activation.py 44.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define activation functions of neural network
16

Z
zhiboniu 已提交
17 18
from ...framework import ParamAttr
from ..initializer import Constant
Q
Qi Li 已提交
19
from paddle.framework import get_default_dtype
20
from .. import functional as F
Z
zhiboniu 已提交
21
from paddle.nn import Layer
22

23 24
__all__ = []

25

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
class CELU(Layer):
    r"""
    CELU Activation.

    .. math::
    
        CELU(x) = max(0, x) + min(0, \alpha * (e^{x/\alpha}-1))

    Parameters:
        alpha (float, optional): The 'alpha' value of the CELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            
            x = paddle.to_tensor([[-1. ,6.], [1., 15.6]])
            m = paddle.nn.CELU(0.2)
            out = m(x)
            # [[-0.19865242,  6.        ],
            #  [ 1.        , 15.60000038]]
    """

    def __init__(self, alpha=1.0, name=None):
        super(CELU, self).__init__()
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.celu(x, self._alpha, self._name)

    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'alpha={}{}'.format(self._alpha, name_str)


Z
zhiboniu 已提交
68
class ELU(Layer):
69
    r"""
70 71
    ELU Activation.

72
    .. math::
73

Z
zhupengyang 已提交
74 75 76 77 78 79 80
        ELU(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
81 82 83 84 85

    Parameters:
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
86

87 88 89
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
90

91 92 93
    Examples:
        .. code-block:: python

94
            import paddle
95

Z
zhupengyang 已提交
96
            x = paddle.to_tensor([[-1. ,6.], [1., 15.6]])
97 98 99 100
            m = paddle.nn.ELU(0.2)
            out = m(x)
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
101 102 103 104 105 106 107 108 109 110
    """

    def __init__(self, alpha=1.0, name=None):
        super(ELU, self).__init__()
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.elu(x, self._alpha, self._name)

111 112 113 114
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'alpha={}{}'.format(self._alpha, name_str)

115

Z
zhiboniu 已提交
116
class GELU(Layer):
117
    r"""
118 119 120 121
    GELU Activation.

    If approximate is True

122
    .. math::
123

124
        GELU(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
125 126 127

    else

128
    .. math::
129

130
        GELU(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
131 132 133 134 135

    Parameters:
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
136

137 138 139
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
140

141 142
    Examples:
        .. code-block:: python
143
        
144
            import paddle
145

146
            x = paddle.to_tensor([[-1, 0.5],[1, 1.5]])
147

148 149
            m = paddle.nn.GELU()
            out = m(x) # [-0.158655 0.345731 0.841345 1.39979]
150

151 152
            m = paddle.nn.GELU(True)
            out = m(x) # [-0.158808 0.345714 0.841192 1.39957]
153 154 155 156 157 158 159 160 161 162
    """

    def __init__(self, approximate=False, name=None):
        super(GELU, self).__init__()
        self._approximate = approximate
        self._name = name

    def forward(self, x):
        return F.gelu(x, self._approximate, self._name)

163 164 165 166
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'approximate={}{}'.format(self._approximate, name_str)

167

Z
zhiboniu 已提交
168
class Hardshrink(Layer):
169
    r"""
170 171 172 173 174
    Hardshrink Activation

    .. math::

        hardshrink(x)=
175 176 177 178 179 180 181
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x > threshold \\
                    x, & & if \ x < -threshold \\
                    0, & & if \ others
            \end{array}
            \right.
182 183 184 185 186 187 188 189 190 191 192 193 194 195

    Parameters:
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

196
            import paddle
197

Z
zhupengyang 已提交
198
            x = paddle.to_tensor([-1, 0.3, 2.5])
199 200
            m = paddle.nn.Hardshrink()
            out = m(x) # [-1., 0., 2.5]
201 202 203 204 205 206 207 208
    """

    def __init__(self, threshold=0.5, name=None):
        super(Hardshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
209
        return F.hardshrink(x, self._threshold, self._name)
210

211 212 213 214
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

215

Z
zhiboniu 已提交
216
class Hardswish(Layer):
217
    r"""
218 219 220 221 222 223 224 225 226
    Hardswish activation

