activation.py 39.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define activation functions of neural network
16

17 18
from ...fluid import core
from ...fluid.framework import in_dygraph_mode
Z
zhiboniu 已提交
19 20
from ...framework import ParamAttr
from ..initializer import Constant
Q
Qi Li 已提交
21
from paddle.framework import get_default_dtype
22
from .. import functional as F
Z
zhiboniu 已提交
23
from paddle.nn import Layer
24

25 26
__all__ = []

27

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
class CELU(Layer):
    r"""
    CELU Activation.

    .. math::
    
        CELU(x) = max(0, x) + min(0, \alpha * (e^{x/\alpha}-1))

    Parameters:
        alpha (float, optional): The 'alpha' value of the CELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            
            x = paddle.to_tensor([[-1. ,6.], [1., 15.6]])
            m = paddle.nn.CELU(0.2)
            out = m(x)
            # [[-0.19865242,  6.        ],
            #  [ 1.        , 15.60000038]]
    """

    def __init__(self, alpha=1.0, name=None):
        super(CELU, self).__init__()
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.celu(x, self._alpha, self._name)

    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'alpha={}{}'.format(self._alpha, name_str)


Z
zhiboniu 已提交
70
class ELU(Layer):
71
    r"""
72 73
    ELU Activation.

74
    .. math::
75

Z
zhupengyang 已提交
76 77 78 79 80 81 82
        ELU(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
83 84 85 86 87

    Parameters:
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
88

89 90 91
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
92

93 94 95
    Examples:
        .. code-block:: python

96
            import paddle
97

Z
zhupengyang 已提交
98
            x = paddle.to_tensor([[-1. ,6.], [1., 15.6]])
99 100 101 102
            m = paddle.nn.ELU(0.2)
            out = m(x)
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
103 104 105 106 107 108 109 110 111 112
    """

    def __init__(self, alpha=1.0, name=None):
        super(ELU, self).__init__()
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.elu(x, self._alpha, self._name)

113 114 115 116
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'alpha={}{}'.format(self._alpha, name_str)

117

Z
zhiboniu 已提交
118
class GELU(Layer):
119
    r"""
120 121 122 123
    GELU Activation.

    If approximate is True

124
    .. math::
125

126
        GELU(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
127 128 129

    else

130
    .. math::
131

132
        GELU(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
133 134 135 136 137

    Parameters:
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
138

139 140 141
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
142

143 144 145
    Examples:
        .. code-block:: python

146 147
            import paddle
            import numpy as np
148

149
            x = paddle.to_tensor(np.array([[-1, 0.5],[1, 1.5]]))
150

151 152
            m = paddle.nn.GELU()
            out = m(x) # [-0.158655 0.345731 0.841345 1.39979]
153

154 155
            m = paddle.nn.GELU(True)
            out = m(x) # [-0.158808 0.345714 0.841192 1.39957]
156 157 158 159 160 161 162 163 164 165
    """

    def __init__(self, approximate=False, name=None):
        super(GELU, self).__init__()
        self._approximate = approximate
        self._name = name

    def forward(self, x):
        return F.gelu(x, self._approximate, self._name)

166 167 168 169
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'approximate={}{}'.format(self._approximate, name_str)

170

Z
zhiboniu 已提交
171
class Hardshrink(Layer):
172
    r"""
173 174 175 176 177
    Hardshrink Activation

    .. math::

        hardshrink(x)=
178 179 180 181 182 183 184
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x > threshold \\
                    x, & & if \ x < -threshold \\
                    0, & & if \ others
            \end{array}
            \right.
185 186 187 188 189 190 191 192 193 194 195 196 197 198

    Parameters:
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

199
            import paddle
200

Z
zhupengyang 已提交
201
            x = paddle.to_tensor([-1, 0.3, 2.5])
202 203
            m = paddle.nn.Hardshrink()
            out = m(x) # [-1., 0., 2.5]
204 205 206 207 208 209 210 211
    """

    def __init__(self, threshold=0.5, name=None):
        super(Hardshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
212
        return F.hardshrink(x, self._threshold, self._name)
213

