activation.py 44.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define activation functions of neural network
16

Z
zhiboniu 已提交
17 18
from ...framework import ParamAttr
from ..initializer import Constant
Q
Qi Li 已提交
19
from paddle.framework import get_default_dtype
20
from .. import functional as F
Z
zhiboniu 已提交
21
from paddle.nn import Layer
22

23 24
__all__ = []

25

26 27 28 29 30
class CELU(Layer):
    r"""
    CELU Activation.

    .. math::
L
Ligoml 已提交
31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
        CELU(x) = max(0, x) + min(0, \alpha * (e^{x/\alpha}-1))

    Parameters:
        alpha (float, optional): The 'alpha' value of the CELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
L
Ligoml 已提交
47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
            x = paddle.to_tensor([[-1. ,6.], [1., 15.6]])
            m = paddle.nn.CELU(0.2)
            out = m(x)
            # [[-0.19865242,  6.        ],
            #  [ 1.        , 15.60000038]]
    """

    def __init__(self, alpha=1.0, name=None):
        super(CELU, self).__init__()
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.celu(x, self._alpha, self._name)

    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'alpha={}{}'.format(self._alpha, name_str)


Z
zhiboniu 已提交
68
class ELU(Layer):
69
    r"""
70 71
    ELU Activation.

72
    .. math::
73

Z
zhupengyang 已提交
74 75 76 77 78 79 80
        ELU(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
81 82 83 84 85

    Parameters:
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
86

87 88 89
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
90

91 92 93
    Examples:
        .. code-block:: python

94
            import paddle
95

Z
zhupengyang 已提交
96
            x = paddle.to_tensor([[-1. ,6.], [1., 15.6]])
97 98 99 100
            m = paddle.nn.ELU(0.2)
            out = m(x)
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
101 102 103 104 105 106 107 108 109 110
    """

    def __init__(self, alpha=1.0, name=None):
        super(ELU, self).__init__()
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.elu(x, self._alpha, self._name)

111 112 113 114
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'alpha={}{}'.format(self._alpha, name_str)

115

Z
zhiboniu 已提交
116
class GELU(Layer):
117
    r"""
118 119 120 121
    GELU Activation.

    If approximate is True

122
    .. math::
123

124
        GELU(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
125 126 127

    else

128
    .. math::
129

130
        GELU(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
131 132 133 134 135

    Parameters:
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
136

137 138 139
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
140

141 142
    Examples:
        .. code-block:: python
L
Ligoml 已提交
143

144
            import paddle
145

146
            x = paddle.to_tensor([[-1, 0.5],[1, 1.5]])
147

148 149
            m = paddle.nn.GELU()
            out = m(x) # [-0.158655 0.345731 0.841345 1.39979]
150

151 152
            m = paddle.nn.GELU(True)
            out = m(x) # [-0.158808 0.345714 0.841192 1.39957]
153 154 155 156 157 158 159 160 161 162
    """

    def __init__(self, approximate=False, name=None):
        super(GELU, self).__init__()
        self._approximate = approximate
        self._name = name

    def forward(self, x):
        return F.gelu(x, self._approximate, self._name)

163 164 165 166
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'approximate={}{}'.format(self._approximate, name_str)

167

Z
zhiboniu 已提交
168
class Hardshrink(Layer):
169
    r"""
170 171 172 173 174
    Hardshrink Activation

    .. math::

        hardshrink(x)=
175 176 177 178 179 180 181
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x > threshold \\
                    x, & & if \ x < -threshold \\
                    0, & & if \ others
            \end{array}
            \right.
182 183 184 185 186 187 188 189 190 191 192 193 194 195

    Parameters:
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

196
            import paddle
197

Z
zhupengyang 已提交
198
            x = paddle.to_tensor([-1, 0.3, 2.5])
199 200
            m = paddle.nn.Hardshrink()
            out = m(x) # [-1., 0., 2.5]
201 202 203 204 205 206 207 208
    """

    def __init__(self, threshold=0.5, name=None):
        super(Hardshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
209
        return F.hardshrink(x, self._threshold, self._name)
210

211 212 213 214
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

215

Z
zhiboniu 已提交
216
class Hardswish(Layer):
217
    r"""
218 219 220 221 222 223 224 225 226
    Hardswish activation

