activation.py 36.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define activation functions of neural network
16

17 18
from ...fluid import core
from ...fluid.framework import in_dygraph_mode
Z
zhiboniu 已提交
19 20
from ...framework import ParamAttr
from ..initializer import Constant
Q
Qi Li 已提交
21
from paddle.framework import get_default_dtype
22
from .. import functional as F
Z
zhiboniu 已提交
23
from paddle.nn import Layer
24

25 26
__all__ = []

27

Z
zhiboniu 已提交
28
class ELU(Layer):
29
    r"""
30 31
    ELU Activation.

32
    .. math::
33

34
        ELU(x) = max(0, x) + min(0, \alpha * (e^{x}-1))
35 36 37 38 39

    Parameters:
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
40

41 42 43
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
44

45 46 47
    Examples:
        .. code-block:: python

48
            import paddle
49

Z
zhupengyang 已提交
50
            x = paddle.to_tensor([[-1. ,6.], [1., 15.6]])
51 52 53 54
            m = paddle.nn.ELU(0.2)
            out = m(x)
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
55 56 57 58 59 60 61 62 63 64
    """

    def __init__(self, alpha=1.0, name=None):
        super(ELU, self).__init__()
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.elu(x, self._alpha, self._name)

65 66 67 68
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'alpha={}{}'.format(self._alpha, name_str)

69

Z
zhiboniu 已提交
70
class GELU(Layer):
71
    r"""
72 73 74 75
    GELU Activation.

    If approximate is True

76
    .. math::
77

78
        GELU(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
79 80 81

    else

82
    .. math::
83

84
        GELU(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
85 86 87 88 89

    Parameters:
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
90

91 92 93
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
94

95 96 97
    Examples:
        .. code-block:: python

98 99
            import paddle
            import numpy as np
100

101
            x = paddle.to_tensor(np.array([[-1, 0.5],[1, 1.5]]))
102

103 104
            m = paddle.nn.GELU()
            out = m(x) # [-0.158655 0.345731 0.841345 1.39979]
105

106 107
            m = paddle.nn.GELU(True)
            out = m(x) # [-0.158808 0.345714 0.841192 1.39957]
108 109 110 111 112 113 114 115 116 117
    """

    def __init__(self, approximate=False, name=None):
        super(GELU, self).__init__()
        self._approximate = approximate
        self._name = name

    def forward(self, x):
        return F.gelu(x, self._approximate, self._name)

118 119 120 121
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'approximate={}{}'.format(self._approximate, name_str)

122

Z
zhiboniu 已提交
123
class Hardshrink(Layer):
124
    r"""
125 126 127 128 129
    Hardshrink Activation

    .. math::

        hardshrink(x)=
130 131 132 133 134 135 136
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x > threshold \\
                    x, & & if \ x < -threshold \\
                    0, & & if \ others
            \end{array}
            \right.
137 138 139 140 141 142 143 144 145 146 147 148 149 150

    Parameters:
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

151
            import paddle
152

Z
zhupengyang 已提交
153
            x = paddle.to_tensor([-1, 0.3, 2.5])
154 155
            m = paddle.nn.Hardshrink()
            out = m(x) # [-1., 0., 2.5]
156 157 158 159 160 161 162 163
    """

    def __init__(self, threshold=0.5, name=None):
        super(Hardshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
164
        return F.hardshrink(x, self._threshold, self._name)
165

166 167 168 169
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

170

Z
zhiboniu 已提交
171
class Hardswish(Layer):
172
    r"""
173 174 175 176 177 178 179 180 181
    Hardswish activation

    Hardswish is proposed in MobileNetV3, and performs better in computational stability
    and efficiency compared to swish function. For more details please refer
    to: https://arxiv.org/pdf/1905.02244.pdf

    .. math::

        Hardswish(x)=
182 183 184 185 186 187 188 189
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
            
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-4., 5., 1.])
            m = paddle.nn.Hardswish()
            out = m(x) # [0., 5., 0.666667]
    """

    def __init__(self, name=None):
        super(Hardswish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.hardswish(x, self._name)

217 218 219 220
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

221

Z
zhiboniu 已提交
222
class Tanh(Layer):
223
    r"""
W
WangXi 已提交
224 225 226
    Tanh Activation.

    .. math::
227
        Tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Tanh()
            out = m(x)
W
WangXi 已提交
247
            print(out)
W
WangXi 已提交
248 249 250 251 252 253 254 255 256 257
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """

    def __init__(self, name=None):
        super(Tanh, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanh(x, self._name)

258 259 260 261
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

W
WangXi 已提交
262

Z
zhiboniu 已提交
263
class Hardtanh(Layer):
264
    r"""
265 266 267 268
    Hardtanh Activation

    .. math::

269 270 271 272 273 274 275 276 277
        Hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.

