activation.py 45.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define activation functions of neural network
16

Z
zhiboniu 已提交
17 18
from ...framework import ParamAttr
from ..initializer import Constant
Q
Qi Li 已提交
19
from paddle.framework import get_default_dtype
20
from .. import functional as F
Z
zhiboniu 已提交
21
from paddle.nn import Layer
22

23 24
__all__ = []

25

26 27 28 29 30
class CELU(Layer):
    r"""
    CELU Activation.

    .. math::
L
Ligoml 已提交
31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
        CELU(x) = max(0, x) + min(0, \alpha * (e^{x/\alpha}-1))

    Parameters:
        alpha (float, optional): The 'alpha' value of the CELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
L
Ligoml 已提交
47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
            x = paddle.to_tensor([[-1. ,6.], [1., 15.6]])
            m = paddle.nn.CELU(0.2)
            out = m(x)
            # [[-0.19865242,  6.        ],
            #  [ 1.        , 15.60000038]]
    """

    def __init__(self, alpha=1.0, name=None):
        super(CELU, self).__init__()
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.celu(x, self._alpha, self._name)

    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'alpha={}{}'.format(self._alpha, name_str)


Z
zhiboniu 已提交
68
class ELU(Layer):
69
    r"""
70 71
    ELU Activation.

72
    .. math::
73

Z
zhupengyang 已提交
74 75 76 77 78 79 80
        ELU(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
81 82 83 84 85

    Parameters:
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
86

87 88 89
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
90

91 92 93
    Examples:
        .. code-block:: python

94
            import paddle
95

Z
zhupengyang 已提交
96
            x = paddle.to_tensor([[-1. ,6.], [1., 15.6]])
97 98 99 100
            m = paddle.nn.ELU(0.2)
            out = m(x)
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
101 102 103 104 105 106 107 108 109 110
    """

    def __init__(self, alpha=1.0, name=None):
        super(ELU, self).__init__()
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.elu(x, self._alpha, self._name)

111 112 113 114
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'alpha={}{}'.format(self._alpha, name_str)

115

Z
zhiboniu 已提交
116
class GELU(Layer):
117
    r"""
118 119 120 121
    GELU Activation.

    If approximate is True

122
    .. math::
123

124
        GELU(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
125 126 127

    else

128
    .. math::
129

130
        GELU(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
131 132 133 134 135

    Parameters:
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
136

137 138 139
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
140

141 142
    Examples:
        .. code-block:: python
L
Ligoml 已提交
143

144
            import paddle
145

146
            x = paddle.to_tensor([[-1, 0.5],[1, 1.5]])
147

148 149
            m = paddle.nn.GELU()
            out = m(x) # [-0.158655 0.345731 0.841345 1.39979]
150

151 152
            m = paddle.nn.GELU(True)
            out = m(x) # [-0.158808 0.345714 0.841192 1.39957]
153 154 155 156 157 158 159 160 161 162
    """

    def __init__(self, approximate=False, name=None):
        super(GELU, self).__init__()
        self._approximate = approximate
        self._name = name

    def forward(self, x):
        return F.gelu(x, self._approximate, self._name)

163 164 165 166
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'approximate={}{}'.format(self._approximate, name_str)

167

Z
zhiboniu 已提交
168
class Hardshrink(Layer):
169
    r"""
170 171 172 173 174
    Hardshrink Activation

    .. math::

        hardshrink(x)=
175 176 177 178 179 180 181
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x > threshold \\
                    x, & & if \ x < -threshold \\
                    0, & & if \ others
            \end{array}
            \right.
182 183 184 185 186 187 188 189 190 191 192 193 194 195

    Parameters:
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

196
            import paddle
197

Z
zhupengyang 已提交
198
            x = paddle.to_tensor([-1, 0.3, 2.5])
199 200
            m = paddle.nn.Hardshrink()
            out = m(x) # [-1., 0., 2.5]
201 202 203 204 205 206 207 208
    """

    def __init__(self, threshold=0.5, name=None):
        super(Hardshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
209
        return F.hardshrink(x, self._threshold, self._name)
210