214 215 216 217
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

218

Z
zhiboniu 已提交
219
class Hardswish(Layer):
220
    r"""
221 222 223 224 225 226 227 228 229
    Hardswish activation

    Hardswish is proposed in MobileNetV3, and performs better in computational stability
    and efficiency compared to swish function. For more details please refer
    to: https://arxiv.org/pdf/1905.02244.pdf

    .. math::

        Hardswish(x)=
230 231 232 233 234 235 236 237
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
            
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-4., 5., 1.])
            m = paddle.nn.Hardswish()
            out = m(x) # [0., 5., 0.666667]
    """

    def __init__(self, name=None):
        super(Hardswish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.hardswish(x, self._name)

265 266 267 268
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

269

Z
zhiboniu 已提交
270
class Tanh(Layer):
271
    r"""
W
WangXi 已提交
272 273 274
    Tanh Activation.

    .. math::
275
        Tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Tanh()
            out = m(x)
W
WangXi 已提交
295
            print(out)
W
WangXi 已提交
296 297 298 299 300 301 302 303 304 305
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """

    def __init__(self, name=None):
        super(Tanh, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanh(x, self._name)

306 307 308 309
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

W
WangXi 已提交
310

Z
zhiboniu 已提交
311
class Hardtanh(Layer):
312
    r"""
313 314 315 316
    Hardtanh Activation

    .. math::

317 318 319 320 321 322 323 324 325
        Hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.

326 327 328 329 330 331

    Parameters:
        min (float, optional): The value of min for Hardtanh. Default is -1.
        max (float, optional): The value of max for Hardtanh. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
332

333 334 335
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
336

337 338 339 340 341
    Examples:
        .. code-block:: python

            import paddle

Z
zhupengyang 已提交
342
            x = paddle.to_tensor([-1.5, 0.3, 2.5])
343
            m = paddle.nn.Hardtanh()
Z
zhupengyang 已提交
344
            out = m(x) # [-1., 0.3, 1.]
345 346 347 348 349 350 351 352 353 354 355
    """

    def __init__(self, min=-1.0, max=1.0, name=None):
        super(Hardtanh, self).__init__()
        self._min = min
        self._max = max
        self._name = name

    def forward(self, x):
        return F.hardtanh(x, self._min, self._max, self._name)

356 357 358 359
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'min={}, max={}{}'.format(self._min, self._max, name_str)

360

Z
zhiboniu 已提交
361
class PReLU(Layer):
362 363 364 365 366 367 368 369 370
    """
    PReLU Activation.

    .. math::

        PReLU(x) = max(0, x) + weight * min(0, x)

    Parameters:
        num_parameters (int, optional): Number of `weight` to learn. The supported values are:
371
            1 - a single parameter `alpha` is used for all input channels;
372 373 374
            Number of channels - a seperate `alpha` is used for each input channel.
            Default is 1.
        init (float, optional): Init value of learnable `weight`. Default is 0.25.
375
        weight_attr(ParamAttr, optional): The parameter attribute for the learnable `weight`.
376
            Default is None. For more information, please refer to :ref:`api_paddle_ParamAttr`.
377 378
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
379 380
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
381

382
    Shape:
Q
Qi Li 已提交
383
        - input: Tensor with any shape. Default dtype is float32.
384
        - output: Tensor with the same shape as input.
385

386 387 388 389 390 391
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

Q
Qi Li 已提交
392
            paddle.set_default_dtype("float64")
393 394 395 396 397 398

            data = np.array([[[[-2.0,  3.0, -4.0,  5.0],
                            [ 3.0, -4.0,  5.0, -6.0],
                            [-7.0, -8.0,  8.0,  9.0]],
                            [[ 1.0, -2.0, -3.0,  4.0],
                            [-5.0,  6.0,  7.0, -8.0],
Q
Qi Li 已提交
399
                            [ 6.0,  7.0,  8.0,  9.0]]]], 'float64')
400 401 402 403 404 405 406 407 408 409 410
            x = paddle.to_tensor(data)
            m = paddle.nn.PReLU(1, 0.25)
            out = m(x)
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """

411 412 413 414 415
    def __init__(self,
                 num_parameters=1,
                 init=0.25,
                 weight_attr=None,
                 data_format="NCHW",
416 417 418 419 420 421
                 name=None):
        super(PReLU, self).__init__()
        self._num_parameters = num_parameters
        self._init = init
        self._weight_attr = weight_attr
        self._name = name
422
        self._data_format = data_format
423 424 425

        self._weight = self.create_parameter(
            attr=self._weight_attr,
Q
Qi Li 已提交
426 427
            shape=[self._num_parameters],
            dtype=get_default_dtype(),
428
            is_bias=False,
Q
Qi Li 已提交
429
            default_initializer=Constant(self._init))
430 431

    def forward(self, x):
432
        return F.prelu(x, self._weight, data_format=self._data_format)
433

434 435
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
436 437 438
        return 'num_parameters={}, data_format={}, init={}, dtype={}{}'.format(
            self._num_parameters, self._data_format, self._init, self._dtype,
            name_str)
439

440

Z
zhiboniu 已提交
441
class ReLU(Layer):
442 443 444
    """
    ReLU Activation.

445
    .. math::
446

447
        ReLU(x) = max(x, 0)
448 449

    Parameters:
450 451 452 453 454 455
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
456

457 458 459
    Examples:
        .. code-block:: python

460
            import paddle
461

Z
zhupengyang 已提交
462
            x = paddle.to_tensor([-2., 0., 1.])
463 464
            m = paddle.nn.ReLU()
            out = m(x) # [0., 0., 1.]
465 466
    """

467
    def __init__(self, name=None):
468
        super(ReLU, self).__init__()
469
        self._name = name
470

471 472
    def forward(self, x):
        return F.relu(x, self._name)
473

474 475 476 477
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

478

Z
zhiboniu 已提交
479
class ReLU6(Layer):
480 481 482 483 484
    """
    ReLU6 Activation

    .. math::

485
        ReLU6(x) = min(max(0,x), 6)
486 487 488 489 490 491 492 493 494 495 496 497

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

498 499
            import paddle
            import numpy as np
500

501 502 503
            x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
            m = paddle.nn.ReLU6()
            out = m(x) # [0, 0.3, 6]
504 505 506 507 508 509 510 511 512
    """

    def __init__(self, name=None):
        super(ReLU6, self).__init__()
        self._name = name

    def forward(self, x):
        return F.relu6(x, self._name)

513 514 515 516
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

517

Z
zhiboniu 已提交
518
class SELU(Layer):
519
    r"""
520 521 522 523
    SELU Activation

    .. math::

524
        SELU(x)= scale *
525 526 527 528 529 530
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
531 532

    Parameters:
533 534
        scale (float, optional): The value of scale(must be greater than 1.0) for SELU. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for SELU. Default is 1.6732632423543772848170429916717
535 536 537 538 539 540 541 542 543 544
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

545 546
            import paddle
            import numpy as np
547

548
            x = paddle.to_tensor(np.array([[0.0, 1.0],[2.0, 3.0]]))
549 550
            m = paddle.nn.SELU()
            out = m(x) # [[0, 1.050701],[2.101402, 3.152103]]
551 552 553 554 555 556 557 558 559 560 561 562 563 564
    """

    def __init__(self,
                 scale=1.0507009873554804934193349852946,
                 alpha=1.6732632423543772848170429916717,
                 name=None):
        super(SELU, self).__init__()
        self._scale = scale
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.selu(x, self._scale, self._alpha, self._name)

565 566 567 568 569
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'scale={:.16f}, alpha={:.16f}{}'.format(self._scale, self._alpha,
                                                       name_str)

570

Z
zhiboniu 已提交
571
class LeakyReLU(Layer):
572
    r"""
C
ceci3 已提交
573 574
    Leaky ReLU Activation.

575
    .. math::
C
ceci3 已提交
576

577
        LeakyReLU(x)=
578 579 580 581 582 583 584
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    negative\_slope * x, & & otherwise \\
                \end{array}
            \right.