    Hardswish is proposed in MobileNetV3, and performs better in computational stability
    and efficiency compared to swish function. For more details please refer
    to: https://arxiv.org/pdf/1905.02244.pdf

    .. math::

        Hardswish(x)=
227 228 229 230 231 232 233 234
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
            
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-4., 5., 1.])
            m = paddle.nn.Hardswish()
            out = m(x) # [0., 5., 0.666667]
    """

    def __init__(self, name=None):
        super(Hardswish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.hardswish(x, self._name)

262 263 264 265
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

266

Z
zhiboniu 已提交
267
class Tanh(Layer):
268
    r"""
W
WangXi 已提交
269 270 271
    Tanh Activation.

    .. math::
272
        Tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Tanh()
            out = m(x)
W
WangXi 已提交
292
            print(out)
W
WangXi 已提交
293 294 295 296 297 298 299 300 301 302
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """

    def __init__(self, name=None):
        super(Tanh, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanh(x, self._name)

303 304 305 306
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

W
WangXi 已提交
307

Z
zhiboniu 已提交
308
class Hardtanh(Layer):
309
    r"""
310 311 312 313
    Hardtanh Activation

    .. math::

314 315 316 317 318 319 320 321 322
        Hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.

323 324 325 326 327 328

    Parameters:
        min (float, optional): The value of min for Hardtanh. Default is -1.
        max (float, optional): The value of max for Hardtanh. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
329

330 331 332
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
333

334 335 336 337 338
    Examples:
        .. code-block:: python

            import paddle

Z
zhupengyang 已提交
339
            x = paddle.to_tensor([-1.5, 0.3, 2.5])
340
            m = paddle.nn.Hardtanh()
Z
zhupengyang 已提交
341
            out = m(x) # [-1., 0.3, 1.]
342 343 344 345 346 347 348 349 350 351 352
    """

    def __init__(self, min=-1.0, max=1.0, name=None):
        super(Hardtanh, self).__init__()
        self._min = min
        self._max = max
        self._name = name

    def forward(self, x):
        return F.hardtanh(x, self._min, self._max, self._name)

353 354 355 356
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'min={}, max={}{}'.format(self._min, self._max, name_str)

357

Z
zhiboniu 已提交
358
class PReLU(Layer):
359 360 361 362 363 364 365 366 367
    """
    PReLU Activation.

    .. math::

        PReLU(x) = max(0, x) + weight * min(0, x)

    Parameters:
        num_parameters (int, optional): Number of `weight` to learn. The supported values are:
368
            1 - a single parameter `alpha` is used for all input channels;
369
            Number of channels - a separate `alpha` is used for each input channel.
370 371
            Default is 1.
        init (float, optional): Init value of learnable `weight`. Default is 0.25.
372
        weight_attr(ParamAttr, optional): The parameter attribute for the learnable `weight`.
373
            Default is None. For more information, please refer to :ref:`api_paddle_ParamAttr`.
374 375
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
376 377
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
378

379
    Shape:
Q
Qi Li 已提交
380
        - input: Tensor with any shape. Default dtype is float32.
381
        - output: Tensor with the same shape as input.
382

383 384 385 386
    Examples:
        .. code-block:: python

            import paddle
Q
Qi Li 已提交
387
            paddle.set_default_dtype("float64")
388

389 390 391 392 393 394 395
            data = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
                                    [ 3.0, -4.0,  5.0, -6.0],
                                    [-7.0, -8.0,  8.0,  9.0]],
                                    [[ 1.0, -2.0, -3.0,  4.0],
                                    [-5.0,  6.0,  7.0, -8.0],
                                    [ 6.0,  7.0,  8.0,  9.0]]]])

396
            m = paddle.nn.PReLU(1, 0.25)
397 398
            out = m(data)
            print(out)
399 400 401 402 403 404 405 406
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """

L
Ligoml 已提交
407 408 409 410 411 412 413 414
    def __init__(
        self,
        num_parameters=1,
        init=0.25,
        weight_attr=None,
        data_format="NCHW",
        name=None,
    ):
415 416 417 418 419
        super(PReLU, self).__init__()
        self._num_parameters = num_parameters
        self._init = init
        self._weight_attr = weight_attr
        self._name = name
420
        self._data_format = data_format
421