211 212 213 214
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

215

Z
zhiboniu 已提交
216
class Hardswish(Layer):
217
    r"""
L
Ligoml 已提交
218 219
    Hardswish activation. Create a callable object of `Hardswish`. Hardswish
    is proposed in MobileNetV3, and performs better in computational stability
220 221 222 223 224 225
    and efficiency compared to swish function. For more details please refer
    to: https://arxiv.org/pdf/1905.02244.pdf

    .. math::

        Hardswish(x)=
226 227 228 229 230 231 232 233
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
            
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-4., 5., 1.])
            m = paddle.nn.Hardswish()
            out = m(x) # [0., 5., 0.666667]
    """

    def __init__(self, name=None):
        super(Hardswish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.hardswish(x, self._name)

261 262 263 264
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

265

Z
zhiboniu 已提交
266
class Tanh(Layer):
267
    r"""
W
WangXi 已提交
268 269 270
    Tanh Activation.

    .. math::
271
        Tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle

287
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
288 289
            m = paddle.nn.Tanh()
            out = m(x)
W
WangXi 已提交
290
            print(out)
291 292
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.37994894, -0.19737533,  0.09966800,  0.29131261])
W
WangXi 已提交
293 294 295 296 297 298 299 300 301
    """

    def __init__(self, name=None):
        super(Tanh, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanh(x, self._name)

302 303 304 305
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

W
WangXi 已提交
306

Z
zhiboniu 已提交
307
class Hardtanh(Layer):
308
    r"""
L
Ligoml 已提交
309
    Hardtanh Activation. Create a callable object of `Hardtanh`.
310 311 312

    .. math::

313 314 315 316 317 318 319 320 321
        Hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.

322 323 324 325 326 327

    Parameters:
        min (float, optional): The value of min for Hardtanh. Default is -1.
        max (float, optional): The value of max for Hardtanh. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
328

329 330 331
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
332

333 334 335 336 337
    Examples:
        .. code-block:: python

            import paddle

Z
zhupengyang 已提交
338
            x = paddle.to_tensor([-1.5, 0.3, 2.5])
339
            m = paddle.nn.Hardtanh()
Z
zhupengyang 已提交
340
            out = m(x) # [-1., 0.3, 1.]
341 342 343 344 345 346 347 348 349 350 351
    """

    def __init__(self, min=-1.0, max=1.0, name=None):
        super(Hardtanh, self).__init__()
        self._min = min
        self._max = max
        self._name = name

    def forward(self, x):
        return F.hardtanh(x, self._min, self._max, self._name)

352 353 354 355
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'min={}, max={}{}'.format(self._min, self._max, name_str)

356

Z
zhiboniu 已提交
357
class PReLU(Layer):
358 359 360 361 362 363 364 365 366
    """
    PReLU Activation.

    .. math::

        PReLU(x) = max(0, x) + weight * min(0, x)

    Parameters:
        num_parameters (int, optional): Number of `weight` to learn. The supported values are:
367
            1 - a single parameter `alpha` is used for all input channels;
368
            Number of channels - a separate `alpha` is used for each input channel.
369 370
            Default is 1.
        init (float, optional): Init value of learnable `weight`. Default is 0.25.
371
        weight_attr(ParamAttr, optional): The parameter attribute for the learnable `weight`.
372
            Default is None. For more information, please refer to :ref:`api_paddle_ParamAttr`.
373 374
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
375 376
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
377

378
    Shape:
Q
Qi Li 已提交
379
        - input: Tensor with any shape. Default dtype is float32.
380
        - output: Tensor with the same shape as input.
381

382 383 384 385
    Examples:
        .. code-block:: python

            import paddle
Q
Qi Li 已提交
386
            paddle.set_default_dtype("float64")
387