    Hardswish is proposed in MobileNetV3, and performs better in computational stability
    and efficiency compared to swish function. For more details please refer
    to: https://arxiv.org/pdf/1905.02244.pdf

    .. math::

        Hardswish(x)=
227 228 229 230 231 232 233 234
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
            
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-4., 5., 1.])
            m = paddle.nn.Hardswish()
            out = m(x) # [0., 5., 0.666667]
    """

    def __init__(self, name=None):
        super(Hardswish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.hardswish(x, self._name)

262 263 264 265
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

266

Z
zhiboniu 已提交
267
class Tanh(Layer):
268
    r"""
W
WangXi 已提交
269 270 271
    Tanh Activation.

    .. math::
272
        Tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Tanh()
            out = m(x)
W
WangXi 已提交
292
            print(out)
W
WangXi 已提交
293 294 295 296 297 298 299 300 301 302
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """

    def __init__(self, name=None):
        super(Tanh, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanh(x, self._name)

303 304 305 306
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

W
WangXi 已提交
307

Z
zhiboniu 已提交
308
class Hardtanh(Layer):
309
    r"""
310 311 312 313
    Hardtanh Activation

    .. math::

314 315 316 317 318 319 320 321 322
        Hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.

323 324 325 326 327 328

    Parameters:
        min (float, optional): The value of min for Hardtanh. Default is -1.
        max (float, optional): The value of max for Hardtanh. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
329

330 331 332
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
333

334 335 336 337 338
    Examples:
        .. code-block:: python

            import paddle

Z
zhupengyang 已提交
339
            x = paddle.to_tensor([-1.5, 0.3, 2.5])
340
            m = paddle.nn.Hardtanh()
Z
zhupengyang 已提交
341
            out = m(x) # [-1., 0.3, 1.]
342 343 344 345 346 347 348 349 350 351 352
    """

    def __init__(self, min=-1.0, max=1.0, name=None):
        super(Hardtanh, self).__init__()
        self._min = min
        self._max = max
        self._name = name

    def forward(self, x):
        return F.hardtanh(x, self._min, self._max, self._name)

353 354 355 356
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'min={}, max={}{}'.format(self._min, self._max, name_str)

357

Z
zhiboniu 已提交
358
class PReLU(Layer):
359 360 361 362 363 364 365 366 367
    """
    PReLU Activation.

    .. math::

        PReLU(x) = max(0, x) + weight * min(0, x)

    Parameters:
        num_parameters (int, optional): Number of `weight` to learn. The supported values are:
368
            1 - a single parameter `alpha` is used for all input channels;
369
            Number of channels - a separate `alpha` is used for each input channel.
370 371
            Default is 1.
        init (float, optional): Init value of learnable `weight`. Default is 0.25.
372
        weight_attr(ParamAttr, optional): The parameter attribute for the learnable `weight`.
373
            Default is None. For more information, please refer to :ref:`api_paddle_ParamAttr`.
374 375
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
376 377
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
378

379
    Shape:
Q
Qi Li 已提交
380
        - input: Tensor with any shape. Default dtype is float32.
381
        - output: Tensor with the same shape as input.
382

383 384 385 386
    Examples:
        .. code-block:: python

            import paddle
Q
Qi Li 已提交
387
            paddle.set_default_dtype("float64")
388

389 390 391 392 393 394 395
            data = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
                                    [ 3.0, -4.0,  5.0, -6.0],
                                    [-7.0, -8.0,  8.0,  9.0]],
                                    [[ 1.0, -2.0, -3.0,  4.0],
                                    [-5.0,  6.0,  7.0, -8.0],
                                    [ 6.0,  7.0,  8.0,  9.0]]]])

396
            m = paddle.nn.PReLU(1, 0.25)
397 398
            out = m(data)
            print(out)
399 400 401 402 403 404 405 406
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """

407 408 409 410 411
    def __init__(self,
                 num_parameters=1,
                 init=0.25,
                 weight_attr=None,
                 data_format="NCHW",
412 413 414 415 416 417
                 name=None):
        super(PReLU, self).__init__()
        self._num_parameters = num_parameters
        self._init = init
        self._weight_attr = weight_attr
        self._name = name
418
        self._data_format = data_format
419