C
ceci3 已提交
585 586

    Parameters:
587 588
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
589 590
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
591

592 593 594
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
595

C
ceci3 已提交
596 597 598
    Examples:
        .. code-block:: python

599
            import paddle
C
Chen Long 已提交
600
            import numpy as np
601

602
            m = paddle.nn.LeakyReLU()
Z
zhupengyang 已提交
603
            x = paddle.to_tensor(np.array([-2, 0, 1], 'float32'))
604
            out = m(x)  # [-0.02, 0., 1.]
C
ceci3 已提交
605 606
    """

607
    def __init__(self, negative_slope=0.01, name=None):
C
ceci3 已提交
608
        super(LeakyReLU, self).__init__()
609
        self._negative_slope = negative_slope
610
        self._name = name
C
ceci3 已提交
611

612
    def forward(self, x):
613
        return F.leaky_relu(x, self._negative_slope, self._name)
C
ceci3 已提交
614

615 616 617 618
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'negative_slope={}{}'.format(self._negative_slope, name_str)

C
ceci3 已提交
619

Z
zhiboniu 已提交
620
class Sigmoid(Layer):
621
    """
622
    this interface is used to construct a callable object of the ``Sigmoid`` class. This layer calcluate the `sigmoid` of input x.
623

624
    .. math::
S
swtkiwi 已提交
625

626
        Sigmoid(x) = \\frac{1}{1 + e^{-x}}
627

628 629
    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
630

631 632
    Shape:
        x: N-D tensor, available dtype is float16, float32, float64.
633 634

    Returns:
635
        A callable object of Sigmoid.
636

637
    Examples:
638

639 640
        .. code-block:: python

641 642 643
          import paddle

          m = paddle.nn.Sigmoid()
644 645
          x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
          out = m(x) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
646 647
    """

648
    def __init__(self, name=None):
649
        super(Sigmoid, self).__init__()
650
        self.name = name
651

652 653
    def forward(self, x):
        return F.sigmoid(x, self.name)
654

655 656 657 658
    def extra_repr(self):
        name_str = 'name={}'.format(self.name) if self.name else ''
        return name_str

659

Z
zhiboniu 已提交
660
class Hardsigmoid(Layer):
661
    r"""
662 663 664 665 666 667 668 669 670
    This interface is used to construct a callable object of the ``Hardsigmoid`` class.
    This layer calcluate the `hardsigmoid` of input x.

    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        Hardsigmoid(x)=
671 672 673 674 675 676 677 678
            \left\{
                \begin{array}{rcl}
            0, & & \text{if } \ x \leq -3 \\
            1, & & \text{if } \ x \geq 3 \\
            x/6 + 1/2, & & \text{otherwise}
                \end{array}
            \right.

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694

    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        x: N-D tensor, available dtype is float32, float64.

    Returns:
        A callable object of Hardsigmoid.

    Examples:

        .. code-block:: python

          import paddle

Z
zhupengyang 已提交
695
          m = paddle.nn.Hardsigmoid()
696 697 698 699 700 701 702 703 704
          x = paddle.to_tensor([-4., 5., 1.])
          out = m(x) # [0., 1, 0.666667]
    """

    def __init__(self, name=None):
        super(Hardsigmoid, self).__init__()
        self.name = name

    def forward(self, x):
705
        return F.hardsigmoid(x, name=self.name)
706

707 708 709 710
    def extra_repr(self):
        name_str = 'name={}'.format(self.name) if self.name else ''
        return name_str

711

Z
zhiboniu 已提交
712
class Softplus(Layer):
713
    r"""
714 715 716 717
    Softplus Activation

    .. math::

718 719
        Softplus(x) = \frac{1}{beta} * \log(1 + e^{beta * x}) \\
        \text{For numerical stability, the implementation reverts to the linear function when: beta * x > threshold.}
720 721

    Parameters:
722 723
        beta (float, optional): The value of beta for Softplus. Default is 1
        threshold (float, optional): The value of threshold for Softplus. Default is 20
724 725 726 727 728 729 730 731 732 733
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

734 735
            import paddle
            import numpy as np
736

737 738 739
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Softplus()
            out = m(x) # [0.513015, 0.598139, 0.744397, 0.854355]
740 741 742 743 744 745 746 747 748 749 750
    """

    def __init__(self, beta=1, threshold=20, name=None):
        super(Softplus, self).__init__()
        self._beta = beta
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softplus(x, self._beta, self._threshold, self._name)

751 752 753 754 755
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'beta={}, threshold={}{}'.format(self._beta, self._threshold,
                                                name_str)

756

Z
zhiboniu 已提交
757
class Softshrink(Layer):
758
    r"""
759 760 761 762
    Softshrink Activation

    .. math::

763 764 765 766 767 768 769 770 771
        Softshrink(x)=
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.

