shape except on axis.
4605 4606
        append (Tensor, optional): The tensor to append to input along axis before computing the difference,
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
4607
                                   and its shapes must match x's shape except on axis.
4608
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4609

A
andyjpaddle 已提交
4610 4611 4612 4613 4614 4615 4616
    Returns:
        Tensor: The output tensor with same dtype with x.

    Examples:
        .. code-block:: python

            import paddle
4617

A
andyjpaddle 已提交
4618 4619 4620 4621 4622 4623 4624 4625 4626
            x = paddle.to_tensor([1, 4, 5, 2])
            out = paddle.diff(x)
            print(out)
            # out:
            # [3, 1, -3]

            y = paddle.to_tensor([7, 9])
            out = paddle.diff(x, append=y)
            print(out)
4627
            # out:
A
andyjpaddle 已提交
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
            # [3, 1, -3, 5, 2]

            z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            out = paddle.diff(z, axis=0)
            print(out)
            # out:
            # [[3, 3, 3]]
            out = paddle.diff(z, axis=1)
            print(out)
            # out:
            # [[1, 1], [1, 1]]
    """

    if axis < 0:
        axis = axis + len(x.shape)
    if axis > len(x.shape):
        axis = len(x.shape)
    if axis < 0:
        axis = 0
    dtype = x.dtype
    axes = [axis]
    infer_flags = list(1 for i in range(len(axes)))
4650
    if in_dygraph_mode():
A
andyjpaddle 已提交
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
4663
            new_input = _C_ops.concat(input_list, axis)
A
andyjpaddle 已提交
4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
4676 4677
        input_front = _C_ops.slice(new_input, axes, starts_1, ends_1,
                                   infer_flags, [])
A
andyjpaddle 已提交
4678 4679 4680 4681
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
4682 4683
        input_back = _C_ops.slice(new_input, axes, starts_2, ends_2,
                                  infer_flags, [])
4684 4685

        if x.dtype == paddle.bool:
4686
            return _C_ops.logical_xor(input_back, input_front)
4687
        else:
4688
            return _C_ops.subtract(input_back, input_front)
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
    elif _in_legacy_dygraph():
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
            new_input = _varbase_creator()
4703
            _legacy_C_ops.concat(input_list, new_input, 'axis', axis)
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
4716
        input_front = _legacy_C_ops.slice(new_input, None, None, None, None, 'axes', axes, \
4717 4718 4719 4720 4721
                'infer_flags', infer_flags, *attrs_1)
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
4722
        input_back = _legacy_C_ops.slice(new_input, None, None, None, None, 'axes', axes, \
4723
                'infer_flags', infer_flags, *attrs_2)
A
andyjpaddle 已提交
4724 4725

        if x.dtype == paddle.bool:
4726
            return _legacy_C_ops.logical_xor(input_back, input_front)
A
andyjpaddle 已提交
4727
        else:
4728
            return elementwise_sub(input_back, input_front, axis=axis)
A
andyjpaddle 已提交
4729
    else:
4730 4731
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'bool', 'int32', 'int64'], 'diff')
A
andyjpaddle 已提交
4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747
        check_type(axis, 'axis', (int), 'diff')
        helper = LayerHelper('diff', **locals())
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True

        if has_pend:
            new_input = helper.create_variable_for_type_inference(dtype)
4748 4749 4750 4751
            helper.append_op(type='concat',
                             inputs={'X': input_list},
                             outputs={'Out': [new_input]},
                             attrs={'axis': axis})
A
andyjpaddle 已提交
4752 4753 4754 4755 4756 4757 4758 4759 4760 4761
        else:
            new_input = x

