activation.py 31.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define activation functions of neural network
16

17
__all__ = [
18 19
    'ELU',
    'GELU',
20
    'Hardshrink',
21 22
    'Hardtanh',
    'PReLU',
23
    'ReLU',
24 25
    'ReLU6',
    'SELU',
C
ceci3 已提交
26
    'LeakyReLU',
27
    'Sigmoid',
28
    'Softmax',
29 30 31 32
    'Softplus',
    'Softshrink',
    'Softsign',
    'Tanhshrink',
33
    'LogSigmoid',
34
    'LogSoftmax',
35
    'HSigmoid',
36 37
]

38 39 40
from ...fluid.dygraph import layers
from ...fluid import core
from ...fluid.framework import in_dygraph_mode
41 42
from ...fluid.param_attr import ParamAttr
from ...fluid.initializer import Constant
43
from .. import functional as F
44 45


46 47 48 49
class ELU(layers.Layer):
    """
    ELU Activation.

50
    .. math::
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
    
        ELU(x) = max(0, x) + min(0, \\alpha * (e^{x}-1))

    Parameters:
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
    
    Examples:
        .. code-block:: python

66 67
            import paddle
            import numpy as np
68

69
            paddle.disable_static()
70

71 72 73 74 75
            x = paddle.to_tensor(np.array([[-1,6],[1,15.6]]))
            m = paddle.nn.ELU(0.2)
            out = m(x)
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    """

    def __init__(self, alpha=1.0, name=None):
        super(ELU, self).__init__()
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.elu(x, self._alpha, self._name)


class GELU(layers.Layer):
    """
    GELU Activation.

    If approximate is True

93
    .. math::
94 95 96 97 98

        GELU(x) = 0.5 * x * (1 + tanh(\\sqrt{\\frac{2}{\\pi}} * (x + 0.044715x^{3})))

    else

99
    .. math::
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

        GELU(x) = 0.5 * x * (1 + erf(\\frac{x}{\\sqrt{2}}))

    Parameters:
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
    
    Examples:
        .. code-block:: python

115 116
            import paddle
            import numpy as np
117

118
            paddle.disable_static()
119

120 121 122 123
            x = paddle.to_tensor(np.array([[-1, 0.5],[1, 1.5]]))
            
            m = paddle.nn.GELU()
            out = m(x) # [-0.158655 0.345731 0.841345 1.39979]
124

125 126
            m = paddle.nn.GELU(True)
            out = m(x) # [-0.158808 0.345714 0.841192 1.39957]
127 128 129 130 131 132 133 134 135 136 137
    """

    def __init__(self, approximate=False, name=None):
        super(GELU, self).__init__()
        self._approximate = approximate
        self._name = name

    def forward(self, x):
        return F.gelu(x, self._approximate, self._name)


138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
class Hardshrink(layers.Layer):
    """
    Hardshrink Activation

    .. math::

        hardshrink(x)=
            \left\{
            \begin{aligned}
            &x, & & if \ x > threshold \\
            &x, & & if \ x < -threshold \\
            &0, & & if \ others
            \end{aligned}
            \right.

    Parameters:
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()

171
        x = paddle.to_tensor(np.array([-1, 0.3, 2.5]))
172 173 174 175 176 177 178 179 180 181
        m = paddle.nn.Hardshrink()
        out = m(x) # [-1., 0., 2.5]
    """

    def __init__(self, threshold=0.5, name=None):
        super(Hardshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
182
        return F.hardshrink(x, self._threshold, self._name)
183 184


185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
class Hardtanh(layers.Layer):
    """
    Hardtanh Activation

    .. math::

        Hardtanh(x)= \\begin{cases}
                        max, \\text{if } x > max \\\\
                        min, \\text{if } x < min \\\\
                        x,  \\text{otherwise}
                      \\end{cases}

    Parameters:
        min (float, optional): The value of min for Hardtanh. Default is -1.
        max (float, optional): The value of max for Hardtanh. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
    
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()

            x = paddle.to_tensor(np.array([-1.5, 0.3, 2.5]))
            m = paddle.nn.Hardtanh()
            out = m(x) # # [-1., 0.3, 1.]
    """

    def __init__(self, min=-1.0, max=1.0, name=None):
        super(Hardtanh, self).__init__()
        self._min = min
        self._max = max
        self._name = name

    def forward(self, x):
        return F.hardtanh(x, self._min, self._max, self._name)


230 231
class HSigmoid(layers.Layer):
    """
232 233
	:alias_main: paddle.nn.HSigmoid
	:alias: paddle.nn.HSigmoid,paddle.nn.layer.HSigmoid,paddle.nn.layer.activation.HSigmoid
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353

    Hierarchical Sigmoid Layer.
    
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
    Comparing to softmax, the OP can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the number of classes or the size of word dict.

