activation.py 37.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define activation functions of neural network
16

17 18
from ...fluid import core
from ...fluid.framework import in_dygraph_mode
Z
zhiboniu 已提交
19 20
from ...framework import ParamAttr
from ..initializer import Constant
Q
Qi Li 已提交
21
from paddle.framework import get_default_dtype
22
from .. import functional as F
Z
zhiboniu 已提交
23
from paddle.nn import Layer
24

25 26
__all__ = []

27

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
class CELU(Layer):
    r"""
    CELU Activation.

    .. math::
    
        CELU(x) = max(0, x) + min(0, \alpha * (e^{x/\alpha}-1))

    Parameters:
        alpha (float, optional): The 'alpha' value of the CELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            
            x = paddle.to_tensor([[-1. ,6.], [1., 15.6]])
            m = paddle.nn.CELU(0.2)
            out = m(x)
            # [[-0.19865242,  6.        ],
            #  [ 1.        , 15.60000038]]
    """

    def __init__(self, alpha=1.0, name=None):
        super(CELU, self).__init__()
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.celu(x, self._alpha, self._name)

    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'alpha={}{}'.format(self._alpha, name_str)


Z
zhiboniu 已提交
70
class ELU(Layer):
71
    r"""
72 73
    ELU Activation.

74
    .. math::
75

Z
zhupengyang 已提交
76 77 78 79 80 81 82
        ELU(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
83 84 85 86 87

    Parameters:
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
88

89 90 91
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
92

93 94 95
    Examples:
        .. code-block:: python

96
            import paddle
97

Z
zhupengyang 已提交
98
            x = paddle.to_tensor([[-1. ,6.], [1., 15.6]])
99 100 101 102
            m = paddle.nn.ELU(0.2)
            out = m(x)
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
103 104 105 106 107 108 109 110 111 112
    """

    def __init__(self, alpha=1.0, name=None):
        super(ELU, self).__init__()
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.elu(x, self._alpha, self._name)

113 114 115 116
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'alpha={}{}'.format(self._alpha, name_str)

117

Z
zhiboniu 已提交
118
class GELU(Layer):
119
    r"""
120 121 122 123
    GELU Activation.

    If approximate is True

124
    .. math::
125

126
        GELU(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
127 128 129

    else

130
    .. math::
131

132
        GELU(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
133 134 135 136 137

    Parameters:
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
138

139 140 141
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
142

143 144 145
    Examples:
        .. code-block:: python

146 147
            import paddle
            import numpy as np
148

149
            x = paddle.to_tensor(np.array([[-1, 0.5],[1, 1.5]]))
150

151 152
            m = paddle.nn.GELU()
            out = m(x) # [-0.158655 0.345731 0.841345 1.39979]
153

154 155
            m = paddle.nn.GELU(True)
            out = m(x) # [-0.158808 0.345714 0.841192 1.39957]
156 157 158 159 160 161 162 163 164 165
    """

    def __init__(self, approximate=False, name=None):
        super(GELU, self).__init__()
        self._approximate = approximate
        self._name = name

    def forward(self, x):
        return F.gelu(x, self._approximate, self._name)

166 167 168 169
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'approximate={}{}'.format(self._approximate, name_str)

170

Z
zhiboniu 已提交
171
class Hardshrink(Layer):
172
    r"""
173 174 175 176 177
    Hardshrink Activation

    .. math::

        hardshrink(x)=
178 179 180 181 182 183 184
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x > threshold \\
                    x, & & if \ x < -threshold \\
                    0, & & if \ others
            \end{array}
            \right.
185 186 187 188 189 190 191 192 193 194 195 196 197 198

    Parameters:
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

199
            import paddle
200

Z
zhupengyang 已提交
201
            x = paddle.to_tensor([-1, 0.3, 2.5])
202 203
            m = paddle.nn.Hardshrink()
            out = m(x) # [-1., 0., 2.5]
204 205 206 207 208 209 210 211
    """

    def __init__(self, threshold=0.5, name=None):
        super(Hardshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
212
        return F.hardshrink(x, self._threshold, self._name)
213