388 389 390 391 392 393 394
            data = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
                                    [ 3.0, -4.0,  5.0, -6.0],
                                    [-7.0, -8.0,  8.0,  9.0]],
                                    [[ 1.0, -2.0, -3.0,  4.0],
                                    [-5.0,  6.0,  7.0, -8.0],
                                    [ 6.0,  7.0,  8.0,  9.0]]]])

395
            m = paddle.nn.PReLU(1, 0.25)
396 397
            out = m(data)
            print(out)
398 399 400 401 402 403 404 405
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """

L
Ligoml 已提交
406 407 408 409 410 411 412 413
    def __init__(
        self,
        num_parameters=1,
        init=0.25,
        weight_attr=None,
        data_format="NCHW",
        name=None,
    ):
414 415 416 417 418
        super(PReLU, self).__init__()
        self._num_parameters = num_parameters
        self._init = init
        self._weight_attr = weight_attr
        self._name = name
419
        self._data_format = data_format
420

L
Ligoml 已提交
421 422 423 424 425 426 427
        self._weight = self.create_parameter(
            attr=self._weight_attr,
            shape=[self._num_parameters],
            dtype=get_default_dtype(),
            is_bias=False,
            default_initializer=Constant(self._init),
        )
428 429

    def forward(self, x):
430
        return F.prelu(x, self._weight, data_format=self._data_format)
431

432 433
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
434
        return 'num_parameters={}, data_format={}, init={}, dtype={}{}'.format(
L
Ligoml 已提交
435 436 437 438 439 440
            self._num_parameters,
            self._data_format,
            self._init,
            self._dtype,
            name_str,
        )
441

442

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
class RReLU(Layer):
    r"""
    RReLU activation layer.

    Applies the randomized leaky rectified liner unit function to improve generalization performance,
    as described in the paper:
    `Empirical Evaluation of Rectified Activations in Convolutional Network <https://arxiv.org/abs/1505.00853>`_

    During training, randomly samples the negative slope for activation values as described below:

    .. math::

        RReLU(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    a * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`a` is randomly sampled from uniform distribution in range (:math:`lower`, :math:`upper`),

    In the test phase, the negative slope will take the average value of :math:`lower` and :math:`upper`:

    .. math::

        RReLU(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    (lower + upper) * 0.5 * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`lower` and :math:`upper` are the bounds of uniform distribution.

    Parameters:
        lower (float, optional): The lower bound of uniform distribution. Default: 0.125.
        upper (float, optional): The upper bound of uniform distribution. Default: 0.333.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape. Default dtype is float32.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

            input_tensor = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
                                            [ 3.0, -4.0,  5.0, -6.0],
                                            [-7.0, -8.0,  8.0,  9.0]],
                                            [[ 1.0, -2.0, -3.0,  4.0],
                                            [-5.0,  6.0,  7.0, -8.0],
                                            [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            rrelu_layer = paddle.nn.RReLU(0.1, 0.3)
504 505
            out = rrelu_layer(input_tensor)
            print(out)
506 507 508 509 510 511 512 513
            #[[[[-0.20000899  3.         -0.88108218  5.        ]
            #   [ 3.         -0.55175185  5.         -1.07761011]
            #   [-1.06806871 -1.98962009  8.          9.        ]]
            #  [[ 1.         -0.52382672 -0.65515128  4.        ]
            #   [-1.37663394  6.          7.         -2.34657836]
            #   [ 6.          7.          8.          9.        ]]]]
    """

L
Ligoml 已提交
514
    def __init__(self, lower=1.0 / 8.0, upper=1.0 / 3.0, name=None):
515 516 517 518 519 520
        super(RReLU, self).__init__()
        self._lower = lower
        self._upper = upper
        self._name = name

    def forward(self, x):
L
Ligoml 已提交
521 522 523
        return F.rrelu(
            x, lower=self._lower, upper=self._upper, training=self.training
        )
524 525 526 527

    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'lower={}, upper={}, training={}, dtype={}{}'.format(
L
Ligoml 已提交
528 529
            self._lower, self._upper, self.training, self._dtype, name_str
        )
530 531


Z
zhiboniu 已提交
532
class ReLU(Layer):
533 534 535
    """
    ReLU Activation.