420 421 422 423 424 425
        self._weight = self.create_parameter(attr=self._weight_attr,
                                             shape=[self._num_parameters],
                                             dtype=get_default_dtype(),
                                             is_bias=False,
                                             default_initializer=Constant(
                                                 self._init))
426 427

    def forward(self, x):
428
        return F.prelu(x, self._weight, data_format=self._data_format)
429

430 431
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
432 433 434
        return 'num_parameters={}, data_format={}, init={}, dtype={}{}'.format(
            self._num_parameters, self._data_format, self._init, self._dtype,
            name_str)
435

436

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
class RReLU(Layer):
    r"""
    RReLU activation layer.

    Applies the randomized leaky rectified liner unit function to improve generalization performance,
    as described in the paper:
    `Empirical Evaluation of Rectified Activations in Convolutional Network <https://arxiv.org/abs/1505.00853>`_

    During training, randomly samples the negative slope for activation values as described below:

    .. math::

        RReLU(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    a * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`a` is randomly sampled from uniform distribution in range (:math:`lower`, :math:`upper`),

    In the test phase, the negative slope will take the average value of :math:`lower` and :math:`upper`:

    .. math::

        RReLU(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    (lower + upper) * 0.5 * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`lower` and :math:`upper` are the bounds of uniform distribution.

    Parameters:
        lower (float, optional): The lower bound of uniform distribution. Default: 0.125.
        upper (float, optional): The upper bound of uniform distribution. Default: 0.333.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape. Default dtype is float32.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

            input_tensor = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
                                            [ 3.0, -4.0,  5.0, -6.0],
                                            [-7.0, -8.0,  8.0,  9.0]],
                                            [[ 1.0, -2.0, -3.0,  4.0],
                                            [-5.0,  6.0,  7.0, -8.0],
                                            [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            rrelu_layer = paddle.nn.RReLU(0.1, 0.3)
498 499
            out = rrelu_layer(input_tensor)
            print(out)
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
            #[[[[-0.20000899  3.         -0.88108218  5.        ]
            #   [ 3.         -0.55175185  5.         -1.07761011]
            #   [-1.06806871 -1.98962009  8.          9.        ]]
            #  [[ 1.         -0.52382672 -0.65515128  4.        ]
            #   [-1.37663394  6.          7.         -2.34657836]
            #   [ 6.          7.          8.          9.        ]]]]
    """

    def __init__(self, lower=1. / 8., upper=1. / 3., name=None):
        super(RReLU, self).__init__()
        self._lower = lower
        self._upper = upper
        self._name = name

    def forward(self, x):
515 516 517 518
        return F.rrelu(x,
                       lower=self._lower,
                       upper=self._upper,
                       training=self.training)
519 520 521 522 523 524 525

    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'lower={}, upper={}, training={}, dtype={}{}'.format(
            self._lower, self._upper, self.training, self._dtype, name_str)


Z
zhiboniu 已提交
526
class ReLU(Layer):
527 528 529
    """
    ReLU Activation.

530
    .. math::
531

532
        ReLU(x) = max(x, 0)
533 534

    Parameters:
535 536 537 538 539 540
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
541

542 543 544
    Examples:
        .. code-block:: python

545
            import paddle
546

Z
zhupengyang 已提交
547
            x = paddle.to_tensor([-2., 0., 1.])
548
            m = paddle.nn.ReLU()
549 550 551
            out = m(x)
            print(out)
            # [0., 0., 1.]
552 553
    """

554
    def __init__(self, name=None):
555
        super(ReLU, self).__init__()
556
        self._name = name
557

558 559
    def forward(self, x):
        return F.relu(x, self._name)
560

561 562 563 564
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

565

Z
zhiboniu 已提交
566
class ReLU6(Layer):
567 568 569 570 571
    """
    ReLU6 Activation

    .. math::