L
Ligoml 已提交
422 423 424 425 426 427 428
        self._weight = self.create_parameter(
            attr=self._weight_attr,
            shape=[self._num_parameters],
            dtype=get_default_dtype(),
            is_bias=False,
            default_initializer=Constant(self._init),
        )
429 430

    def forward(self, x):
431
        return F.prelu(x, self._weight, data_format=self._data_format)
432

433 434
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
435
        return 'num_parameters={}, data_format={}, init={}, dtype={}{}'.format(
L
Ligoml 已提交
436 437 438 439 440 441
            self._num_parameters,
            self._data_format,
            self._init,
            self._dtype,
            name_str,
        )
442

443

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
class RReLU(Layer):
    r"""
    RReLU activation layer.

    Applies the randomized leaky rectified liner unit function to improve generalization performance,
    as described in the paper:
    `Empirical Evaluation of Rectified Activations in Convolutional Network <https://arxiv.org/abs/1505.00853>`_

    During training, randomly samples the negative slope for activation values as described below:

    .. math::

        RReLU(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    a * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`a` is randomly sampled from uniform distribution in range (:math:`lower`, :math:`upper`),

    In the test phase, the negative slope will take the average value of :math:`lower` and :math:`upper`:

    .. math::

        RReLU(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    (lower + upper) * 0.5 * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`lower` and :math:`upper` are the bounds of uniform distribution.

    Parameters:
        lower (float, optional): The lower bound of uniform distribution. Default: 0.125.
        upper (float, optional): The upper bound of uniform distribution. Default: 0.333.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape. Default dtype is float32.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

            input_tensor = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
                                            [ 3.0, -4.0,  5.0, -6.0],
                                            [-7.0, -8.0,  8.0,  9.0]],
                                            [[ 1.0, -2.0, -3.0,  4.0],
                                            [-5.0,  6.0,  7.0, -8.0],
                                            [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            rrelu_layer = paddle.nn.RReLU(0.1, 0.3)
505 506
            out = rrelu_layer(input_tensor)
            print(out)
507 508 509 510 511 512 513 514
            #[[[[-0.20000899  3.         -0.88108218  5.        ]
            #   [ 3.         -0.55175185  5.         -1.07761011]
            #   [-1.06806871 -1.98962009  8.          9.        ]]
            #  [[ 1.         -0.52382672 -0.65515128  4.        ]
            #   [-1.37663394  6.          7.         -2.34657836]
            #   [ 6.          7.          8.          9.        ]]]]
    """

L
Ligoml 已提交
515
    def __init__(self, lower=1.0 / 8.0, upper=1.0 / 3.0, name=None):
516 517 518 519 520 521
        super(RReLU, self).__init__()
        self._lower = lower
        self._upper = upper
        self._name = name

    def forward(self, x):
L
Ligoml 已提交
522 523 524
        return F.rrelu(
            x, lower=self._lower, upper=self._upper, training=self.training
        )
525 526 527 528

    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'lower={}, upper={}, training={}, dtype={}{}'.format(
L
Ligoml 已提交
529 530
            self._lower, self._upper, self.training, self._dtype, name_str
        )
531 532


Z
zhiboniu 已提交
533
class ReLU(Layer):
534 535 536
    """
    ReLU Activation.

537
    .. math::
538

539
        ReLU(x) = max(x, 0)
540 541

    Parameters:
542 543 544 545 546 547
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
548

549 550 551
    Examples:
        .. code-block:: python

552
            import paddle
553

Z
zhupengyang 已提交
554
            x = paddle.to_tensor([-2., 0., 1.])
555
            m = paddle.nn.ReLU()
556 557 558
            out = m(x)
            print(out)
            # [0., 0., 1.]
559 560
    """

561
    def __init__(self, name=None):
562
        super(ReLU, self).__init__()
563
        self._name = name
564

565 566
    def forward(self, x):
        return F.relu(x, self._name)
567

568 569 570 571
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

572

Z
zhiboniu 已提交
573
class ReLU6(Layer):
574 575 576 577 578
    """
    ReLU6 Activation

    .. math::