    The OP supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>_`. For the custom
    tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        feature_size (int): The feature size.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (:attr:`is_custom` is set to False), :attr:`num_classes`
            should not be None. If the custom tree is used (:attr:`is_custom` is set to True),
            :attr:`num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        param_attr (ParamAttr, optional): The parameter attribute for the learnable parameters/weights
            of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid will create a
            ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is
            initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of hsigmoid. If it
            is set to False, no bias will be added. If it is set to None or one attribute of ParamAttr,
            hsigmoid will create a ParamAttr as bias_attr. If the Initializer of the bias_attr is not
            set, the bias is initialized zero. Default: None.
        is_custom (bool, optional): Whether use custom binary tree. If it's True, `path_table` and 
            `path_code` should be passed to its forward method, otherwise `path_table` and `path_code`
            should not be passed to its forward method. Default: False.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating, if it's True, the
            gradient of W and input will be sparse. Default: False.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle import fluid, nn
          import paddle.fluid.dygraph as dg
          import paddle.nn.functional as F
          import numpy as np

          main = fluid.Program()
          start = fluid.Program()
          feature_size = 6
          num_classes = 8
          with fluid.unique_name.guard():
              with fluid.program_guard(main, start):
                  x = fluid.data("input", [-1, feature_size],
                              dtype="float32")
                  label = fluid.data("labels", [-1, 1], dtype="int64")
                  hsm = nn.HSigmoid(feature_size, num_classes)
                  y = hsm(x, label)

          place = fluid.CPUPlace()
          exe = fluid.Executor(place)
          exe.run(start)
          feed_dict = {
              "input": np.random.randn(4, feature_size).astype(np.float32),
              "labels": np.random.randint(0, num_classes, (4, 1)).astype(np.int64),
          }
          y_np, = exe.run(main, feed=feed_dict, fetch_list=[y])
          print(y_np.shape)

          # (4, 1)
    """

    def __init__(self,
                 feature_size,
                 num_classes,
                 param_attr=None,
                 bias_attr=None,
                 is_custom=False,
                 is_sparse=False,
                 dtype="float32"):
        super(HSigmoid, self).__init__()
        if (num_classes < 2) and (not is_custom):
            raise ValueError(
                "num_classes must not be less than 2 with default tree")

        if (not is_custom) and (is_sparse):
            print("Sparse mode should not be used without custom tree")
            is_sparse = False

        self._feature_size = feature_size
        self._num_classes = num_classes
        self._is_custom = is_custom
        self._is_sparse = is_sparse

        self._param_attr = param_attr
        self._bias_attr = bias_attr

        self._dtype = dtype

        remote_prefetch = is_sparse
        print("With sparse mode, if your models has only"
              " small parameter prefetch may cause speed down")

        C = self._num_classes if is_custom else self._num_classes - 1
        self.weight = self.create_parameter(
            [C, self._feature_size],
            attr=self._param_attr,
            is_bias=False,
            dtype=self._dtype)
        self.bias = self.create_parameter(
            [C, 1], attr=self._bias_attr, is_bias=True, dtype=self._dtype)

    def forward(self, input, label, path_table=None, path_code=None):
354
        out = F.hsigmoid(
355 356 357 358 359 360 361 362 363 364
            input,
            label,
            self.weight,
            self.bias,
            self._num_classes,
            path_table=path_table,
            path_code=path_code,
            is_sparse=self._is_sparse)
        return out

365

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
class PReLU(layers.Layer):
    """
    PReLU Activation.

    .. math::

        PReLU(x) = max(0, x) + weight * min(0, x)

    Parameters:
        num_parameters (int, optional): Number of `weight` to learn. The supported values are:
            1 - a single parameter `alpha` is used for all input channels; 
            Number of channels - a seperate `alpha` is used for each input channel.
            Default is 1.
        init (float, optional): Init value of learnable `weight`. Default is 0.25.
        weight_attr(ParamAttr, optional): The parameter attribute for the learnable `weight`. 
            Default is None. For more information, please refer to :ref:`api_fluid_ParamAttr`.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
    
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()

            data = np.array([[[[-2.0,  3.0, -4.0,  5.0],
                            [ 3.0, -4.0,  5.0, -6.0],
                            [-7.0, -8.0,  8.0,  9.0]],
                            [[ 1.0, -2.0, -3.0,  4.0],
                            [-5.0,  6.0,  7.0, -8.0],
                            [ 6.0,  7.0,  8.0,  9.0]]]], 'float32')
            x = paddle.to_tensor(data)
            m = paddle.nn.PReLU(1, 0.25)
            out = m(x)
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """

    def __init__(self, num_parameters=1, init=0.25, weight_attr=None,
                 name=None):
        super(PReLU, self).__init__()
        self._num_parameters = num_parameters
        self._init = init
        self._weight_attr = weight_attr
        self._name = name

        self._weight = self.create_parameter(
            attr=self._weight_attr,
            shape=[num_parameters],
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(init))

    def forward(self, x):
        return F.prelu(x, self._weight)


433 434 435 436
class ReLU(layers.Layer):
    """
    ReLU Activation.

