activation.py 11.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define activation functions of neural network
16 17 18
__all__ = [
    # 'PReLU',
    'ReLU',
19
    'Sigmoid',
20 21
    # 'Softmax',
    'LogSoftmax',
22
    'HSigmoid'
23 24
]

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
from ...fluid.dygraph import layers
from ...fluid import core
from ...fluid.framework import in_dygraph_mode
from .. import functional


class HSigmoid(layers.Layer):
    """

    Hierarchical Sigmoid Layer.
    
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
    Comparing to softmax, the OP can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the number of classes or the size of word dict.

    The OP supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>_`. For the custom
    tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        feature_size (int): The feature size.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (:attr:`is_custom` is set to False), :attr:`num_classes`
            should not be None. If the custom tree is used (:attr:`is_custom` is set to True),
            :attr:`num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        param_attr (ParamAttr, optional): The parameter attribute for the learnable parameters/weights
            of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid will create a
            ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is
            initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of hsigmoid. If it
            is set to False, no bias will be added. If it is set to None or one attribute of ParamAttr,
            hsigmoid will create a ParamAttr as bias_attr. If the Initializer of the bias_attr is not
            set, the bias is initialized zero. Default: None.
        is_custom (bool, optional): Whether use custom binary tree. If it's True, `path_table` and 
            `path_code` should be passed to its forward method, otherwise `path_table` and `path_code`
            should not be passed to its forward method. Default: False.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating, if it's True, the
            gradient of W and input will be sparse. Default: False.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle import fluid, nn
          import paddle.fluid.dygraph as dg
          import paddle.nn.functional as F
          import numpy as np

          main = fluid.Program()
          start = fluid.Program()
          feature_size = 6
          num_classes = 8
          with fluid.unique_name.guard():
              with fluid.program_guard(main, start):
                  x = fluid.data("input", [-1, feature_size],
                              dtype="float32")
                  label = fluid.data("labels", [-1, 1], dtype="int64")
                  hsm = nn.HSigmoid(feature_size, num_classes)
                  y = hsm(x, label)

          place = fluid.CPUPlace()
          exe = fluid.Executor(place)
          exe.run(start)
          feed_dict = {
              "input": np.random.randn(4, feature_size).astype(np.float32),
              "labels": np.random.randint(0, num_classes, (4, 1)).astype(np.int64),
          }
          y_np, = exe.run(main, feed=feed_dict, fetch_list=[y])
          print(y_np.shape)

          # (4, 1)
    """

    def __init__(self,
                 feature_size,
                 num_classes,
                 param_attr=None,
                 bias_attr=None,
                 is_custom=False,
                 is_sparse=False,
                 dtype="float32"):
        super(HSigmoid, self).__init__()
        if (num_classes < 2) and (not is_custom):
            raise ValueError(
                "num_classes must not be less than 2 with default tree")

        if (not is_custom) and (is_sparse):
            print("Sparse mode should not be used without custom tree")
            is_sparse = False

        self._feature_size = feature_size
        self._num_classes = num_classes
        self._is_custom = is_custom
        self._is_sparse = is_sparse

        self._param_attr = param_attr
        self._bias_attr = bias_attr

        self._dtype = dtype

        remote_prefetch = is_sparse
        print("With sparse mode, if your models has only"
              " small parameter prefetch may cause speed down")

        C = self._num_classes if is_custom else self._num_classes - 1
        self.weight = self.create_parameter(
            [C, self._feature_size],
            attr=self._param_attr,
            is_bias=False,
            dtype=self._dtype)
        self.bias = self.create_parameter(
            [C, 1], attr=self._bias_attr, is_bias=True, dtype=self._dtype)

    def forward(self, input, label, path_table=None, path_code=None):
        out = functional.hsigmoid(
            input,
            label,
            self.weight,
            self.bias,
            self._num_classes,
            path_table=path_table,
            path_code=path_code,
            is_sparse=self._is_sparse)
        return out

164 165 166 167 168 169 170 171 172 173 174 175 176 177

class ReLU(layers.Layer):
    """
    ReLU Activation.

    .. math:

        out = max(x, 0)

    Parameters:
        inplace (bool, optional): If inplace is True, the input and output of 
            ``ReLU`` are the same variable. Otherwise, the input and output of
            ``ReLU`` are different variables. Default False. Note that if x is
            more than one OPs' input, inplace must be False.
178
    
179 180
    Returns:
        None
181
    
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.nn as nn
          import numpy as np

          data = np.array([-2, 0, 1]).astype('float32')
          my_relu = nn.ReLU()
          with fluid.dygraph.guard():
              data = fluid.dygraph.to_variable(data)
              res = my_relu(data)  # [0, 0, 1]
    """

    def __init__(self, inplace=False):
        super(ReLU, self).__init__()
        self._inplace = inplace

    def forward(self, input):
        return functional.relu(input, self._inplace)


204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
class Sigmoid(layers.Layer):
    """
    Sigmoid Activation.
    
    .. math:

        output = \frac{1}{1 + e^{-input}}

    Parameters:
        inplace (bool, optional): If inplace is True, the input and output
            are the same variable. Otherwise, the input and output
            are different variables. Default False. Note that if x is
            more than one OPs' input, inplace must be False.
    
    Returns:
        None
    
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.nn as nn
          import numpy as np
          input = fluid.data(name="input", shape=[None, 4])
          output = nn.Sigmoid()(input)
          place = fluid.CPUPlace()
          exe = fluid.Executor(place)
          exe.run(fluid.default_startup_program())
          input_data = np.array([1.0, 2.0, 3.0, 4.0]).astype('float32')
          output_data = exe.run(feed={"input": input_data},
                                fetch_list=[output])
          print(output_data) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
    """

    def __init__(self, inplace=False):
        super(Sigmoid, self).__init__()
        self._inplace = inplace

    def forward(self, input):
        return functional.sigmoid(input, self._inplace)


246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
class LogSoftmax(layers.Layer):
    """
    This operator implements the log_softmax layer. The calculation process is as follows:

    .. math::

        Out[i, j] = log(softmax(x)) 
                  = log(\\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])})

    Parameters:
        axis (int, optional): The index of dimension to perform softmax calculations, it should be in
            range :math:`[-1, rank-1]`, while :math:`rank` is the rank of input variable. Default: None. 
            None and -1 means the last dimension.
        dtype (np.dtype|core.VarDesc.VarType|str): The desired data type of returned tensor. If specified,
            the input tensor is casted to dtype before the operation is performed. This is useful for
            preventing data type overflows. Default: None. Supported dtype: float32 or float64
 
    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.nn as nn
          import numpy as np

          data = np.array([[[-2.0, 3.0, -4.0, 5.0],
                            [3.0, -4.0, 5.0, -6.0],
                            [-7.0, -8.0, 8.0, 9.0]],
                           [[1.0, -2.0, -3.0, 4.0],
                            [-5.0, 6.0, 7.0, -8.0],
                            [6.0, 7.0, 8.0, 9.0]]]).astype('float32')
          my_log_softnmax = nn.LogSoftmax()
          with fluid.dygraph.guard():
              data = fluid.dygraph.to_variable(data)
              res = my_log_softnmax(data)
              # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
              #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
              #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
              #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
              #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
              #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
    """

    def __init__(self, axis=None):
        super(LogSoftmax, self).__init__()
        self._axis = axis

    def forward(self, input):
        return functional.log_softmax(input, self._axis)