Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
00e08ce0
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
00e08ce0
编写于
8月 17, 2020
作者:
W
wawltor
提交者:
GitHub
8月 17, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add the sigmoid, Sigmoid for the api 2.0 (#26171)
Update the sigmoid, Sigmoid layer for the api2.0
上级
f8ca7201
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
157 addition
and
169 deletion
+157
-169
python/paddle/fluid/layers/layer_function_generator.py
python/paddle/fluid/layers/layer_function_generator.py
+1
-0
python/paddle/fluid/layers/ops.py
python/paddle/fluid/layers/ops.py
+17
-5
python/paddle/fluid/tests/unittests/test_activation_op.py
python/paddle/fluid/tests/unittests/test_activation_op.py
+3
-70
python/paddle/fluid/tests/unittests/test_nn_sigmoid_op.py
python/paddle/fluid/tests/unittests/test_nn_sigmoid_op.py
+107
-0
python/paddle/nn/functional/activation.py
python/paddle/nn/functional/activation.py
+2
-62
python/paddle/nn/layer/activation.py
python/paddle/nn/layer/activation.py
+27
-32
未找到文件。
python/paddle/fluid/layers/layer_function_generator.py
浏览文件 @
00e08ce0
...
...
@@ -274,6 +274,7 @@ def generate_activation_fn(op_type):
return
output
func
.
__name__
=
op_type
func
.
__module__
=
"paddle.fluid.layers"
func
.
__doc__
=
_generate_doc_string_
(
op_proto
,
additional_args_lines
=
[
...
...
python/paddle/fluid/layers/ops.py
浏览文件 @
00e08ce0
...
...
@@ -23,10 +23,15 @@ from paddle.utils import deprecated
__activations_noattr__
=
[
'sigmoid'
,
'logsigmoid'
,
'tanh_shrink'
,
'softplus'
,
'softsign'
,
]
__unary_func__
=
[
'exp'
,
'tanh'
,
'atan'
,
'tanh_shrink'
,
'sqrt'
,
'rsqrt'
,
'abs'
,
...
...
@@ -34,15 +39,13 @@ __activations_noattr__ = [
'floor'
,
'cos'
,
'acos'
,
'asin'
,
'sin'
,
'sinh'
,
'asin'
,
'cosh'
,
'round'
,
'reciprocal'
,
'square'
,
'softplus'
,
'softsign'
,
]
__all__
=
[]
...
...
@@ -58,9 +61,18 @@ globals()['_scale'] = generate_layer_fn('scale')
globals
()[
'_elementwise_div'
]
=
generate_layer_fn
(
'elementwise_div'
)
__all__
+=
__activations_noattr__
__all__
+=
__unary_func__
for
_OP
in
set
(
__activations_noattr__
):
globals
()[
_OP
]
=
generate_activation_fn
(
_OP
)
func
=
generate_activation_fn
(
_OP
)
func
=
deprecated
(
since
=
"2.0.0"
,
update_to
=
"paddle.nn.functional.%s"
%
(
_OP
))(
func
)
globals
()[
_OP
]
=
func
for
_OP
in
set
(
__unary_func__
):
func
=
generate_activation_fn
(
_OP
)
func
=
deprecated
(
since
=
"2.0.0"
,
update_to
=
"paddle.%s"
%
(
_OP
))(
func
)
globals
()[
_OP
]
=
func
add_sample_code
(
globals
()[
"sigmoid"
],
r
"""
Examples:
...
...
python/paddle/fluid/tests/unittests/test_activation_op.py
浏览文件 @
00e08ce0
...
...
@@ -1440,9 +1440,9 @@ class TestNNReluAPI(unittest.TestCase):
y_t
[
y_t
>
0
]
=
1
return
y_t
*
dy
def
check_api
(
self
,
place
=
fluid
.
CPUPlace
()
,
inplace
=
False
):
def
check_api
(
self
,
place
=
fluid
.
CPUPlace
()):
main_program
=
Program
()
myrelu
=
nn
.
ReLU
(
inplace
)
myrelu
=
nn
.
ReLU
()
with
fluid
.
program_guard
(
main_program
):
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
self
.
x_shape
)
x
.
stop_gradient
=
False
...
...
@@ -1465,8 +1465,7 @@ class TestNNReluAPI(unittest.TestCase):
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
place
in
places
:
for
inplace
in
[
True
,
False
]:
self
.
check_api
(
place
,
inplace
)
self
.
check_api
(
place
)
class
TestNNFunctionalReluAPI
(
unittest
.
TestCase
):
...
...