437
    .. math::
438

439
        ReLU(x) = max(x, 0)
440 441

    Parameters:
442 443 444 445 446 447
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
448
    
449 450 451
    Examples:
        .. code-block:: python

452 453
            import paddle
            import numpy as np
454

455
            paddle.disable_static()
456

457 458 459
            x = paddle.to_tensor(np.array([-2, 0, 1]).astype('float32'))
            m = paddle.nn.ReLU()
            out = m(x) # [0., 0., 1.]
460 461
    """

462
    def __init__(self, name=None):
463
        super(ReLU, self).__init__()
464
        self._name = name
465

466 467
    def forward(self, x):
        return F.relu(x, self._name)
468 469


470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
class ReLU6(layers.Layer):
    """
    ReLU6 Activation

    .. math::

        \text{ReLU6}(x) = \min(\max(0,x), 6)

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()

        x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
        m = paddle.nn.ReLU6()
        out = m(x) # [0, 0.3, 6]
    """

    def __init__(self, name=None):
        super(ReLU6, self).__init__()
        self._name = name

    def forward(self, x):
        return F.relu6(x, self._name)


class SELU(layers.Layer):
    """
    SELU Activation

    .. math::

        \text{SELU}(x) = scale * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1))), \\
        with\,alpha=1.6732632423543772848170429916717 and \\
        scale=1.0507009873554804934193349852946

    Parameters:
        scale (float, optional): The value of scale for SELU. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha for SELU. Default is 1.6732632423543772848170429916717
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()

        x = paddle.to_tensor(np.array([[0, 1],[2, 3]]))
        m = paddle.nn.SELU()
        out = m(x) # [[0, 1.050701],[2.101402, 3.152103]]
    """

    def __init__(self,
                 scale=1.0507009873554804934193349852946,
                 alpha=1.6732632423543772848170429916717,
                 name=None):
        super(SELU, self).__init__()
        self._scale = scale
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.selu(x, self._scale, self._alpha, self._name)


C
ceci3 已提交
555 556 557 558 559 560 561 562 563
class LeakyReLU(layers.Layer):
    """
    Leaky ReLU Activation.

    .. math:

        out = max(x, alpha * x)

    Parameters:
564 565 566 567
        alpha (float, optional): Slope of the activation function at :math:`x < 0` .
            Default: 0.01.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
C
ceci3 已提交
568
    
569 570 571
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
C
ceci3 已提交
572 573 574 575
    
    Examples:
        .. code-block:: python

576 577
        import paddle
        import numpy as np
C
ceci3 已提交
578

579
        paddle.disable_static()
580 581

        lrelu = paddle.nn.LeakyReLU()
582
        x = paddle.to_tensor(np.array([-2, 0, 1], 'float32'))
583
        out = lrelu(x)  # [-0.02, 0., 1.]
C
ceci3 已提交
584 585
    """

586
    def __init__(self, alpha=1e-2, name=None):
C
ceci3 已提交
587 588
        super(LeakyReLU, self).__init__()
        self._alpha = alpha
589
        self._name = name
C
ceci3 已提交
590

591
    def forward(self, x):
592
        return F.leaky_relu(x, self._alpha, self._name)
C
ceci3 已提交
593 594


595 596
class Sigmoid(layers.Layer):
    """
597 598 599
    this interface is used to construct a callable object of the ``Sigmoid`` class. This layer calcluate the `sigmoid` of input x.
    
    .. math::
S
swtkiwi 已提交
600

601
        Sigmoid(x) = \frac{1}{1 + e^{-x}}
602
    
603 604
    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
605

606 607
    Shape:
        x: N-D tensor, available dtype is float16, float32, float64.
608 609

    Returns:
610
        A callable object of Sigmoid.
611 612
    
    Examples:
613

614 615 616
        .. code-block:: python

          import numpy as np
617 618 619
          import paddle

          paddle.disable_static()
620
          input_data = np.array([1.0, 2.0, 3.0, 4.0]).astype('float32')
621
          m = paddle.nn.Sigmoid()
622
          x = paddle.to_tensor(input_data)
623 624
          output = m(x)
          print(output.numpy()) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
625 626
    """

627
    def __init__(self, name=None):
628
        super(Sigmoid, self).__init__()
629
        self.name = name
630

631 632
    def forward(self, x):
        return F.sigmoid(x, self.name)
633 634


635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
class Softplus(layers.Layer):
    """
    Softplus Activation

    .. math::

        \text{Softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) \\
        \text{For numerical stability, the implementation reverts to the linear function when :}\,x \times \beta > threshold.