572
        ReLU6(x) = min(max(0,x), 6)
573 574 575 576 577 578 579 580 581 582 583 584

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

585
            import paddle
586

587
            x = paddle.to_tensor([-1., 0.3, 6.5])
588
            m = paddle.nn.ReLU6()
589 590 591
            out = m(x)
            print(out)
            # [0, 0.3, 6]
592 593 594 595 596 597 598 599 600
    """

    def __init__(self, name=None):
        super(ReLU6, self).__init__()
        self._name = name

    def forward(self, x):
        return F.relu6(x, self._name)

601 602 603 604
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

605

Z
zhiboniu 已提交
606
class SELU(Layer):
607
    r"""
608 609 610 611
    SELU Activation

    .. math::

612
        SELU(x)= scale *
613 614 615 616 617 618
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
619 620

    Parameters:
621 622
        scale (float, optional): The value of scale(must be greater than 1.0) for SELU. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for SELU. Default is 1.6732632423543772848170429916717
623 624 625 626 627 628 629 630 631 632
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

633
            import paddle
634

635
            x = paddle.to_tensor([[0.0, 1.0],[2.0, 3.0]])
636
            m = paddle.nn.SELU()
637 638 639
            out = m(x)
            print(out)
            # [[0, 1.050701],[2.101402, 3.152103]]
640 641 642 643 644 645 646 647 648 649 650 651 652 653
    """

    def __init__(self,
                 scale=1.0507009873554804934193349852946,
                 alpha=1.6732632423543772848170429916717,
                 name=None):
        super(SELU, self).__init__()
        self._scale = scale
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.selu(x, self._scale, self._alpha, self._name)

654 655 656 657 658
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'scale={:.16f}, alpha={:.16f}{}'.format(self._scale, self._alpha,
                                                       name_str)

659

Z
zhiboniu 已提交
660
class LeakyReLU(Layer):
661
    r"""
C
ceci3 已提交
662 663
    Leaky ReLU Activation.

664
    .. math::
C
ceci3 已提交
665

666
        LeakyReLU(x)=
667 668 669 670 671 672 673
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    negative\_slope * x, & & otherwise \\
                \end{array}
            \right.

C
ceci3 已提交
674 675

    Parameters:
676 677
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
678 679
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
680

681 682 683
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
684

C
ceci3 已提交
685 686 687
    Examples:
        .. code-block:: python

688
            import paddle
C
Chen Long 已提交
689
            import numpy as np
690

691
            m = paddle.nn.LeakyReLU()
Z
zhupengyang 已提交
692
            x = paddle.to_tensor(np.array([-2, 0, 1], 'float32'))
693
            out = m(x)  # [-0.02, 0., 1.]
C
ceci3 已提交
694 695
    """

696
    def __init__(self, negative_slope=0.01, name=None):
C
ceci3 已提交
697
        super(LeakyReLU, self).__init__()
698
        self._negative_slope = negative_slope
699
        self._name = name
C
ceci3 已提交
700

701
    def forward(self, x):
702
        return F.leaky_relu(x, self._negative_slope, self._name)
C
ceci3 已提交
703

704 705 706 707
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'negative_slope={}{}'.format(self._negative_slope, name_str)

C
ceci3 已提交
708

Z
zhiboniu 已提交
709
class Sigmoid(Layer):
710
    """
711
    this interface is used to construct a callable object of the ``Sigmoid`` class. This layer calcluate the `sigmoid` of input x.
712

713
    .. math::
S
swtkiwi 已提交
714

715
        Sigmoid(x) = \\frac{1}{1 + e^{-x}}
716

717 718
    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
719

720 721
    Shape:
        x: N-D tensor, available dtype is float16, float32, float64.
722 723

    Returns:
724
        A callable object of Sigmoid.
725

726
    Examples:
727

728 729
        .. code-block:: python

730 731 732
          import paddle

          m = paddle.nn.Sigmoid()
733 734
          x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
          out = m(x) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
735 736
    """

737
    def __init__(self, name=None):
738
        super(Sigmoid, self).__init__()
739
        self.name = name
740

741 742
    def forward(self, x):
        return F.sigmoid(x, self.name)
743

744 745 746 747
    def extra_repr(self):
        name_str = 'name={}'.format(self.name) if self.name else ''
        return name_str

748

Z
zhiboniu 已提交
749
class Hardsigmoid(Layer):
750
    r"""
751 752 753 754 755 756 757 758 759
    This interface is used to construct a callable object of the ``Hardsigmoid`` class.
    This layer calcluate the `hardsigmoid` of input x.