579
        ReLU6(x) = min(max(0,x), 6)
580 581 582 583 584 585 586 587 588 589 590 591

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

592
            import paddle
593

594
            x = paddle.to_tensor([-1., 0.3, 6.5])
595
            m = paddle.nn.ReLU6()
596 597 598
            out = m(x)
            print(out)
            # [0, 0.3, 6]
599 600 601 602 603 604 605 606 607
    """

    def __init__(self, name=None):
        super(ReLU6, self).__init__()
        self._name = name

    def forward(self, x):
        return F.relu6(x, self._name)

608 609 610 611
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

612

Z
zhiboniu 已提交
613
class SELU(Layer):
614
    r"""
615 616 617 618
    SELU Activation

    .. math::

619
        SELU(x)= scale *
620 621 622 623 624 625
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
626 627

    Parameters:
628 629
        scale (float, optional): The value of scale(must be greater than 1.0) for SELU. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for SELU. Default is 1.6732632423543772848170429916717
630 631 632 633 634 635 636 637 638 639
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

640
            import paddle
641

642
            x = paddle.to_tensor([[0.0, 1.0],[2.0, 3.0]])
643
            m = paddle.nn.SELU()
644 645 646
            out = m(x)
            print(out)
            # [[0, 1.050701],[2.101402, 3.152103]]
647 648
    """

L
Ligoml 已提交
649 650 651 652 653 654
    def __init__(
        self,
        scale=1.0507009873554804934193349852946,
        alpha=1.6732632423543772848170429916717,
        name=None,
    ):
655 656 657 658 659 660 661 662
        super(SELU, self).__init__()
        self._scale = scale
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.selu(x, self._scale, self._alpha, self._name)

663 664
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
L
Ligoml 已提交
665 666 667
        return 'scale={:.16f}, alpha={:.16f}{}'.format(
            self._scale, self._alpha, name_str
        )
668

669

Z
zhiboniu 已提交
670
class LeakyReLU(Layer):
671
    r"""
C
ceci3 已提交
672 673
    Leaky ReLU Activation.

674
    .. math::
C
ceci3 已提交
675

676
        LeakyReLU(x)=
677 678 679 680 681 682 683
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    negative\_slope * x, & & otherwise \\
                \end{array}
            \right.

C
ceci3 已提交
684 685

    Parameters:
686 687
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
688 689
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
690

691 692 693
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
694

C
ceci3 已提交
695 696 697
    Examples:
        .. code-block:: python

698
            import paddle
C
Chen Long 已提交
699
            import numpy as np
700

701
            m = paddle.nn.LeakyReLU()
Z
zhupengyang 已提交
702
            x = paddle.to_tensor(np.array([-2, 0, 1], 'float32'))
703
            out = m(x)  # [-0.02, 0., 1.]
C
ceci3 已提交
704 705
    """

706
    def __init__(self, negative_slope=0.01, name=None):
C
ceci3 已提交
707
        super(LeakyReLU, self).__init__()
708
        self._negative_slope = negative_slope
709
        self._name = name
C
ceci3 已提交
710

711
    def forward(self, x):
712
        return F.leaky_relu(x, self._negative_slope, self._name)
C
ceci3 已提交
713

714 715 716 717
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'negative_slope={}{}'.format(self._negative_slope, name_str)

C
ceci3 已提交
718

Z
zhiboniu 已提交
719
class Sigmoid(Layer):
720
    """
721
    this interface is used to construct a callable object of the ``Sigmoid`` class. This layer calcluate the `sigmoid` of input x.
722

723
    .. math::
S
swtkiwi 已提交
724

725
        Sigmoid(x) = \\frac{1}{1 + e^{-x}}
726

727 728
    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
729

730 731
    Shape:
        x: N-D tensor, available dtype is float16, float32, float64.
732 733

    Returns:
734
        A callable object of Sigmoid.
735

736
    Examples:
737

738 739
        .. code-block:: python

740 741 742
          import paddle

          m = paddle.nn.Sigmoid()
743 744
          x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
          out = m(x) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
745 746
    """

747
    def __init__(self, name=None):
748
        super(Sigmoid, self).__init__()
749
        self.name = name
750

751 752
    def forward(self, x):
        return F.sigmoid(x, self.name)
753

754 755 756 757
    def extra_repr(self):
        name_str = 'name={}'.format(self.name) if self.name else ''
        return name_str

758

Z
zhiboniu 已提交
759
class Hardsigmoid(Layer):
760
    r"""
761 762 763 764 765 766 767 768 769
    This interface is used to construct a callable object of the ``Hardsigmoid`` class.
    This layer calcluate the `hardsigmoid` of input x.