        dim_len = new_input.shape[axis]
        attrs_1 = {'axes': axes}
        starts_1 = [0]
        ends_1 = [dim_len - 1]
        attrs_1['starts'] = starts_1
        attrs_1['ends'] = ends_1
        input_front = helper.create_variable_for_type_inference(dtype)
4762 4763 4764 4765
        helper.append_op(type='slice',
                         inputs={'Input': new_input},
                         attrs=attrs_1,
                         outputs={'Out': input_front})
A
andyjpaddle 已提交
4766 4767 4768 4769 4770 4771
        attrs_2 = {'axes': axes}
        starts_2 = [1]
        ends_2 = [dim_len]
        attrs_2['starts'] = starts_2
        attrs_2['ends'] = ends_2
        input_back = helper.create_variable_for_type_inference(dtype)
4772 4773 4774 4775
        helper.append_op(type='slice',
                         inputs={'Input': new_input},
                         attrs=attrs_2,
                         outputs={'Out': input_back})
A
andyjpaddle 已提交
4776 4777 4778

        if dtype == paddle.bool:
            out = helper.create_variable_for_type_inference(dtype)
4779 4780 4781 4782 4783 4784
            helper.append_op(type='logical_xor',
                             inputs={
                                 "X": input_back,
                                 "Y": input_front
                             },
                             outputs={"Out": out})
A
andyjpaddle 已提交
4785
        else:
Z
zhiboniu 已提交
4786
            out = elementwise_sub(input_back, input_front, axis=axis)
A
andyjpaddle 已提交
4787 4788

        return out
F
Feiyu Chan 已提交
4789

4790

F
Feiyu Chan 已提交
4791 4792
def angle(x, name=None):
    r"""
4793
    Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while
F
Feiyu Chan 已提交
4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805
    for negative real numbers, the angle is :math:`\pi`.

    Equation:
        .. math::

            angle(x)=arctan2(x.imag, x.real)

    Args:
        x (Tensor): An N-D Tensor, the data type is complex64, complex128, or float32, float64 .
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4806
        Tensor: An N-D Tensor of real data type with the same precision as that of x's data type.
F
Feiyu Chan 已提交
4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32')
            y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32')
            z = x + 1j * y
            print(z.numpy())
            # [[-2.-2.j -2.-1.j -2.+0.j -2.+1.j]
            #  [-1.-2.j -1.-1.j -1.+0.j -1.+1.j]
            #  [ 0.-2.j  0.-1.j  0.+0.j  0.+1.j]
            #  [ 1.-2.j  1.-1.j  1.+0.j  1.+1.j]]

            theta = paddle.angle(z)
            print(theta.numpy())
            # [[-2.3561945 -2.6779451  3.1415927  2.6779451]
            #  [-2.0344439 -2.3561945  3.1415927  2.3561945]
            #  [-1.5707964 -1.5707964  0.         1.5707964]
            #  [-1.1071488 -0.7853982  0.         0.7853982]]
    """

W
WangZhen 已提交
4830
    if in_dygraph_mode():
F
Feiyu Chan 已提交
4831
        return _C_ops.angle(x)
4832 4833
    elif paddle.in_dynamic_mode():
        return _legacy_C_ops.angle(x)
F
Feiyu Chan 已提交
4834 4835

    check_variable_and_dtype(x, 'x',
4836 4837
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'angle')
F
Feiyu Chan 已提交
4838 4839 4840 4841 4842 4843 4844 4845
    op_type = "angle"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
        dtype=_complex_to_real_dtype(x.dtype))
    outputs = {"Out": out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
4846

4847

4848
def heaviside(x, y, name=None):
4849
    r"""
4850 4851 4852 4853 4854
    Computes the Heaviside step function determined by corresponding element in y for each element in x. The equation is

    .. math::
        heaviside(x, y)=
            \left\{
4855 4856 4857 4858
                \begin{array}{lcl}
                0,& &\text{if} \ x < 0, \\
                y,& &\text{if} \ x = 0, \\
                1,& &\text{if} \ x > 0.
4859
                \end{array}
4860
            \right.
4861