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()

        x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
        m = paddle.nn.Softplus()
        out = m(x) # [0.513015, 0.598139, 0.744397, 0.854355]

    """

    def __init__(self, beta=1, threshold=20, name=None):
        super(Softplus, self).__init__()
        self._beta = beta
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softplus(x, self._beta, self._threshold, self._name)


class Softshrink(layers.Layer):
    """
    Softshrink Activation

    .. math::

        \text{Softshrink}(x) =
        \begin{cases}
        x - threshold, & \text{ if } x > threshold \\
        x + threshold, & \text{ if } x < -threshold \\
        0, & \text{ otherwise }
        \end{cases}

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()

        x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
        m = paddle.nn.Softshrink()
        out = m(x) # [-0.4, 0, 0, 0.3]
    """

    def __init__(self, threshold=0.5, name=None):
        super(Softshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softshrink(x, self._threshold, self._name)


class Softsign(layers.Layer):
    """
    Softsign Activation

    .. math::

        \text{Softsign}(x) = \frac{x}{1 + |x|}

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()

        x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
        m = paddle.nn.Softsign()
        out = m(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
    """

    def __init__(self, name=None):
        super(Softsign, self).__init__()
        self._name = name

    def forward(self, x):
        return F.softsign(x, self._name)


class Tanhshrink(layers.Layer):
    """
    Tanhshrink Activation

    .. math::

        \text{Tanhshrink}(x) = x - \text{Tanh}(x)

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()

        x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
        m = paddle.nn.Tanhshrink()
        out = m(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
    """

    def __init__(self, name=None):
        super(Tanhshrink, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanhshrink(x, self._name)


796 797 798 799
class LogSigmoid(layers.Layer):
    """
    LogSigmoid Activation.
    
800
    .. math::
801

802
        LogSigmoid(x) = log \\frac{1}{1 + e^{-x}}
803 804 805 806 807 808 809 810 811 812 813 814 815

    Parameters:
        x (Tensor): The input Tensor with data type float32, or float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
    
    Examples:
        .. code-block:: python

816 817
            import paddle
            import numpy as np
818

819
            paddle.disable_static()
820

821 822 823
            x = paddle.to_tensor(np.array([1.0, 2.0, 3.0, 4.0]))
            m = paddle.nn.LogSigmoid()
            out = m(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
824 825 826 827 828 829 830 831 832 833
    """

    def __init__(self, name=None):
        super(LogSigmoid, self).__init__()
        self._name = name

    def forward(self, x):
        return F.logsigmoid(x, self._name)


834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
class Softmax(layers.Layer):
    """
    Softmax Activation.

    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

        Softmax[i, j] = \\frac{\\exp(x[i, j])}{\\sum_j(exp(x[i, j])}

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

    Parameters:
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
            to ``dtype`` before the operation is performed. This is useful for 
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()

            x = np.array([[[2.0, 3.0, 4.0, 5.0],
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.Softmax()
            out = m(x)
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
    """

    def __init__(self, axis=-1, name=None):
        super(Softmax, self).__init__()
        self._axis = axis
        self._dtype = None
        self._name = name

    def forward(self, x):
        return F.softmax(x, self._axis, self._dtype, self._name)


965 966 967 968 969 970 971
class LogSoftmax(layers.Layer):
    """
    This operator implements the log_softmax layer. The calculation process is as follows:

    .. math::

        Out[i, j] = log(softmax(x)) 
972
                  = log(\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])})
973 974

    Parameters:
975 976 977 978 979 980
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of the input Tensor . If ``axis`` < 0, it works the
            same way as :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
981
 
982 983 984
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
985 986 987 988

    Examples:
        .. code-block:: python

989 990
        import paddle
        import numpy as np
991

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
        paddle.disable_static()

        x = np.array([[[-2.0, 3.0, -4.0, 5.0],
                        [3.0, -4.0, 5.0, -6.0],
                        [-7.0, -8.0, 8.0, 9.0]],
                        [[1.0, -2.0, -3.0, 4.0],
                        [-5.0, 6.0, 7.0, -8.0],
                        [6.0, 7.0, 8.0, 9.0]]])
        m = paddle.nn.LogSoftmax()
        x = paddle.to_tensor(x)
        out = m(x)
        # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
        #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
        #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
        #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
        #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
        #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
1009 1010
    """

1011
    def __init__(self, axis=-1, name=None):
1012 1013
        super(LogSoftmax, self).__init__()
        self._axis = axis
1014
        self._name = name
1015

1016 1017
    def forward(self, x):
        return F.log_softmax(x, self._axis)