536
    .. math::
537

538
        ReLU(x) = max(x, 0)
539 540

    Parameters:
541 542 543 544 545 546
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
547

548 549 550
    Examples:
        .. code-block:: python

551
            import paddle
552

Z
zhupengyang 已提交
553
            x = paddle.to_tensor([-2., 0., 1.])
554
            m = paddle.nn.ReLU()
555 556 557
            out = m(x)
            print(out)
            # [0., 0., 1.]
558 559
    """

560
    def __init__(self, name=None):
561
        super(ReLU, self).__init__()
562
        self._name = name
563

564 565
    def forward(self, x):
        return F.relu(x, self._name)
566

567 568 569 570
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

571

Z
zhiboniu 已提交
572
class ReLU6(Layer):
573 574 575 576 577
    """
    ReLU6 Activation

    .. math::

578
        ReLU6(x) = min(max(0,x), 6)
579 580 581 582 583 584 585 586 587 588 589 590

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

591
            import paddle
592

593
            x = paddle.to_tensor([-1., 0.3, 6.5])
594
            m = paddle.nn.ReLU6()
595 596 597
            out = m(x)
            print(out)
            # [0, 0.3, 6]
598 599 600 601 602 603 604 605 606
    """

    def __init__(self, name=None):
        super(ReLU6, self).__init__()
        self._name = name

    def forward(self, x):
        return F.relu6(x, self._name)

607 608 609 610
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

611

Z
zhiboniu 已提交
612
class SELU(Layer):
613
    r"""
614 615 616 617
    SELU Activation

    .. math::

618
        SELU(x)= scale *
619 620 621 622 623 624
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
625 626

    Parameters:
627 628
        scale (float, optional): The value of scale(must be greater than 1.0) for SELU. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for SELU. Default is 1.6732632423543772848170429916717
629 630 631 632 633 634 635 636 637 638
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

639
            import paddle
640

641
            x = paddle.to_tensor([[0.0, 1.0],[2.0, 3.0]])
642
            m = paddle.nn.SELU()
643 644 645
            out = m(x)
            print(out)
            # [[0, 1.050701],[2.101402, 3.152103]]
646 647
    """

L
Ligoml 已提交
648 649 650 651 652 653
    def __init__(
        self,
        scale=1.0507009873554804934193349852946,
        alpha=1.6732632423543772848170429916717,
        name=None,
    ):
654 655 656 657 658 659 660 661
        super(SELU, self).__init__()
        self._scale = scale
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.selu(x, self._scale, self._alpha, self._name)

662 663
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
L
Ligoml 已提交
664 665 666
        return 'scale={:.16f}, alpha={:.16f}{}'.format(
            self._scale, self._alpha, name_str
        )
667

668

Z
zhiboniu 已提交
669
class LeakyReLU(Layer):
670
    r"""
L
Ligoml 已提交
671 672
    Leaky ReLU Activation. Create a callable object of `LeakyReLU` to calculate
    the `LeakyReLU` of input `x`.
C
ceci3 已提交
673

674
    .. math::
C
ceci3 已提交
675

676
        LeakyReLU(x)=
677 678 679 680 681 682 683
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    negative\_slope * x, & & otherwise \\
                \end{array}
            \right.