@@ -1491,71 +1490,5 @@ class TestNNFunctionalReluAPI(unittest.TestCase):
self
.
assertTrue
(
np
.
allclose
(
out
[
0
],
self
.
y
))
class
TestNNSigmoidAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
init_data
()
def
init_data
(
self
):
self
.
x_shape
=
[
10
,
15
]
self
.
x
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
x_shape
).
astype
(
np
.
float32
)
self
.
y
=
self
.
ref_forward
(
self
.
x
)
def
ref_forward
(
self
,
x
):
return
1
/
(
1
+
np
.
exp
(
-
x
))
def
ref_backward
(
self
,
y
,
dy
):
return
dy
*
y
*
(
1
-
y
)
def
check_api
(
self
,
place
=
fluid
.
CPUPlace
(),
inplace
=
False
):
main_program
=
Program
()
mysigmoid
=
nn
.
Sigmoid
(
inplace
)
with
fluid
.
program_guard
(
main_program
):
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
self
.
x_shape
)
x
.
stop_gradient
=
False
y
=
mysigmoid
(
x
)
fluid
.
backward
.
append_backward
(
fluid
.
layers
.
mean
(
y
))
exe
=
fluid
.
Executor
(
place
)
out
=
exe
.
run
(
main_program
,
feed
=
{
'x'
:
self
.
x
},
fetch_list
=
[
y
,
y
.
grad_name
,
x
.
grad_name
])
self
.
assertTrue
(
np
.
allclose
(
out
[
0
],
self
.
y
))
self
.
assertTrue
(
np
.
allclose
(
out
[
2
],
self
.
ref_backward
(
self
.
y
,
out
[
1
])))
with
fluid
.
dygraph
.
guard
(
place
):
x
=
fluid
.
dygraph
.
to_variable
(
self
.
x
)
y
=
mysigmoid
(
x
)
self
.
assertTrue
(
np
.
allclose
(
y
.
numpy
(),
self
.
y
))
def
test_check_api
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
place
in
places
:
for
inplace
in
[
True
,
False
]:
self
.
check_api
(
place
,
inplace
)
class
TestNNFunctionalSigmoidAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
init_data
()
def
init_data
(
self
):
self
.
x_shape
=
[
10
,
15
]
self
.
x
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
x_shape
).
astype
(
np
.
float32
)
self
.
y
=
self
.
ref_forward
(
self
.
x
)
def
ref_forward
(
self
,
x
):
return
1
/
(
1
+
np
.
exp
(
-
x
))
def
test_check_api
(
self
):
main_program
=
Program
()
with
fluid
.
program_guard
(
main_program
):
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
self
.
x_shape
)
y
=
F
.
sigmoid
(
x
)
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
out
=
exe
.
run
(
main_program
,
feed
=
{
'x'
:
self
.
x
},
fetch_list
=
[
y
])
self
.
assertTrue
(
np
.
allclose
(
out
[
0
],
self
.
y
))
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_nn_sigmoid_op.py
0 → 100644
浏览文件 @
00e08ce0
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
from
scipy.special
import
expit
,
erf
import
paddle
import
paddle.fluid
as
fluid
import
paddle.nn
as
nn
import
paddle.nn.functional
as
functional
class
TestNNSigmoidAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
init_data
()
def
init_data
(
self
):
self
.
x_shape
=
[
10
,
15
]
self
.
x
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
x_shape
).
astype
(
np
.
float32
)
self
.
y
=
self
.
ref_forward
(
self
.
x
)
def
ref_forward
(
self
,
x
):
return
1
/
(
1
+
np
.
exp
(
-
x
))
def
ref_backward
(
self
,
y
,
dy
):
return
dy
*
y
*
(
1
-
y
)
def
check_static_api
(
self
,
place
):
paddle
.
enable_static
()
main_program
=
paddle
.
static
.
Program
()
mysigmoid
=
nn
.
Sigmoid
(
name
=
"api_sigmoid"
)
with
paddle
.
static
.
program_guard
(
main_program
):
x
=
paddle
.
nn
.
data
(
name
=
'x'
,
shape
=
self
.
x_shape
)
x
.
stop_gradient
=
False
y
=
mysigmoid
(
x
)
fluid
.
backward
.
append_backward
(
paddle
.
mean
(
y
))
exe
=
paddle
.
static
.
Executor
(
place
)
out
=
exe
.
run
(
main_program
,
feed
=
{
'x'
:
self
.
x
},
fetch_list
=
[
y
])
self
.
assertTrue
(
np
.
allclose
(
out
[
0
],
self
.
y
))
self
.
assertTrue
(
y
.
name
.
startswith
(
"api_sigmoid"
))
def
check_dynamic_api
(
self
,
place
):
paddle
.
disable_static
(
place
)
x
=
paddle
.
to_variable
(
self
.
x
)
mysigmoid
=
nn
.