    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        Hardsigmoid(x)=
770 771 772 773 774 775 776 777
            \left\{
                \begin{array}{rcl}
            0, & & \text{if } \ x \leq -3 \\
            1, & & \text{if } \ x \geq 3 \\
            x/6 + 1/2, & & \text{otherwise}
                \end{array}
            \right.

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793

    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        x: N-D tensor, available dtype is float32, float64.

    Returns:
        A callable object of Hardsigmoid.

    Examples:

        .. code-block:: python

          import paddle

Z
zhupengyang 已提交
794
          m = paddle.nn.Hardsigmoid()
795 796 797 798 799 800 801 802 803
          x = paddle.to_tensor([-4., 5., 1.])
          out = m(x) # [0., 1, 0.666667]
    """

    def __init__(self, name=None):
        super(Hardsigmoid, self).__init__()
        self.name = name

    def forward(self, x):
804
        return F.hardsigmoid(x, name=self.name)
805

806 807 808 809
    def extra_repr(self):
        name_str = 'name={}'.format(self.name) if self.name else ''
        return name_str

810

Z
zhiboniu 已提交
811
class Softplus(Layer):
812
    r"""
813 814 815 816
    Softplus Activation

    .. math::

817 818
        Softplus(x) = \frac{1}{beta} * \log(1 + e^{beta * x}) \\
        \text{For numerical stability, the implementation reverts to the linear function when: beta * x > threshold.}
819 820

    Parameters:
821 822
        beta (float, optional): The value of beta for Softplus. Default is 1
        threshold (float, optional): The value of threshold for Softplus. Default is 20
823 824 825 826 827 828 829 830 831 832
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

833 834
            import paddle
            import numpy as np
835

836 837 838
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Softplus()
            out = m(x) # [0.513015, 0.598139, 0.744397, 0.854355]
839 840 841 842 843 844 845 846 847 848 849
    """

    def __init__(self, beta=1, threshold=20, name=None):
        super(Softplus, self).__init__()
        self._beta = beta
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softplus(x, self._beta, self._threshold, self._name)

850 851
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
L
Ligoml 已提交
852 853 854
        return 'beta={}, threshold={}{}'.format(
            self._beta, self._threshold, name_str
        )
855

856

Z
zhiboniu 已提交
857
class Softshrink(Layer):
858
    r"""
859 860 861 862
    Softshrink Activation

    .. math::

863 864 865 866 867 868 869 870 871
        Softshrink(x)=
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.

872 873

    Parameters:
874
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
875 876 877 878 879 880 881 882 883 884
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

885 886
            import paddle
            import numpy as np
887

888 889 890
            x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
            m = paddle.nn.Softshrink()
            out = m(x) # [-0.4, 0, 0, 0.3]
891 892 893 894 895 896 897 898 899 900
    """

    def __init__(self, threshold=0.5, name=None):
        super(Softshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softshrink(x, self._threshold, self._name)

901 902 903 904
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

905

Z
zhiboniu 已提交
906
class Softsign(Layer):
907
    r"""
908 909 910 911
    Softsign Activation

    .. math::

912
        Softsign(x) = \frac{x}{1 + |x|}
913 914 915 916 917 918 919 920 921 922 923 924

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

925 926
            import paddle
            import numpy as np
927

928 929 930
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Softsign()
            out = m(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
931 932 933 934 935 936 937 938 939
    """

    def __init__(self, name=None):
        super(Softsign, self).__init__()
        self._name = name

    def forward(self, x):
        return F.softsign(x, self._name)

940 941 942 943
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

944

Z
zhiboniu 已提交
945
class Swish(Layer):
946
    r"""
947 948 949 950
    Swish Activation.

    .. math::

951
        Swish(x) = \frac{x}{1 + e^{-x}}
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([-2., 0., 1.]))
            m = paddle.nn.Swish()
            out = m(x) # [-0.238406, 0., 0.731059]
    """

    def __init__(self, name=None):
        super(Swish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.swish(x, self._name)

979 980 981 982
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

983

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
class Mish(Layer):
    r"""
    Mish Activation.