C
ceci3 已提交
684 685

    Parameters:
686 687
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
688 689
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
690

691 692 693
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
694

C
ceci3 已提交
695 696 697
    Examples:
        .. code-block:: python

698
            import paddle
699

700
            m = paddle.nn.LeakyReLU()
L
Ligoml 已提交
701
            x = paddle.to_tensor([-2.0, 0, 1])
702
            out = m(x)  # [-0.02, 0., 1.]
C
ceci3 已提交
703 704
    """

705
    def __init__(self, negative_slope=0.01, name=None):
C
ceci3 已提交
706
        super(LeakyReLU, self).__init__()
707
        self._negative_slope = negative_slope
708
        self._name = name
C
ceci3 已提交
709

710
    def forward(self, x):
711
        return F.leaky_relu(x, self._negative_slope, self._name)
C
ceci3 已提交
712

713 714 715 716
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'negative_slope={}{}'.format(self._negative_slope, name_str)

C
ceci3 已提交
717

Z
zhiboniu 已提交
718
class Sigmoid(Layer):
L
Ligoml 已提交
719
    r"""
720
    this interface is used to construct a callable object of the ``Sigmoid`` class. This layer calcluate the `sigmoid` of input x.
721

722
    .. math::
S
swtkiwi 已提交
723

L
Ligoml 已提交
724
        sigmoid(x) = \frac{1}{1 + e^{-x}}
725

726
    Parameters:
L
Ligoml 已提交
727
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
728

729 730
    Shape:
        x: N-D tensor, available dtype is float16, float32, float64.
731 732

    Returns:
733
        A callable object of Sigmoid.
734

735
    Examples:
736

737 738
        .. code-block:: python

L
Ligoml 已提交
739
            import paddle
740

L
Ligoml 已提交
741 742 743
            m = paddle.nn.Sigmoid()
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = m(x) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
744 745
    """

746
    def __init__(self, name=None):
747
        super(Sigmoid, self).__init__()
748
        self.name = name
749

750 751
    def forward(self, x):
        return F.sigmoid(x, self.name)
752

753 754 755 756
    def extra_repr(self):
        name_str = 'name={}'.format(self.name) if self.name else ''
        return name_str

757

Z
zhiboniu 已提交
758
class Hardsigmoid(Layer):
759
    r"""
L
Ligoml 已提交
760 761
    ``Hardsigmoid`` Activiation Layers, Construct a callable object of
    the ``Hardsigmoid`` class. This layer calcluate the `hardsigmoid` of input x.
762 763 764 765 766 767 768

    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        Hardsigmoid(x)=
769 770 771 772 773 774 775 776
            \left\{
                \begin{array}{rcl}
            0, & & \text{if } \ x \leq -3 \\
            1, & & \text{if } \ x \geq 3 \\
            x/6 + 1/2, & & \text{otherwise}
                \end{array}
            \right.

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        x: N-D tensor, available dtype is float32, float64.

    Returns:
        A callable object of Hardsigmoid.

    Examples:

        .. code-block:: python

          import paddle

Z
zhupengyang 已提交
792
          m = paddle.nn.Hardsigmoid()
793 794 795 796 797 798 799 800 801
          x = paddle.to_tensor([-4., 5., 1.])
          out = m(x) # [0., 1, 0.666667]
    """

    def __init__(self, name=None):
        super(Hardsigmoid, self).__init__()
        self.name = name

    def forward(self, x):
802
        return F.hardsigmoid(x, name=self.name)
803

804 805 806 807
    def extra_repr(self):
        name_str = 'name={}'.format(self.name) if self.name else ''
        return name_str

808

Z
zhiboniu 已提交
809
class Softplus(Layer):
810
    r"""
811 812 813
    Softplus Activation

    .. math::
L
Ligoml 已提交
814 815 816 817
        softplus(x)=\begin{cases}
                \frac{1}{\beta} * \log(1 + e^{\beta * x}),&x\leqslant\frac{\varepsilon}{\beta};\\
                x,&x>\frac{\varepsilon}{\beta}.
            \end{cases}
818 819

    Parameters:
L
Ligoml 已提交
820 821 822
        beta (float, optional): The value of :math:`\beta` for Softplus. Default is 1
        threshold (float, optional): The value of :math:`\varepsilon` for Softplus. Default is 20
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
823 824 825 826 827 828 829 830