214 215 216 217
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

218

Z
zhiboniu 已提交
219
class Hardswish(Layer):
220
    r"""
221 222 223 224 225 226 227 228 229
    Hardswish activation

    Hardswish is proposed in MobileNetV3, and performs better in computational stability
    and efficiency compared to swish function. For more details please refer
    to: https://arxiv.org/pdf/1905.02244.pdf

    .. math::

        Hardswish(x)=
230 231 232 233 234 235 236 237
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
            
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-4., 5., 1.])
            m = paddle.nn.Hardswish()
            out = m(x) # [0., 5., 0.666667]
    """

    def __init__(self, name=None):
        super(Hardswish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.hardswish(x, self._name)

265 266 267 268
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

269

Z
zhiboniu 已提交
270
class Tanh(Layer):
271
    r"""
W
WangXi 已提交
272 273 274
    Tanh Activation.

    .. math::
275
        Tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Tanh()
            out = m(x)
W
WangXi 已提交
295
            print(out)
W
WangXi 已提交
296 297 298 299 300 301 302 303 304 305
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """

    def __init__(self, name=None):
        super(Tanh, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanh(x, self._name)

306 307 308 309
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

W
WangXi 已提交
310

Z
zhiboniu 已提交
311
class Hardtanh(Layer):
312
    r"""
313 314 315 316
    Hardtanh Activation

    .. math::

317 318 319 320 321 322 323 324 325
        Hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.

326 327 328 329 330 331

    Parameters:
        min (float, optional): The value of min for Hardtanh. Default is -1.
        max (float, optional): The value of max for Hardtanh. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
332

333 334 335
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
336

337 338 339 340 341
    Examples:
        .. code-block:: python

            import paddle

Z
zhupengyang 已提交
342
            x = paddle.to_tensor([-1.5, 0.3, 2.5])
343
            m = paddle.nn.Hardtanh()
Z
zhupengyang 已提交
344
            out = m(x) # [-1., 0.3, 1.]
345 346 347 348 349 350 351 352 353 354 355
    """

    def __init__(self, min=-1.0, max=1.0, name=None):
        super(Hardtanh, self).__init__()
        self._min = min
        self._max = max
        self._name = name

    def forward(self, x):
        return F.hardtanh(x, self._min, self._max, self._name)

356 357 358 359
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'min={}, max={}{}'.format(self._min, self._max, name_str)

360

Z
zhiboniu 已提交
361
class PReLU(Layer):
362 363 364 365 366 367 368 369 370
    """
    PReLU Activation.

    .. math::

        PReLU(x) = max(0, x) + weight * min(0, x)

    Parameters:
        num_parameters (int, optional): Number of `weight` to learn. The supported values are:
371
            1 - a single parameter `alpha` is used for all input channels;
372 373 374
            Number of channels - a seperate `alpha` is used for each input channel.
            Default is 1.
        init (float, optional): Init value of learnable `weight`. Default is 0.25.
375
        weight_attr(ParamAttr, optional): The parameter attribute for the learnable `weight`.
376
            Default is None. For more information, please refer to :ref:`api_paddle_ParamAttr`.
377 378
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
379

380
    Shape:
Q
Qi Li 已提交
381
        - input: Tensor with any shape. Default dtype is float32.
382
        - output: Tensor with the same shape as input.
383