    ..  math::

        softplus(x) = \begin{cases}
                x, \text{if } x > \text{threshold} \\
                \ln(1 + e^{x}),  \text{otherwise}
            \end{cases}

        Mish(x) = x * \tanh(softplus(x))
    
    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
    
    Examples:

        .. code-block:: python

            import paddle

W
wangxinxin08 已提交
1011
            x = paddle.to_tensor([-5., 0., 5.])
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
            m = paddle.nn.Mish()
            out = m(x) # [-0.03357624, 0., 4.99955208]

    """

    def __init__(self, name=None):
        super(Mish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.mish(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str


Z
zhiboniu 已提交
1029
class Tanhshrink(Layer):
1030 1031 1032 1033 1034
    """
    Tanhshrink Activation

    .. math::

1035
        Tanhshrink(x) = x - tanh(x)
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

1048 1049
            import paddle
            import numpy as np
1050

1051 1052 1053
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Tanhshrink()
            out = m(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
1054 1055 1056 1057 1058 1059 1060 1061 1062
    """

    def __init__(self, name=None):
        super(Tanhshrink, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanhshrink(x, self._name)

1063 1064 1065 1066
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

1067

Z
zhiboniu 已提交
1068
class ThresholdedReLU(Layer):
1069
    r"""
1070 1071 1072 1073
    Thresholded ReLU Activation

    .. math::

1074 1075 1076 1077 1078 1079 1080 1081
        ThresholdedReLU(x) =
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110

    Parameters:
        threshold (float, optional): The value of threshold for ThresholdedReLU. Default is 1.0
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([2., 0., 1.]))
            m = paddle.nn.ThresholdedReLU()
            out = m(x) # [2., 0., 0.]
    """

    def __init__(self, threshold=1.0, name=None):
        super(ThresholdedReLU, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.thresholded_relu(x, self._threshold, self._name)

1111 1112 1113 1114
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

1115

Z
zhiboniu 已提交
1116
class Silu(Layer):
M
minghaoBD 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
    """
    Silu Activation.
    .. math::

        Silu(x) = \frac{x}{1 + e^{-x}}

    Parameters:
        x (Tensor): The input Tensor with data type float32, or float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            m = paddle.nn.Silu()
            out = m(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
    """

    def __init__(self, name=None):
        super(Silu, self).__init__()
        self._name = name

    def forward(self, x):
        return F.silu(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str


Z
zhiboniu 已提交
1154
class LogSigmoid(Layer):
1155
    r"""
1156
    LogSigmoid Activation.
1157

1158
    .. math::
1159

1160
        LogSigmoid(x) = log \frac{1}{1 + e^{-x}}
1161 1162 1163 1164 1165

    Parameters:
        x (Tensor): The input Tensor with data type float32, or float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1166

1167 1168 1169
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
1170

1171 1172 1173
    Examples:
        .. code-block:: python

1174
            import paddle
1175

1176
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
1177 1178
            m = paddle.nn.LogSigmoid()
            out = m(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
1179 1180 1181 1182 1183 1184 1185
    """

    def __init__(self, name=None):
        super(LogSigmoid, self).__init__()
        self._name = name

    def forward(self, x):
1186
        return F.log_sigmoid(x, self._name)
1187

1188 1189 1190 1191
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

1192

Z
zhiboniu 已提交
1193
class Softmax(Layer):
1194
    r"""
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
    Softmax Activation.

    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1222
        Softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

    Parameters:
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = np.array([[[2.0, 3.0, 4.0, 5.0],
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.Softmax()
            out = m(x)
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
    """

    def __init__(self, axis=-1, name=None):
        super(Softmax, self).__init__()
        self._axis = axis
        self._dtype = None
        self._name = name

    def forward(self, x):
        return F.softmax(x, self._axis, self._dtype, self._name)

1315 1316 1317 1318
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'axis={}{}'.format(self._axis, name_str)

1319

Z
zhiboniu 已提交
1320
class LogSoftmax(Layer):
1321
    r"""
1322 1323 1324 1325
    This operator implements the log_softmax layer. The calculation process is as follows:

    .. math::

1326 1327 1328 1329
        \begin{array} {rcl}
            Out[i, j] &= &log(softmax(x)) \\
            &= &log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{array}
1330 1331

    Parameters:
1332 1333 1334 1335 1336 1337
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of the input Tensor . If ``axis`` < 0, it works the
            same way as :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1338

1339 1340 1341
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
1342 1343 1344 1345

    Examples:
        .. code-block:: python

1346 1347
            import paddle

Z
zhupengyang 已提交
1348 1349 1350 1351 1352 1353
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1354 1355 1356 1357 1358 1359 1360 1361 1362
            m = paddle.nn.LogSoftmax()
            x = paddle.to_tensor(x)
            out = m(x)
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
1363 1364
    """

1365
    def __init__(self, axis=-1, name=None):
1366 1367
        super(LogSoftmax, self).__init__()
        self._axis = axis
1368
        self._name = name
1369

1370 1371
    def forward(self, x):
        return F.log_softmax(x, self._axis)
1372

1373 1374 1375 1376
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'axis={}{}'.format(self._axis, name_str)

1377

Z
zhiboniu 已提交
1378
class Maxout(Layer):
1379
    r"""
1380 1381 1382 1383 1384 1385 1386 1387
    Maxout Activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

1388 1389 1390 1391 1392 1393 1394 1395
        \begin{array}{l}
            &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
            &g = groups \\
            &s = \frac{input.size}{num\_channels} \\
            &0 \le i < \frac{num\_channels}{groups} \\
            &0 \le j < s \\
            &0 \le k < groups
        \end{array}
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438

    Parameters:
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: :math:`(N, C_{in}, H_{in}, W_{in})`
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            m = paddle.nn.Maxout(groups=2)
            out = m(x)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """

    def __init__(self, groups, axis=1, name=None):
        super(Maxout, self).__init__()
        self._groups = groups
        self._axis = axis
        self._name = name

    def forward(self, x):
        return F.maxout(x, self._groups, self._axis, self._name)
1439 1440 1441 1442

    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'groups={}, axis={}{}'.format(self._groups, self._axis, name_str)
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487


class Softmax2D(Layer):
    r"""
    Softmax2D Activation.
    Given a Tensor with shape (B, C, H, W) or (C, H, W), it will apply Softmax to each location (C, h_i, w_j).
    The sum of result in each location (C, H_i, W_j) will be one.

    Shape:
        - Input: :math:`(B, C, H, W)` or :math:`(C, H, W)`
        - Output: :math:`(B, C, H, W)` or :math:`(C, H, W)`(same as input)

    Return:
        A Tensor of the same shape and dtype as input with value in range [0, 1].

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.42496058 0.1172187  0.14664008 0.8151267 ]
            #    [0.24430142 0.42052492 0.60372984 0.79307914]
            #    [0.4539401  0.90458065 0.10235776 0.62009853]]

            #   [[0.11731581 0.16053623 0.05667042 0.91876775]
            #    [0.9413854  0.30770817 0.6788164  0.9543593 ]
            #    [0.4145064  0.75909156 0.11598814 0.73599935]]]]
            m = paddle.nn.Softmax2D()
            out = m(x)
            # [[[[0.5763103  0.48917228 0.5224772  0.4741129 ]
            #    [0.3324591  0.5281743  0.48123717 0.45976716]
            #    [0.5098571  0.5363083  0.49659243 0.4710572 ]]

            #   [[0.42368975 0.51082766 0.47752273 0.5258871 ]
            #    [0.66754097 0.47182566 0.5187628  0.5402329 ]
            #    [0.49014282 0.46369177 0.50340754 0.5289428 ]]]]
    """

    def __init__(self, name=None):
        super(Softmax2D, self).__init__()
        self._dtype = None
        self._name = name

    def forward(self, x):
L
Ligoml 已提交
1488 1489 1490 1491 1492
        assert (
            x.ndim == 3 or x.ndim == 4
        ), "Softmax2D requires a 3D or 4D tensor as input. Received: {}D.".format(
            x.ndim
        )
1493 1494 1495 1496 1497
        return F.softmax(x, axis=-3, dtype=self._dtype, name=self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str