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

831
            import paddle
832

L
Ligoml 已提交
833
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3], dtype='float32')
834 835
            m = paddle.nn.Softplus()
            out = m(x) # [0.513015, 0.598139, 0.744397, 0.854355]
836 837 838 839 840 841 842 843 844 845 846
    """

    def __init__(self, beta=1, threshold=20, name=None):
        super(Softplus, self).__init__()
        self._beta = beta
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softplus(x, self._beta, self._threshold, self._name)

847 848
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
L
Ligoml 已提交
849 850 851
        return 'beta={}, threshold={}{}'.format(
            self._beta, self._threshold, name_str
        )
852

853

Z
zhiboniu 已提交
854
class Softshrink(Layer):
855
    r"""
856 857 858 859
    Softshrink Activation

    .. math::

860 861 862 863 864 865 866 867 868
        Softshrink(x)=
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.

869 870

    Parameters:
871
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
872 873 874 875 876 877 878 879 880 881
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

882
            import paddle
883

884
            x = paddle.to_tensor([-0.9, -0.2, 0.1, 0.8])
885
            m = paddle.nn.Softshrink()
886 887 888 889
            out = m(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.39999998,  0.        ,  0.        ,  0.30000001])
890 891 892 893 894 895 896 897 898 899
    """

    def __init__(self, threshold=0.5, name=None):
        super(Softshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softshrink(x, self._threshold, self._name)

900 901 902 903
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

904

Z
zhiboniu 已提交
905
class Softsign(Layer):
906
    r"""
907 908 909 910
    Softsign Activation

    .. math::

911
        Softsign(x) = \frac{x}{1 + |x|}
912 913 914 915 916 917 918 919 920 921 922 923

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

924
            import paddle
925

926
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
927
            m = paddle.nn.Softsign()
928 929 930 931
            out = m(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.28571430, -0.16666666,  0.09090909,  0.23076925])
932 933 934 935 936 937 938 939 940
    """

    def __init__(self, name=None):
        super(Softsign, self).__init__()
        self._name = name

    def forward(self, x):
        return F.softsign(x, self._name)

941 942 943 944
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

945

Z
zhiboniu 已提交
946
class Swish(Layer):
947
    r"""
948 949 950 951
    Swish Activation.

    .. math::

952
        Swish(x) = \frac{x}{1 + e^{-x}}
953 954 955 956 957 958 959 960 961 962 963 964 965 966

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

967
            x = paddle.to_tensor([-2., 0., 1.])
968
            m = paddle.nn.Swish()
969 970 971 972
            out = m(x)
            print(out)
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.23840584,  0.        ,  0.73105854])
973 974 975 976 977 978 979 980 981
    """

    def __init__(self, name=None):
        super(Swish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.swish(x, self._name)

982 983 984 985
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

986

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
class Mish(Layer):
    r"""
    Mish Activation.

    ..  math::

        softplus(x) = \begin{cases}
                x, \text{if } x > \text{threshold} \\
                \ln(1 + e^{x}),  \text{otherwise}
            \end{cases}

        Mish(x) = x * \tanh(softplus(x))
    
    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
    
    Examples:

        .. code-block:: python

            import paddle

W
wangxinxin08 已提交
1014
            x = paddle.to_tensor([-5., 0., 5.])
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
            m = paddle.nn.Mish()
            out = m(x) # [-0.03357624, 0., 4.99955208]

    """

    def __init__(self, name=None):
        super(Mish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.mish(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str


Z
zhiboniu 已提交
1032
class Tanhshrink(Layer):
1033 1034 1035 1036 1037
    """
    Tanhshrink Activation

    .. math::

1038
        Tanhshrink(x) = x - tanh(x)
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

1051
            import paddle
1052

1053
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
1054
            m = paddle.nn.Tanhshrink()
1055 1056 1057 1058
            out = m(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.02005106, -0.00262468,  0.00033200,  0.00868741])
1059 1060 1061 1062 1063 1064 1065 1066 1067
    """

    def __init__(self, name=None):
        super(Tanhshrink, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanhshrink(x, self._name)