384 385 386 387 388 389
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

Q
Qi Li 已提交
390
            paddle.set_default_dtype("float64")
391 392 393 394 395 396

            data = np.array([[[[-2.0,  3.0, -4.0,  5.0],
                            [ 3.0, -4.0,  5.0, -6.0],
                            [-7.0, -8.0,  8.0,  9.0]],
                            [[ 1.0, -2.0, -3.0,  4.0],
                            [-5.0,  6.0,  7.0, -8.0],
Q
Qi Li 已提交
397
                            [ 6.0,  7.0,  8.0,  9.0]]]], 'float64')
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
            x = paddle.to_tensor(data)
            m = paddle.nn.PReLU(1, 0.25)
            out = m(x)
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """

    def __init__(self, num_parameters=1, init=0.25, weight_attr=None,
                 name=None):
        super(PReLU, self).__init__()
        self._num_parameters = num_parameters
        self._init = init
        self._weight_attr = weight_attr
        self._name = name

        self._weight = self.create_parameter(
            attr=self._weight_attr,
Q
Qi Li 已提交
419 420
            shape=[self._num_parameters],
            dtype=get_default_dtype(),
421
            is_bias=False,
Q
Qi Li 已提交
422
            default_initializer=Constant(self._init))
423 424 425 426

    def forward(self, x):
        return F.prelu(x, self._weight)

427 428 429 430 431
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'num_parameters={}, init={}, dtype={}{}'.format(
            self._num_parameters, self._init, self._dtype, name_str)

432

Z
zhiboniu 已提交
433
class ReLU(Layer):
434 435 436
    """
    ReLU Activation.

437
    .. math::
438

439
        ReLU(x) = max(x, 0)
440 441

    Parameters:
442 443 444 445 446 447
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
448

449 450 451
    Examples:
        .. code-block:: python

452
            import paddle
453

Z
zhupengyang 已提交
454
            x = paddle.to_tensor([-2., 0., 1.])
455 456
            m = paddle.nn.ReLU()
            out = m(x) # [0., 0., 1.]
457 458
    """

459
    def __init__(self, name=None):
460
        super(ReLU, self).__init__()
461
        self._name = name
462

463 464
    def forward(self, x):
        return F.relu(x, self._name)
465

466 467 468 469
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

470

Z
zhiboniu 已提交
471
class ReLU6(Layer):
472 473 474 475 476
    """
    ReLU6 Activation

    .. math::

477
        ReLU6(x) = min(max(0,x), 6)
478 479 480 481 482 483 484 485 486 487 488 489

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

490 491
            import paddle
            import numpy as np
492

493 494 495
            x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
            m = paddle.nn.ReLU6()
            out = m(x) # [0, 0.3, 6]
496 497 498 499 500 501 502 503 504
    """

    def __init__(self, name=None):
        super(ReLU6, self).__init__()
        self._name = name

    def forward(self, x):
        return F.relu6(x, self._name)

505 506 507 508
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

509

Z
zhiboniu 已提交
510
class SELU(Layer):
511
    r"""
512 513 514 515
    SELU Activation

    .. math::

516
        SELU(x)= scale *
517 518 519 520 521 522
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
523 524

    Parameters:
525 526
        scale (float, optional): The value of scale(must be greater than 1.0) for SELU. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for SELU. Default is 1.6732632423543772848170429916717
527 528 529 530 531 532 533 534 535 536
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

537 538
            import paddle
            import numpy as np
539

540
            x = paddle.to_tensor(np.array([[0.0, 1.0],[2.0, 3.0]]))
541 542
            m = paddle.nn.SELU()
            out = m(x) # [[0, 1.050701],[2.101402, 3.152103]]
543 544 545 546 547 548 549 550 551 552 553 554 555 556
    """

    def __init__(self,
                 scale=1.0507009873554804934193349852946,
                 alpha=1.6732632423543772848170429916717,
                 name=None):
        super(SELU, self).__init__()
        self._scale = scale
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.selu(x, self._scale, self._alpha, self._name)

557 558 559 560 561
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'scale={:.16f}, alpha={:.16f}{}'.format(self._scale, self._alpha,
                                                       name_str)

562

Z
zhiboniu 已提交
563
class LeakyReLU(Layer):
564
    r"""
C
ceci3 已提交
565 566
    Leaky ReLU Activation.

567
    .. math::
C
ceci3 已提交
568

569
        LeakyReLU(x)=
570 571 572 573 574 575 576
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    negative\_slope * x, & & otherwise \\
                \end{array}
            \right.