    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        Hardsigmoid(x)=
760 761 762 763 764 765 766 767
            \left\{
                \begin{array}{rcl}
            0, & & \text{if } \ x \leq -3 \\
            1, & & \text{if } \ x \geq 3 \\
            x/6 + 1/2, & & \text{otherwise}
                \end{array}
            \right.

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783

    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        x: N-D tensor, available dtype is float32, float64.

    Returns:
        A callable object of Hardsigmoid.

    Examples:

        .. code-block:: python

          import paddle

Z
zhupengyang 已提交
784
          m = paddle.nn.Hardsigmoid()
785 786 787 788 789 790 791 792 793
          x = paddle.to_tensor([-4., 5., 1.])
          out = m(x) # [0., 1, 0.666667]
    """

    def __init__(self, name=None):
        super(Hardsigmoid, self).__init__()
        self.name = name

    def forward(self, x):
794
        return F.hardsigmoid(x, name=self.name)
795

796 797 798 799
    def extra_repr(self):
        name_str = 'name={}'.format(self.name) if self.name else ''
        return name_str

800

Z
zhiboniu 已提交
801
class Softplus(Layer):
802
    r"""
803 804 805 806
    Softplus Activation

    .. math::

807 808
        Softplus(x) = \frac{1}{beta} * \log(1 + e^{beta * x}) \\
        \text{For numerical stability, the implementation reverts to the linear function when: beta * x > threshold.}
809 810

    Parameters:
811 812
        beta (float, optional): The value of beta for Softplus. Default is 1
        threshold (float, optional): The value of threshold for Softplus. Default is 20
813 814 815 816 817 818 819 820 821 822
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

823 824
            import paddle
            import numpy as np
825

826 827 828
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Softplus()
            out = m(x) # [0.513015, 0.598139, 0.744397, 0.854355]
829 830 831 832 833 834 835 836 837 838 839
    """

    def __init__(self, beta=1, threshold=20, name=None):
        super(Softplus, self).__init__()
        self._beta = beta
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softplus(x, self._beta, self._threshold, self._name)

840 841 842 843 844
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'beta={}, threshold={}{}'.format(self._beta, self._threshold,
                                                name_str)

845

Z
zhiboniu 已提交
846
class Softshrink(Layer):
847
    r"""
848 849 850 851
    Softshrink Activation

    .. math::

852 853 854 855 856 857 858 859 860
        Softshrink(x)=
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.

861 862

    Parameters:
863
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
864 865 866 867 868 869 870 871 872 873
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

874 875
            import paddle
            import numpy as np
876

877 878 879
            x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
            m = paddle.nn.Softshrink()
            out = m(x) # [-0.4, 0, 0, 0.3]
880 881 882 883 884 885 886 887 888 889
    """

    def __init__(self, threshold=0.5, name=None):
        super(Softshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softshrink(x, self._threshold, self._name)

890 891 892 893
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

894

Z
zhiboniu 已提交
895
class Softsign(Layer):
896
    r"""
897 898 899 900
    Softsign Activation

    .. math::

901
        Softsign(x) = \frac{x}{1 + |x|}
902 903 904 905 906 907 908 909 910 911 912 913

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

914 915
            import paddle
            import numpy as np
916

917 918 919
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Softsign()
            out = m(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
920 921 922 923 924 925 926 927 928
    """

    def __init__(self, name=None):
        super(Softsign, self).__init__()
        self._name = name

    def forward(self, x):
        return F.softsign(x, self._name)

929 930 931 932
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

933

Z
zhiboniu 已提交
934
class Swish(Layer):
935
    r"""
936 937 938 939
    Swish Activation.

    .. math::

940
        Swish(x) = \frac{x}{1 + e^{-x}}
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([-2., 0., 1.]))
            m = paddle.nn.Swish()
            out = m(x) # [-0.238406, 0., 0.731059]
    """

    def __init__(self, name=None):
        super(Swish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.swish(x, self._name)

968 969 970 971
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

972

973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
class Mish(Layer):
    r"""
    Mish Activation.