Sigmoid
()
y
=
mysigmoid
(
x
)
self
.
assertTrue
(
np
.
allclose
(
y
.
numpy
(),
self
.
y
))
def
test_check_api
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
place
in
places
:
self
.
check_dynamic_api
(
place
)
self
.
check_static_api
(
place
)
class
TestNNFunctionalSigmoidAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
init_data
()
def
init_data
(
self
):
self
.
x_shape
=
[
10
,
15
]
self
.
x
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
x_shape
).
astype
(
np
.
float32
)
self
.
y
=
self
.
ref_forward
(
self
.
x
)
def
ref_forward
(
self
,
x
):
return
1
/
(
1
+
np
.
exp
(
-
x
))
def
check_static_api
(
self
,
place
):
paddle
.
enable_static
()
main_program
=
paddle
.
static
.
Program
()
with
paddle
.
static
.
program_guard
(
main_program
):
x
=
paddle
.
nn
.
data
(
name
=
'x'
,
shape
=
self
.
x_shape
)
y
=
functional
.
sigmoid
(
x
,
name
=
"api_sigmoid"
)
exe
=
paddle
.
static
.
Executor
(
fluid
.
CPUPlace
())
out
=
exe
.
run
(
main_program
,
feed
=
{
'x'
:
self
.
x
},
fetch_list
=
[
y
])
self
.
assertTrue
(
np
.
allclose
(
out
[
0
],
self
.
y
))
def
check_dynamic_api
(
self
):
paddle
.
disable_static
()
x
=
paddle
.
to_variable
(
self
.
x
)
y
=
functional
.
sigmoid
(
x
)
self
.
assertTrue
(
np
.
allclose
(
y
.
numpy
(),
self
.
y
))
def
test_check_api
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
place
in
places
:
self
.
check_static_api
(
place
)
self
.
check_dynamic_api
()
python/paddle/nn/functional/activation.py
浏览文件 @
00e08ce0
...
...
@@ -29,6 +29,7 @@ from ...fluid.layers import softplus #DEFINE_ALIAS
from
...fluid.layers
import
softshrink
#DEFINE_ALIAS
from
...fluid.layers
import
softsign
#DEFINE_ALIAS
from
...fluid.layers
import
swish
#DEFINE_ALIAS
from
...fluid.layers
import
sigmoid
#DEFINE_ALIAS
from
...fluid.layers
import
tanh_shrink
#DEFINE_ALIAS
from
...fluid.layers
import
thresholded_relu
#DEFINE_ALIAS
...
...
@@ -48,12 +49,12 @@ __all__ = [
'relu'
,
'relu6'
,
'selu'
,
'sigmoid'
,
'soft_relu'
,
'softmax'
,
'softplus'
,
'softshrink'
,
'softsign'
,
'sigmoid'
,
'swish'
,
'tanh_shrink'
,
'thresholded_relu'
,
...
...
@@ -296,67 +297,6 @@ def relu(input, inplace=False, name=None):
return
outs
def
sigmoid
(
input
,
inplace
=
False
,
name
=
None
):
"""
:alias_main: paddle.nn.functional.sigmoid
:alias: paddle.nn.functional.sigmoid,paddle.nn.functional.activation.sigmoid
Sigmoid Activation.
.. math:
output =
\f
rac{1}{1 + e^{-input}}
Parameters:
input (Variable): The input variable. A multi-dimension Tensor with type float16, float32, or float64.
inplace (bool, optional): If inplace is True, the input and output are the same variable.
Otherwise, the input and output of are different variables. Default: False. Note that if x is
more than one OPs' input, inplace must be False.
name (str, optional): The default value is None. Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name` .
Returns:
Output of sigmoid operator, a Tensor with shape same as input
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.nn.functional as functional
import numpy as np
# In the static graph mode
input = fluid.data(name="input", shape=[None, 4])
output = functional.sigmoid(input)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
input_data = np.array([1.0, 2.0, 3.0, 4.0]).astype('float32')
output_data = exe.run(feed={"input": input_data},
fetch_list=[output])
print(output_data) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
# In the dynamic graph mode
with fluid.dygraph.guard():
input = fluid.dygraph.to_variable(input_data)
output = functional.sigmoid(input)
print(output) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
"""
if
in_dygraph_mode
():
if
inplace
:
warnings
.
warn
(
"Inplace on sigmoid is not allowed and will be discarded in dygraph mode currently."