C
ceci3 已提交
577 578

    Parameters:
579 580
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
581 582
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
583

584 585 586
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
587

C
ceci3 已提交
588 589 590
    Examples:
        .. code-block:: python

591
            import paddle
C
Chen Long 已提交
592
            import numpy as np
593

594
            m = paddle.nn.LeakyReLU()
Z
zhupengyang 已提交
595
            x = paddle.to_tensor(np.array([-2, 0, 1], 'float32'))
596
            out = m(x)  # [-0.02, 0., 1.]
C
ceci3 已提交
597 598
    """

599
    def __init__(self, negative_slope=0.01, name=None):
C
ceci3 已提交
600
        super(LeakyReLU, self).__init__()
601
        self._negative_slope = negative_slope
602
        self._name = name
C
ceci3 已提交
603

604
    def forward(self, x):
605
        return F.leaky_relu(x, self._negative_slope, self._name)
C
ceci3 已提交
606

607 608 609 610
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'negative_slope={}{}'.format(self._negative_slope, name_str)

C
ceci3 已提交
611

Z
zhiboniu 已提交
612
class Sigmoid(Layer):
613
    """
614
    this interface is used to construct a callable object of the ``Sigmoid`` class. This layer calcluate the `sigmoid` of input x.
615

616
    .. math::
S
swtkiwi 已提交
617

618
        Sigmoid(x) = \\frac{1}{1 + e^{-x}}
619

620 621
    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
622

623 624
    Shape:
        x: N-D tensor, available dtype is float16, float32, float64.
625 626

    Returns:
627
        A callable object of Sigmoid.
628

629
    Examples:
630

631 632
        .. code-block:: python

633 634 635
          import paddle

          m = paddle.nn.Sigmoid()
636 637
          x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
          out = m(x) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
638 639
    """

640
    def __init__(self, name=None):
641
        super(Sigmoid, self).__init__()
642
        self.name = name
643

644 645
    def forward(self, x):
        return F.sigmoid(x, self.name)
646

647 648 649 650
    def extra_repr(self):
        name_str = 'name={}'.format(self.name) if self.name else ''
        return name_str

651

Z
zhiboniu 已提交
652
class Hardsigmoid(Layer):
653
    r"""
654 655 656 657 658 659 660 661 662
    This interface is used to construct a callable object of the ``Hardsigmoid`` class.
    This layer calcluate the `hardsigmoid` of input x.

    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        Hardsigmoid(x)=
663 664 665 666 667 668 669 670
            \left\{
                \begin{array}{rcl}
            0, & & \text{if } \ x \leq -3 \\
            1, & & \text{if } \ x \geq 3 \\
            x/6 + 1/2, & & \text{otherwise}
                \end{array}
            \right.

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686

    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        x: N-D tensor, available dtype is float32, float64.

    Returns:
        A callable object of Hardsigmoid.

    Examples:

        .. code-block:: python

          import paddle

Z
zhupengyang 已提交
687
          m = paddle.nn.Hardsigmoid()
688 689 690 691 692 693 694 695 696
          x = paddle.to_tensor([-4., 5., 1.])
          out = m(x) # [0., 1, 0.666667]
    """

    def __init__(self, name=None):
        super(Hardsigmoid, self).__init__()
        self.name = name

    def forward(self, x):
697
        return F.hardsigmoid(x, name=self.name)
698

699 700 701 702
    def extra_repr(self):
        name_str = 'name={}'.format(self.name) if self.name else ''
        return name_str

703

Z
zhiboniu 已提交
704
class Softplus(Layer):
705
    r"""
706 707 708 709
    Softplus Activation

    .. math::

710 711
        Softplus(x) = \frac{1}{beta} * \log(1 + e^{beta * x}) \\
        \text{For numerical stability, the implementation reverts to the linear function when: beta * x > threshold.}
712 713

    Parameters:
714 715
        beta (float, optional): The value of beta for Softplus. Default is 1
        threshold (float, optional): The value of threshold for Softplus. Default is 20
716 717 718 719 720 721 722 723 724 725
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