772 773

    Parameters:
774
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
775 776 777 778 779 780 781 782 783 784
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

785 786
            import paddle
            import numpy as np
787

788 789 790
            x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
            m = paddle.nn.Softshrink()
            out = m(x) # [-0.4, 0, 0, 0.3]
791 792 793 794 795 796 797 798 799 800
    """

    def __init__(self, threshold=0.5, name=None):
        super(Softshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softshrink(x, self._threshold, self._name)

801 802 803 804
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

805

Z
zhiboniu 已提交
806
class Softsign(Layer):
807
    r"""
808 809 810 811
    Softsign Activation

    .. math::

812
        Softsign(x) = \frac{x}{1 + |x|}
813 814 815 816 817 818 819 820 821 822 823 824

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

825 826
            import paddle
            import numpy as np
827

828 829 830
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Softsign()
            out = m(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
831 832 833 834 835 836 837 838 839
    """

    def __init__(self, name=None):
        super(Softsign, self).__init__()
        self._name = name

    def forward(self, x):
        return F.softsign(x, self._name)

840 841 842 843
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

844

Z
zhiboniu 已提交
845
class Swish(Layer):
846
    r"""
847 848 849 850
    Swish Activation.

    .. math::

851
        Swish(x) = \frac{x}{1 + e^{-x}}
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([-2., 0., 1.]))
            m = paddle.nn.Swish()
            out = m(x) # [-0.238406, 0., 0.731059]
    """

    def __init__(self, name=None):
        super(Swish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.swish(x, self._name)

879 880 881 882
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

883

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
class Mish(Layer):
    r"""
    Mish Activation.

    ..  math::

        softplus(x) = \begin{cases}
                x, \text{if } x > \text{threshold} \\
                \ln(1 + e^{x}),  \text{otherwise}
            \end{cases}

        Mish(x) = x * \tanh(softplus(x))
    
    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
    
    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([-5., 0., 5.]))
            m = paddle.nn.Mish()
            out = m(x) # [-0.03357624, 0., 4.99955208]

    """

    def __init__(self, name=None):
        super(Mish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.mish(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str


Z
zhiboniu 已提交
930
class Tanhshrink(Layer):
931 932 933 934 935
    """
    Tanhshrink Activation

    .. math::

936
        Tanhshrink(x) = x - tanh(x)
937 938 939 940 941 942 943 944 945 946 947 948

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

949 950
            import paddle
            import numpy as np
951

952 953 954
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Tanhshrink()
            out = m(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
955 956 957 958 959 960 961 962 963
    """

    def __init__(self, name=None):
        super(Tanhshrink, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanhshrink(x, self._name)

964 965 966 967
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

968

Z
zhiboniu 已提交
969
class ThresholdedReLU(Layer):
970
    r"""
971 972 973 974
    Thresholded ReLU Activation

    .. math::

975 976 977 978 979 980 981 982
        ThresholdedReLU(x) =
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011

    Parameters:
        threshold (float, optional): The value of threshold for ThresholdedReLU. Default is 1.0
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([2., 0., 1.]))
            m = paddle.nn.ThresholdedReLU()
            out = m(x) # [2., 0., 0.]
    """

    def __init__(self, threshold=1.0, name=None):
        super(ThresholdedReLU, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.thresholded_relu(x, self._threshold, self._name)

1012 1013 1014 1015
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

1016

Z
zhiboniu 已提交
1017
class Silu(Layer):
M
minghaoBD 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
    """
    Silu Activation.
    .. math::