4862
    Note:
4863 4864 4865
        ``paddle.heaviside`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.

    Args:
4866 4867
        x (Tensor): The input tensor of Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
        y (Tensor): The tensor that determines a Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x and y have different shapes and are broadcastable, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-0.5, 0, 0.5])
            y = paddle.to_tensor([0.1])
            paddle.heaviside(x, y)
            #    [0.        , 0.10000000, 1.        ]
            x = paddle.to_tensor([[-0.5, 0, 0.5], [-0.5, 0.5, 0]])
            y = paddle.to_tensor([0.1, 0.2, 0.3])
            paddle.heaviside(x, y)
            #    [[0.        , 0.20000000, 1.        ],
            #     [0.        , 1.        , 0.30000001]]
4886
    """
4887 4888 4889 4890
    op_type = 'elementwise_heaviside'
    axis = -1
    act = None
    if _non_static_mode():
4891 4892 4893 4894 4895
        return _elementwise_op_in_dygraph(x,
                                          y,
                                          axis=axis,
                                          act=act,
                                          op_name=op_type)
4896 4897
    return _elementwise_op(LayerHelper(op_type, **locals()))

4898

4899 4900 4901 4902 4903 4904
def frac(x, name=None):
    """
    This API is used to return the fractional portion of each element in input.

    Args:
        x (Tensor): The input tensor, which data type should be int32, int64, float32, float64.
4905
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4906 4907 4908 4909 4910

    Returns:
        Tensor: The output Tensor of frac.

    Examples:
4911
        .. code-block:: python
4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930

            import paddle
            import numpy as np

            input = paddle.rand([3, 3], 'float32')
            print(input.numpy())
            # [[ 1.2203873  -1.0035421  -0.35193074]
            #  [-0.00928353  0.58917075 -0.8407828 ]
            #  [-1.5131804   0.5850153  -0.17597814]]

            output = paddle.frac(input)
            print(output.numpy())
            # [[ 0.22038734 -0.00354207 -0.35193074]
            #  [-0.00928353  0.58917075 -0.8407828 ]
            #  [-0.5131804   0.5850153  -0.17597814]]
    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
4931 4932 4933
    if x.dtype not in [
            paddle.int32, paddle.int64, paddle.float32, paddle.float64
    ]:
4934
        raise TypeError(
4935 4936
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}"
            .format(x.dtype))
4937
    if in_dygraph_mode():
4938 4939
        y = _C_ops.trunc(x)
        return _C_ops.subtract(x, y)
4940 4941
    else:
        if _in_legacy_dygraph():
4942
            y = _legacy_C_ops.trunc(x)
4943 4944 4945 4946 4947
            return _elementwise_op_in_dygraph(x,
                                              y,
                                              axis=axis,
                                              act=act,
                                              op_name=op_type)
4948 4949 4950 4951 4952
        else:
            inputs = {"X": x}
            attrs = {}

            helper = LayerHelper("trunc", **locals())
4953 4954 4955
            check_variable_and_dtype(x, "X",
                                     ['int32', 'int64', 'float32', 'float64'],
                                     'trunc')
4956
            y = helper.create_variable_for_type_inference(dtype=x.dtype)
4957 4958 4959 4960
            helper.append_op(type="trunc",
                             inputs=inputs,
                             attrs=attrs,
                             outputs={"Out": y})
4961
            return _elementwise_op(LayerHelper(op_type, **locals()))
4962

4963

4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
def sgn(x, name=None):
    """
    For complex tensor, this API returns a new tensor whose elements have the same angles as the corresponding
    elements of input and absolute values of one.
    For other float dtype tensor,
    this API returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero, same as paddle.sign.

    Args:
        x (Tensor): The input tensor, which data type should be float16, float32, float64, complex64, complex128.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A sign Tensor for real input, or normalized Tensor for complex input, shape and data type are same as input.