726 727
            import paddle
            import numpy as np
728

729 730 731
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Softplus()
            out = m(x) # [0.513015, 0.598139, 0.744397, 0.854355]
732 733 734 735 736 737 738 739 740 741 742
    """

    def __init__(self, beta=1, threshold=20, name=None):
        super(Softplus, self).__init__()
        self._beta = beta
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softplus(x, self._beta, self._threshold, self._name)

743 744 745 746 747
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'beta={}, threshold={}{}'.format(self._beta, self._threshold,
                                                name_str)

748

Z
zhiboniu 已提交
749
class Softshrink(Layer):
750
    r"""
751 752 753 754
    Softshrink Activation

    .. math::

755 756 757 758 759 760 761 762 763
        Softshrink(x)=
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.

764 765

    Parameters:
766
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
767 768 769 770 771 772 773 774 775 776
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

777 778
            import paddle
            import numpy as np
779

780 781 782
            x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
            m = paddle.nn.Softshrink()
            out = m(x) # [-0.4, 0, 0, 0.3]
783 784 785 786 787 788 789 790 791 792
    """

    def __init__(self, threshold=0.5, name=None):
        super(Softshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softshrink(x, self._threshold, self._name)

793 794 795 796
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

797

Z
zhiboniu 已提交
798
class Softsign(Layer):
799
    r"""
800 801 802 803
    Softsign Activation

    .. math::

804
        Softsign(x) = \frac{x}{1 + |x|}
805 806 807 808 809 810 811 812 813 814 815 816

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

817 818
            import paddle
            import numpy as np
819

820 821 822
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Softsign()
            out = m(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
823 824 825 826 827 828 829 830 831
    """

    def __init__(self, name=None):
        super(Softsign, self).__init__()
        self._name = name

    def forward(self, x):
        return F.softsign(x, self._name)

832 833 834 835
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

836

Z
zhiboniu 已提交
837
class Swish(Layer):
838
    r"""
839 840 841 842
    Swish Activation.

    .. math::

843
        Swish(x) = \frac{x}{1 + e^{-x}}
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([-2., 0., 1.]))
            m = paddle.nn.Swish()
            out = m(x) # [-0.238406, 0., 0.731059]
    """

    def __init__(self, name=None):
        super(Swish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.swish(x, self._name)

871 872 873 874
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

875

Z
zhiboniu 已提交
876
class Tanhshrink(Layer):
877 878 879 880 881
    """
    Tanhshrink Activation

    .. math::

882
        Tanhshrink(x) = x - tanh(x)
883 884 885 886 887 888 889 890 891 892 893 894

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

895 896
            import paddle
            import numpy as np
897

898 899 900
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Tanhshrink()
            out = m(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
901 902 903 904 905 906 907 908 909
    """

    def __init__(self, name=None):
        super(Tanhshrink, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanhshrink(x, self._name)

910 911 912 913
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

914

Z
zhiboniu 已提交
915
class ThresholdedReLU(Layer):
916
    r"""
917 918 919 920
    Thresholded ReLU Activation

    .. math::

921 922 923 924 925 926 927 928
        ThresholdedReLU(x) =
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957

    Parameters:
        threshold (float, optional): The value of threshold for ThresholdedReLU. Default is 1.0
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([2., 0., 1.]))
            m = paddle.nn.ThresholdedReLU()
            out = m(x) # [2., 0., 0.]
    """

    def __init__(self, threshold=1.0, name=None):
        super(ThresholdedReLU, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.thresholded_relu(x, self._threshold, self._name)

958 959 960 961
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

962

Z
zhiboniu 已提交
963
class Silu(Layer):
M
minghaoBD 已提交
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    """
    Silu Activation.
    .. math::

        Silu(x) = \frac{x}{1 + e^{-x}}

    Parameters:
        x (Tensor): The input Tensor with data type float32, or float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            m = paddle.nn.Silu()
            out = m(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
    """

    def __init__(self, name=None):
        super(Silu, self).__init__()
        self._name = name

    def forward(self, x):
        return F.silu(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str