        Silu(x) = \frac{x}{1 + e^{-x}}

    Parameters:
        x (Tensor): The input Tensor with data type float32, or float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            m = paddle.nn.Silu()
            out = m(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
    """

    def __init__(self, name=None):
        super(Silu, self).__init__()
        self._name = name

    def forward(self, x):
        return F.silu(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str


Z
zhiboniu 已提交
1055
class LogSigmoid(Layer):
1056
    r"""
1057
    LogSigmoid Activation.
1058

1059
    .. math::
1060

1061
        LogSigmoid(x) = log \frac{1}{1 + e^{-x}}
1062 1063 1064 1065 1066

    Parameters:
        x (Tensor): The input Tensor with data type float32, or float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1067

1068 1069 1070
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
1071

1072 1073 1074
    Examples:
        .. code-block:: python

1075
            import paddle
1076

1077
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
1078 1079
            m = paddle.nn.LogSigmoid()
            out = m(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
1080 1081 1082 1083 1084 1085 1086
    """

    def __init__(self, name=None):
        super(LogSigmoid, self).__init__()
        self._name = name

    def forward(self, x):
1087
        return F.log_sigmoid(x, self._name)
1088

1089 1090 1091 1092
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

1093

Z
zhiboniu 已提交
1094
class Softmax(Layer):
1095
    r"""
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
    Softmax Activation.

    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1123
        Softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

    Parameters:
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = np.array([[[2.0, 3.0, 4.0, 5.0],
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.Softmax()
            out = m(x)
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
    """

    def __init__(self, axis=-1, name=None):
        super(Softmax, self).__init__()
        self._axis = axis
        self._dtype = None
        self._name = name

    def forward(self, x):
        return F.softmax(x, self._axis, self._dtype, self._name)

1216 1217 1218 1219
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'axis={}{}'.format(self._axis, name_str)

1220

Z
zhiboniu 已提交
1221
class LogSoftmax(Layer):
1222
    r"""
1223 1224 1225 1226
    This operator implements the log_softmax layer. The calculation process is as follows:

    .. math::

1227 1228 1229 1230
        \begin{array} {rcl}
            Out[i, j] &= &log(softmax(x)) \\
            &= &log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{array}
1231 1232

    Parameters:
1233 1234 1235 1236 1237 1238
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of the input Tensor . If ``axis`` < 0, it works the
            same way as :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1239

1240 1241 1242
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
1243 1244 1245 1246

    Examples:
        .. code-block:: python

1247 1248
            import paddle

Z
zhupengyang 已提交
1249 1250 1251 1252 1253 1254
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1255 1256 1257 1258 1259 1260 1261 1262 1263
            m = paddle.nn.LogSoftmax()
            x = paddle.to_tensor(x)
            out = m(x)
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
1264 1265
    """

1266
    def __init__(self, axis=-1, name=None):
1267 1268
        super(LogSoftmax, self).__init__()
        self._axis = axis
1269
        self._name = name
1270

1271 1272
    def forward(self, x):
        return F.log_softmax(x, self._axis)
1273

1274 1275 1276 1277
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'axis={}{}'.format(self._axis, name_str)

1278

Z
zhiboniu 已提交
1279
class Maxout(Layer):
1280
    r"""
1281 1282 1283 1284 1285 1286 1287 1288
    Maxout Activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

1289 1290 1291 1292 1293 1294 1295 1296
        \begin{array}{l}
            &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
            &g = groups \\
            &s = \frac{input.size}{num\_channels} \\
            &0 \le i < \frac{num\_channels}{groups} \\
            &0 \le j < s \\
            &0 \le k < groups
        \end{array}
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339

    Parameters:
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: :math:`(N, C_{in}, H_{in}, W_{in})`
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            m = paddle.nn.Maxout(groups=2)
            out = m(x)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """

    def __init__(self, groups, axis=1, name=None):
        super(Maxout, self).__init__()
        self._groups = groups
        self._axis = axis
        self._name = name

    def forward(self, x):
        return F.maxout(x, self._groups, self._axis, self._name)
1340 1341 1342 1343

    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'groups={}, axis={}{}'.format(self._groups, self._axis, name_str)