    Examples:
        .. code-block:: Python

            import paddle

            x = paddle.to_tensor([[3 + 4j, 7 - 24j, 0, 1 + 2j], [6 + 8j, 3, 0, -2]])
            print(paddle.sgn(x))
            #[[0.6+0.8j       0.28-0.96j      0.+0.j      0.4472136+0.8944272j]
            # [0.6+0.8j       1.+0.j          0.+0.j      -1.+0.j]]

    """
4989 4990 4991 4992
    if x.dtype not in [
            paddle.float16, paddle.float32, paddle.float64, paddle.complex64,
            paddle.complex128
    ]:
4993 4994
        raise TypeError(
            "The data type of input must be one of ['float16', 'float32', 'float64', 'complex64', 'complex128'], but got {}"
4995
            .format(x.dtype))
4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006
    if paddle.is_complex(x):
        expand_x = paddle.as_real(x)
        x_abs = paddle.abs(x)
        x_abs = paddle.unsqueeze(x_abs, axis=-1)
        output = expand_x / x_abs
        zeros = paddle.zeros_like(output)
        output = paddle.where(paddle.isnan(output), zeros, output)

        return paddle.as_complex(output)
    else:
        return paddle.sign(x)
5007

5008

5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075
def take(x, index, mode='raise', name=None):
    """
    Returns a new tensor with the elements of input tensor x at the given index.
    The input tensor is treated as if it were viewed as a 1-D tensor.
    The result takes the same shape as the index.

    Args:
        x (Tensor): An N-D Tensor, its data type should be int32, int64, float32, float64.
        index (Tensor): An N-D Tensor, its data type should be int32, int64.
        mode (str, optional): Specifies how out-of-bounds index will behave. the candicates are ``'raise'``, ``'wrap'`` and ``'clip'``.

            - ``'raise'``: raise an error (default);
            - ``'wrap'``: wrap around;
            - ``'clip'``: clip to the range. ``'clip'`` mode means that all indices that are too large are replaced by the index that addresses the last element. Note that this disables indexing with negative numbers.

        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Tensor with the same shape as index, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x_int = paddle.arange(0, 12).reshape([3, 4])
            x_float = x_int.astype(paddle.float64)

            idx_pos = paddle.arange(4, 10).reshape([2, 3])  # positive index
            idx_neg = paddle.arange(-2, 4).reshape([2, 3])  # negative index
            idx_err = paddle.arange(-2, 13).reshape([3, 5])  # index out of range

            paddle.take(x_int, idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_neg)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 ],
            #         [1 , 2 , 3 ]])

            paddle.take(x_float, idx_pos)
            # Tensor(shape=[2, 3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[4., 5., 6.],
            #         [7., 8., 9.]])

            x_int.take(idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_err, mode='wrap')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 0 ]])

            paddle.take(x_int, idx_err, mode='clip')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 11]])

    """
    if mode not in ['raise', 'wrap', 'clip']:
        raise ValueError(
5076 5077
            "'mode' in 'take' should be 'raise', 'wrap', 'clip', but received {}."
            .format(mode))
5078 5079 5080 5081

    if paddle.in_dynamic_mode():
        if not isinstance(index, (paddle.Tensor, Variable)):
            raise TypeError(
5082 5083
                "The type of 'index' must be Tensor, but got {}".format(
                    type(index)))
5084 5085
        if index.dtype not in [paddle.int32, paddle.int64]:
            raise TypeError(
5086 5087
                "The data type of 'index' must be one of ['int32', 'int64'], but got {}"
                .format(index.dtype))
5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100

    else:
        check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'take')

    input_1d = x.flatten()
    index_1d = index.flatten()
    max_index = input_1d.shape[-1]

    if mode == 'raise':
        # This processing enables 'take' to handle negative indexes within the correct range.
        index_1d = paddle.where(index_1d < 0, index_1d + max_index, index_1d)
    elif mode == 'wrap':
        # The out of range indices are constrained by taking the remainder.
5101 5102 5103
        index_1d = paddle.where(index_1d < 0, index_1d % max_index, index_1d)
        index_1d = paddle.where(index_1d >= max_index, index_1d % max_index,
                                index_1d)
5104 5105 5106 5107 5108 5109 5110
    elif mode == 'clip':
        # 'clip' mode disables indexing with negative numbers.
        index_1d = clip(index_1d, 0, max_index - 1)

    out = input_1d.index_select(index_1d).reshape(index.shape)

    return out