Z
zhiboniu 已提交
1001
class LogSigmoid(Layer):
1002
    r"""
1003
    LogSigmoid Activation.
1004

1005
    .. math::
1006

1007
        LogSigmoid(x) = log \frac{1}{1 + e^{-x}}
1008 1009 1010 1011 1012

    Parameters:
        x (Tensor): The input Tensor with data type float32, or float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1013

1014 1015 1016
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
1017

1018 1019 1020
    Examples:
        .. code-block:: python

1021
            import paddle
1022

1023
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
1024 1025
            m = paddle.nn.LogSigmoid()
            out = m(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
1026 1027 1028 1029 1030 1031 1032
    """

    def __init__(self, name=None):
        super(LogSigmoid, self).__init__()
        self._name = name

    def forward(self, x):
1033
        return F.log_sigmoid(x, self._name)
1034

1035 1036 1037 1038
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

1039

Z
zhiboniu 已提交
1040
class Softmax(Layer):
1041
    r"""
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
    Softmax Activation.

    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1069
        Softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

    Parameters:
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = np.array([[[2.0, 3.0, 4.0, 5.0],
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.Softmax()
            out = m(x)
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
    """

    def __init__(self, axis=-1, name=None):
        super(Softmax, self).__init__()
        self._axis = axis
        self._dtype = None
        self._name = name

    def forward(self, x):
        return F.softmax(x, self._axis, self._dtype, self._name)

1162 1163 1164 1165
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'axis={}{}'.format(self._axis, name_str)

1166

Z
zhiboniu 已提交
1167
class LogSoftmax(Layer):
1168
    r"""
1169 1170 1171 1172
    This operator implements the log_softmax layer. The calculation process is as follows:

    .. math::

1173 1174 1175 1176
        \begin{array} {rcl}
            Out[i, j] &= &log(softmax(x)) \\
            &= &log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{array}
1177 1178

    Parameters:
1179 1180 1181 1182 1183 1184
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of the input Tensor . If ``axis`` < 0, it works the
            same way as :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1185

1186 1187 1188
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
1189 1190 1191 1192

    Examples:
        .. code-block:: python

1193 1194
            import paddle

Z
zhupengyang 已提交
1195 1196 1197 1198 1199 1200
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1201 1202 1203 1204 1205 1206 1207 1208 1209
            m = paddle.nn.LogSoftmax()
            x = paddle.to_tensor(x)
            out = m(x)
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
1210 1211
    """

1212
    def __init__(self, axis=-1, name=None):
1213 1214
        super(LogSoftmax, self).__init__()
        self._axis = axis
1215
        self._name = name
1216

1217 1218
    def forward(self, x):
        return F.log_softmax(x, self._axis)
1219

1220 1221 1222 1223
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'axis={}{}'.format(self._axis, name_str)

1224

Z
zhiboniu 已提交
1225
class Maxout(Layer):
1226
    r"""
1227 1228 1229 1230 1231 1232 1233 1234
    Maxout Activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

1235 1236 1237 1238 1239 1240 1241 1242
        \begin{array}{l}
            &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
            &g = groups \\
            &s = \frac{input.size}{num\_channels} \\
            &0 \le i < \frac{num\_channels}{groups} \\
            &0 \le j < s \\
            &0 \le k < groups
        \end{array}
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285

    Parameters:
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: :math:`(N, C_{in}, H_{in}, W_{in})`
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            m = paddle.nn.Maxout(groups=2)
            out = m(x)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """

    def __init__(self, groups, axis=1, name=None):
        super(Maxout, self).__init__()
        self._groups = groups
        self._axis = axis
        self._name = name

    def forward(self, x):
        return F.maxout(x, self._groups, self._axis, self._name)
1286 1287 1288 1289

    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'groups={}, axis={}{}'.format(self._groups, self._axis, name_str)