)
return
core
.
ops
.
sigmoid
(
input
)
check_variable_and_dtype
(
input
,
'input'
,
[
'float16'
,
'float32'
,
'float64'
],
'sigmoid'
)
helper
=
LayerHelper
(
"sigmoid"
,
**
locals
())
outputs
=
helper
.
create_variable_for_type_inference
(
input
.
dtype
)
helper
.
append_op
(
type
=
'sigmoid'
,
inputs
=
{
'X'
:
[
input
]},
outputs
=
{
'Out'
:
outputs
})
return
outputs
def
softmax
(
x
,
axis
=-
1
,
name
=
None
):
"""
This operator implements the softmax layer. The calculation process is as follows:
...
...
python/paddle/nn/layer/activation.py
浏览文件 @
00e08ce0
...
...
@@ -28,7 +28,7 @@ __all__ = [
from
...fluid.dygraph
import
layers
from
...fluid
import
core
from
...fluid.framework
import
in_dygraph_mode
from
..
import
functional
from
..
import
functional
as
F
class
Hardshrink
(
layers
.
Layer
):
...
...
@@ -75,7 +75,7 @@ class Hardshrink(layers.Layer):
self
.
_name
=
name
def
forward
(
self
,
x
):
return
functional
.
hardshrink
(
x
,
self
.
_threshold
,
self
.
_name
)
return
F
.
hardshrink
(
x
,
self
.
_threshold
,
self
.
_name
)
class
HSigmoid
(
layers
.
Layer
):
...
...
@@ -202,7 +202,7 @@ class HSigmoid(layers.Layer):
[
C
,
1
],
attr
=
self
.
_bias_attr
,
is_bias
=
True
,
dtype
=
self
.
_dtype
)
def
forward
(
self
,
input
,
label
,
path_table
=
None
,
path_code
=
None
):
out
=
functional
.
hsigmoid
(
out
=
F
.
hsigmoid
(
input
,
label
,
self
.
weight
,
...
...
@@ -253,7 +253,7 @@ class ReLU(layers.Layer):
self
.
_inplace
=
inplace
def
forward
(
self
,
input
):
return
functional
.
relu
(
input
,
self
.
_inplace
)
return
F
.
relu
(
input
,
self
.
_inplace
)
class
LeakyReLU
(
layers
.
Layer
):
...
...
@@ -293,52 +293,47 @@ class LeakyReLU(layers.Layer):
self
.
_name
=
name
def
forward
(
self
,
x
):
return
functional
.
leaky_relu
(
x
,
self
.
_alpha
,
self
.
_name
)
return
F
.
leaky_relu
(
x
,
self
.
_alpha
,
self
.
_name
)
class
Sigmoid
(
layers
.
Layer
):
"""
:alias_main: paddle.nn.Sigmoid
:alias: paddle.nn.Sigmoid,paddle.nn.layer.Sigmoid,paddle.nn.layer.activation.Sigmoid
this interface is used to construct a callable object of the ``Sigmoid`` class. This layer calcluate the `sigmoid` of input x.
.. math::
Sigmoid Activation.
output =
\\
frac{1}{1 + e^{-x}}
.. math:
Parameters:
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
output =
\f
rac{1}{1 + e^{-input}}
Shape:
x: N-D tensor, available dtype is float16, float32, float64.
Parameters:
inplace (bool, optional): If inplace is True, the input and output
are the same variable. Otherwise, the input and output
are different variables. Default False. Note that if x is
more than one OPs' input, inplace must be False.
Returns:
None
A callable object of Sigmoid.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.nn as nn
import numpy as np
input = fluid.data(name="input", shape=[None, 4])
output = nn.Sigmoid()(input)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
import paddle
paddle.disable_static()
input_data = np.array([1.0, 2.0, 3.0, 4.0]).astype('float32')
output_data = exe.run(feed={"input": input_data},
fetch_list=[output])
print(output_data) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
m = paddle.nn.Sigmoid()
x = paddle.to_variable(input_data)
output = m(x)
print(output.numpy()) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
"""
def
__init__
(
self
,
inplace
=
Fals
e
):
def
__init__
(
self
,
name
=
Non
e
):
super
(
Sigmoid
,
self
).
__init__
()
self
.
_inplace
=
inplac
e
self
.
name
=
nam
e
def
forward
(
self
,
input
):
return
functional
.
sigmoid
(
input
,
self
.
_inplac
e
)
def
forward
(
self
,
x
):
return
F
.
sigmoid
(
x
,
self
.
nam
e
)
class
LogSoftmax
(
layers
.
Layer
):
...
...
@@ -394,4 +389,4 @@ class LogSoftmax(layers.Layer):
self
.
_axis
=
axis
def
forward
(
self
,
input
):
return
functional
.
log_softmax
(
input
,
self
.
_axis
)
return
F
.
log_softmax
(
input
,
self
.
_axis
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录