1068 1069 1070 1071
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

1072

Z
zhiboniu 已提交
1073
class ThresholdedReLU(Layer):
1074
    r"""
1075 1076 1077 1078
    Thresholded ReLU Activation

    .. math::

1079 1080 1081 1082 1083 1084 1085 1086
        ThresholdedReLU(x) =
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101

    Parameters:
        threshold (float, optional): The value of threshold for ThresholdedReLU. Default is 1.0
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

1102
            x = paddle.to_tensor([2., 0., 1.])
1103
            m = paddle.nn.ThresholdedReLU()
1104 1105 1106 1107
            out = m(x)
            print(out)
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2., 0., 0.])
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
    """

    def __init__(self, threshold=1.0, name=None):
        super(ThresholdedReLU, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.thresholded_relu(x, self._threshold, self._name)

1118 1119 1120 1121
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

1122

Z
zhiboniu 已提交
1123
class Silu(Layer):
L
Ligoml 已提交
1124 1125 1126
    r"""
    Silu Activation

M
minghaoBD 已提交
1127 1128
    .. math::

L
Ligoml 已提交
1129 1130 1131
        silu(x) = \frac{x}{1 + \mathrm{e}^{-x}}

    Where :math:`x` is the input Tensor.
M
minghaoBD 已提交
1132 1133

    Parameters:
L
Ligoml 已提交
1134
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
M
minghaoBD 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            m = paddle.nn.Silu()
            out = m(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
    """

    def __init__(self, name=None):
        super(Silu, self).__init__()
        self._name = name

    def forward(self, x):
        return F.silu(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str


Z
zhiboniu 已提交
1162
class LogSigmoid(Layer):
1163
    r"""
1164
    LogSigmoid Activation.
1165

1166
    .. math::
1167

1168
        LogSigmoid(x) = log \frac{1}{1 + e^{-x}}
1169 1170 1171 1172 1173

    Parameters:
        x (Tensor): The input Tensor with data type float32, or float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1174

1175 1176 1177
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
1178

1179 1180 1181
    Examples:
        .. code-block:: python

1182
            import paddle
1183

1184
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
1185 1186
            m = paddle.nn.LogSigmoid()
            out = m(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
1187 1188 1189 1190 1191 1192 1193
    """

    def __init__(self, name=None):
        super(LogSigmoid, self).__init__()
        self._name = name

    def forward(self, x):
1194
        return F.log_sigmoid(x, self._name)
1195

1196 1197 1198 1199
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

1200

Z
zhiboniu 已提交
1201
class Softmax(Layer):
1202
    r"""
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
    Softmax Activation.

    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1230
        Softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

    Parameters:
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

L
Ligoml 已提交
1296
            x = paddle.to_tensor([[[2.0, 3.0, 4.0, 5.0],
1297 1298 1299 1300
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
L
Ligoml 已提交
1301
                        [6.0, 7.0, 8.0, 9.0]]], dtype='float32')
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
            m = paddle.nn.Softmax()
            out = m(x)
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
    """

    def __init__(self, axis=-1, name=None):
        super(Softmax, self).__init__()
        self._axis = axis
        self._dtype = None
        self._name = name

    def forward(self, x):
        return F.softmax(x, self._axis, self._dtype, self._name)

1321 1322 1323 1324
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'axis={}{}'.format(self._axis, name_str)

1325

Z
zhiboniu 已提交
1326
class LogSoftmax(Layer):
1327
    r"""
1328 1329 1330 1331
    This operator implements the log_softmax layer. The calculation process is as follows:

    .. math::

1332 1333 1334 1335
        \begin{array} {rcl}
            Out[i, j] &= &log(softmax(x)) \\
            &= &log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{array}
1336 1337

    Parameters:
1338 1339 1340 1341 1342 1343
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of the input Tensor . If ``axis`` < 0, it works the
            same way as :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1344

1345 1346 1347
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
1348 1349 1350 1351