    ..  math::

        softplus(x) = \begin{cases}
                x, \text{if } x > \text{threshold} \\
                \ln(1 + e^{x}),  \text{otherwise}
            \end{cases}

        Mish(x) = x * \tanh(softplus(x))
    
    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
    
    Examples:

        .. code-block:: python

            import paddle

W
wangxinxin08 已提交
1000
            x = paddle.to_tensor([-5., 0., 5.])
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
            m = paddle.nn.Mish()
            out = m(x) # [-0.03357624, 0., 4.99955208]

    """

    def __init__(self, name=None):
        super(Mish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.mish(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str


Z
zhiboniu 已提交
1018
class Tanhshrink(Layer):
1019 1020 1021 1022 1023
    """
    Tanhshrink Activation

    .. math::

1024
        Tanhshrink(x) = x - tanh(x)
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

1037 1038
            import paddle
            import numpy as np
1039

1040 1041 1042
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Tanhshrink()
            out = m(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
1043 1044 1045 1046 1047 1048 1049 1050 1051
    """

    def __init__(self, name=None):
        super(Tanhshrink, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanhshrink(x, self._name)

1052 1053 1054 1055
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

1056

Z
zhiboniu 已提交
1057
class ThresholdedReLU(Layer):
1058
    r"""
1059 1060 1061 1062
    Thresholded ReLU Activation

    .. math::

1063 1064 1065 1066 1067 1068 1069 1070
        ThresholdedReLU(x) =
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099

    Parameters:
        threshold (float, optional): The value of threshold for ThresholdedReLU. Default is 1.0
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([2., 0., 1.]))
            m = paddle.nn.ThresholdedReLU()
            out = m(x) # [2., 0., 0.]
    """

    def __init__(self, threshold=1.0, name=None):
        super(ThresholdedReLU, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.thresholded_relu(x, self._threshold, self._name)

1100 1101 1102 1103
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

1104

Z
zhiboniu 已提交
1105
class Silu(Layer):
M
minghaoBD 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
    """
    Silu Activation.
    .. math::

        Silu(x) = \frac{x}{1 + e^{-x}}

    Parameters:
        x (Tensor): The input Tensor with data type float32, or float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            m = paddle.nn.Silu()
            out = m(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
    """

    def __init__(self, name=None):
        super(Silu, self).__init__()
        self._name = name

    def forward(self, x):
        return F.silu(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str


Z
zhiboniu 已提交
1143
class LogSigmoid(Layer):
1144
    r"""
1145
    LogSigmoid Activation.
1146

1147
    .. math::
1148

1149
        LogSigmoid(x) = log \frac{1}{1 + e^{-x}}
1150 1151 1152 1153 1154

    Parameters:
        x (Tensor): The input Tensor with data type float32, or float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1155

1156 1157 1158
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
1159

1160 1161 1162
    Examples:
        .. code-block:: python

1163
            import paddle
1164

1165
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
1166 1167
            m = paddle.nn.LogSigmoid()
            out = m(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
1168 1169 1170 1171 1172 1173 1174
    """

    def __init__(self, name=None):
        super(LogSigmoid, self).__init__()
        self._name = name

    def forward(self, x):
1175
        return F.log_sigmoid(x, self._name)
1176

1177 1178 1179 1180
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

1181

Z
zhiboniu 已提交
1182
class Softmax(Layer):
1183
    r"""
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
    Softmax Activation.