    Examples:
        .. code-block:: python

1352 1353
            import paddle

Z
zhupengyang 已提交
1354 1355 1356 1357 1358 1359
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1360 1361 1362 1363 1364 1365 1366 1367 1368
            m = paddle.nn.LogSoftmax()
            x = paddle.to_tensor(x)
            out = m(x)
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
1369 1370
    """

1371
    def __init__(self, axis=-1, name=None):
1372 1373
        super(LogSoftmax, self).__init__()
        self._axis = axis
1374
        self._name = name
1375

1376 1377
    def forward(self, x):
        return F.log_softmax(x, self._axis)
1378

1379 1380 1381 1382
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'axis={}{}'.format(self._axis, name_str)

1383

Z
zhiboniu 已提交
1384
class Maxout(Layer):
1385
    r"""
L
Ligoml 已提交
1386
    Maxout Activation. Create a callable object of `Maxout`.
1387 1388 1389 1390 1391 1392 1393

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

1394 1395 1396 1397 1398 1399 1400 1401
        \begin{array}{l}
            &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
            &g = groups \\
            &s = \frac{input.size}{num\_channels} \\
            &0 \le i < \frac{num\_channels}{groups} \\
            &0 \le j < s \\
            &0 \le k < groups
        \end{array}
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444

    Parameters:
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: :math:`(N, C_{in}, H_{in}, W_{in})`
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            m = paddle.nn.Maxout(groups=2)
            out = m(x)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """

    def __init__(self, groups, axis=1, name=None):
        super(Maxout, self).__init__()
        self._groups = groups
        self._axis = axis
        self._name = name

    def forward(self, x):
        return F.maxout(x, self._groups, self._axis, self._name)
1445 1446 1447 1448

    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'groups={}, axis={}{}'.format(self._groups, self._axis, name_str)
1449 1450 1451 1452


class Softmax2D(Layer):
    r"""
1453

1454 1455 1456 1457 1458 1459
    Softmax2D Activation.
    Given a Tensor with shape (B, C, H, W) or (C, H, W), it will apply Softmax to each location (C, h_i, w_j).
    The sum of result in each location (C, H_i, W_j) will be one.

    Shape:
        - Input: :math:`(B, C, H, W)` or :math:`(C, H, W)`
1460
        - Output: :math:`(B, C, H, W)` or :math:`(C, H, W)` (same as input)
1461

1462
    Returns:
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
        A Tensor of the same shape and dtype as input with value in range [0, 1].

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.42496058 0.1172187  0.14664008 0.8151267 ]
            #    [0.24430142 0.42052492 0.60372984 0.79307914]
            #    [0.4539401  0.90458065 0.10235776 0.62009853]]

            #   [[0.11731581 0.16053623 0.05667042 0.91876775]
            #    [0.9413854  0.30770817 0.6788164  0.9543593 ]
            #    [0.4145064  0.75909156 0.11598814 0.73599935]]]]
            m = paddle.nn.Softmax2D()
            out = m(x)
            # [[[[0.5763103  0.48917228 0.5224772  0.4741129 ]
            #    [0.3324591  0.5281743  0.48123717 0.45976716]
            #    [0.5098571  0.5363083  0.49659243 0.4710572 ]]

            #   [[0.42368975 0.51082766 0.47752273 0.5258871 ]
            #    [0.66754097 0.47182566 0.5187628  0.5402329 ]
            #    [0.49014282 0.46369177 0.50340754 0.5289428 ]]]]
1487

1488 1489 1490 1491 1492 1493 1494 1495
    """

    def __init__(self, name=None):
        super(Softmax2D, self).__init__()
        self._dtype = None
        self._name = name

    def forward(self, x):
L
Ligoml 已提交
1496 1497 1498 1499 1500
        assert (
            x.ndim == 3 or x.ndim == 4
        ), "Softmax2D requires a 3D or 4D tensor as input. Received: {}D.".format(
            x.ndim
        )
1501 1502 1503 1504 1505
        return F.softmax(x, axis=-3, dtype=self._dtype, name=self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str