    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1211
        Softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

    Parameters:
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = np.array([[[2.0, 3.0, 4.0, 5.0],
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.Softmax()
            out = m(x)
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
    """

    def __init__(self, axis=-1, name=None):
        super(Softmax, self).__init__()
        self._axis = axis
        self._dtype = None
        self._name = name

    def forward(self, x):
        return F.softmax(x, self._axis, self._dtype, self._name)

1304 1305 1306 1307
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'axis={}{}'.format(self._axis, name_str)

1308

Z
zhiboniu 已提交
1309
class LogSoftmax(Layer):
1310
    r"""
1311 1312 1313 1314
    This operator implements the log_softmax layer. The calculation process is as follows:

    .. math::

1315 1316 1317 1318
        \begin{array} {rcl}
            Out[i, j] &= &log(softmax(x)) \\
            &= &log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{array}
1319 1320

    Parameters:
1321 1322 1323 1324 1325 1326
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of the input Tensor . If ``axis`` < 0, it works the
            same way as :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1327

1328 1329 1330
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
1331 1332 1333 1334

    Examples:
        .. code-block:: python

1335 1336
            import paddle

Z
zhupengyang 已提交
1337 1338 1339 1340 1341 1342
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1343 1344 1345 1346 1347 1348 1349 1350 1351
            m = paddle.nn.LogSoftmax()
            x = paddle.to_tensor(x)
            out = m(x)
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
1352 1353
    """

1354
    def __init__(self, axis=-1, name=None):
1355 1356
        super(LogSoftmax, self).__init__()
        self._axis = axis
1357
        self._name = name
1358

1359 1360
    def forward(self, x):
        return F.log_softmax(x, self._axis)
1361

1362 1363 1364 1365
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'axis={}{}'.format(self._axis, name_str)

1366

Z
zhiboniu 已提交
1367
class Maxout(Layer):
1368
    r"""
1369 1370 1371 1372 1373 1374 1375 1376
    Maxout Activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

1377 1378 1379 1380 1381 1382 1383 1384
        \begin{array}{l}
            &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
            &g = groups \\
            &s = \frac{input.size}{num\_channels} \\
            &0 \le i < \frac{num\_channels}{groups} \\
            &0 \le j < s \\
            &0 \le k < groups
        \end{array}
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427

    Parameters:
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: :math:`(N, C_{in}, H_{in}, W_{in})`
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            m = paddle.nn.Maxout(groups=2)
            out = m(x)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """

    def __init__(self, groups, axis=1, name=None):
        super(Maxout, self).__init__()
        self._groups = groups
        self._axis = axis
        self._name = name

    def forward(self, x):
        return F.maxout(x, self._groups, self._axis, self._name)
1428 1429 1430 1431

    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'groups={}, axis={}{}'.format(self._groups, self._axis, name_str)
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483


class Softmax2D(Layer):
    r"""
    Softmax2D Activation.
    Given a Tensor with shape (B, C, H, W) or (C, H, W), it will apply Softmax to each location (C, h_i, w_j).
    The sum of result in each location (C, H_i, W_j) will be one.

    Shape:
        - Input: :math:`(B, C, H, W)` or :math:`(C, H, W)`
        - Output: :math:`(B, C, H, W)` or :math:`(C, H, W)`(same as input)

    Return:
        A Tensor of the same shape and dtype as input with value in range [0, 1].

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.42496058 0.1172187  0.14664008 0.8151267 ]
            #    [0.24430142 0.42052492 0.60372984 0.79307914]
            #    [0.4539401  0.90458065 0.10235776 0.62009853]]

            #   [[0.11731581 0.16053623 0.05667042 0.91876775]
            #    [0.9413854  0.30770817 0.6788164  0.9543593 ]
            #    [0.4145064  0.75909156 0.11598814 0.73599935]]]]
            m = paddle.nn.Softmax2D()
            out = m(x)
            # [[[[0.5763103  0.48917228 0.5224772  0.4741129 ]
            #    [0.3324591  0.5281743  0.48123717 0.45976716]
            #    [0.5098571  0.5363083  0.49659243 0.4710572 ]]

            #   [[0.42368975 0.51082766 0.47752273 0.5258871 ]
            #    [0.66754097 0.47182566 0.5187628  0.5402329 ]
            #    [0.49014282 0.46369177 0.50340754 0.5289428 ]]]]
    """

    def __init__(self, name=None):
        super(Softmax2D, self).__init__()
        self._dtype = None
        self._name = name

    def forward(self, x):
        assert x.ndim == 3 or x.ndim == 4, "Softmax2D requires a 3D or 4D tensor as input. Received: {}D.".format(
            x.ndim)
        return F.softmax(x, axis=-3, dtype=self._dtype, name=self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str