278 279 280 281 282 283

    Parameters:
        min (float, optional): The value of min for Hardtanh. Default is -1.
        max (float, optional): The value of max for Hardtanh. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
284

285 286 287
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
288

289 290 291 292 293
    Examples:
        .. code-block:: python

            import paddle

Z
zhupengyang 已提交
294
            x = paddle.to_tensor([-1.5, 0.3, 2.5])
295
            m = paddle.nn.Hardtanh()
Z
zhupengyang 已提交
296
            out = m(x) # [-1., 0.3, 1.]
297 298 299 300 301 302 303 304 305 306 307
    """

    def __init__(self, min=-1.0, max=1.0, name=None):
        super(Hardtanh, self).__init__()
        self._min = min
        self._max = max
        self._name = name

    def forward(self, x):
        return F.hardtanh(x, self._min, self._max, self._name)

308 309 310 311
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'min={}, max={}{}'.format(self._min, self._max, name_str)

312

Z
zhiboniu 已提交
313
class PReLU(Layer):
314 315 316 317 318 319 320 321 322
    """
    PReLU Activation.

    .. math::

        PReLU(x) = max(0, x) + weight * min(0, x)

    Parameters:
        num_parameters (int, optional): Number of `weight` to learn. The supported values are:
323
            1 - a single parameter `alpha` is used for all input channels;
324 325 326
            Number of channels - a seperate `alpha` is used for each input channel.
            Default is 1.
        init (float, optional): Init value of learnable `weight`. Default is 0.25.
327
        weight_attr(ParamAttr, optional): The parameter attribute for the learnable `weight`.
328
            Default is None. For more information, please refer to :ref:`api_paddle_ParamAttr`.
329 330
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
331

332
    Shape:
Q
Qi Li 已提交
333
        - input: Tensor with any shape. Default dtype is float32.
334
        - output: Tensor with the same shape as input.
335

336 337 338 339 340 341
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

Q
Qi Li 已提交
342
            paddle.set_default_dtype("float64")
343 344 345 346 347 348

            data = np.array([[[[-2.0,  3.0, -4.0,  5.0],
                            [ 3.0, -4.0,  5.0, -6.0],
                            [-7.0, -8.0,  8.0,  9.0]],
                            [[ 1.0, -2.0, -3.0,  4.0],
                            [-5.0,  6.0,  7.0, -8.0],
Q
Qi Li 已提交
349
                            [ 6.0,  7.0,  8.0,  9.0]]]], 'float64')
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
            x = paddle.to_tensor(data)
            m = paddle.nn.PReLU(1, 0.25)
            out = m(x)
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """

    def __init__(self, num_parameters=1, init=0.25, weight_attr=None,
                 name=None):
        super(PReLU, self).__init__()
        self._num_parameters = num_parameters
        self._init = init
        self._weight_attr = weight_attr
        self._name = name

        self._weight = self.create_parameter(
            attr=self._weight_attr,
Q
Qi Li 已提交
371 372
            shape=[self._num_parameters],
            dtype=get_default_dtype(),
373
            is_bias=False,
Q
Qi Li 已提交
374
            default_initializer=Constant(self._init))
375 376 377 378

    def forward(self, x):
        return F.prelu(x, self._weight)

379 380 381 382 383
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'num_parameters={}, init={}, dtype={}{}'.format(
            self._num_parameters, self._init, self._dtype, name_str)

384

Z
zhiboniu 已提交
385
class ReLU(Layer):
386 387 388
    """
    ReLU Activation.

389
    .. math::
390

391
        ReLU(x) = max(x, 0)
392 393

    Parameters:
394 395 396 397 398 399
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
400

401 402 403
    Examples:
        .. code-block:: python

404
            import paddle
405

Z
zhupengyang 已提交
406
            x = paddle.to_tensor([-2., 0., 1.])
407 408
            m = paddle.nn.ReLU()
            out = m(x) # [0., 0., 1.]
409 410
    """

411
    def __init__(self, name=None):
412
        super(ReLU, self).__init__()
413
        self._name = name
414

415 416
    def forward(self, x):
        return F.relu(x, self._name)
417

418 419 420 421
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

422

Z
zhiboniu 已提交
423
class ReLU6(Layer):
424 425 426 427 428
    """
    ReLU6 Activation

    .. math::

429
        ReLU6(x) = min(max(0,x), 6)
430 431 432 433 434 435 436 437 438 439 440 441

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

442 443
            import paddle
            import numpy as np
444

445 446 447
            x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
            m = paddle.nn.ReLU6()
            out = m(x) # [0, 0.3, 6]
448 449 450 451 452 453 454 455 456
    """

    def __init__(self, name=None):
        super(ReLU6, self).__init__()
        self._name = name

    def forward(self, x):
        return F.relu6(x, self._name)

457 458 459 460
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

461

Z
zhiboniu 已提交
462
class SELU(Layer):
463
    r"""
464 465 466 467
    SELU Activation

    .. math::

468
        SELU(x)= scale *
469 470 471 472 473 474
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
475 476

    Parameters:
477 478
        scale (float, optional): The value of scale(must be greater than 1.0) for SELU. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for SELU. Default is 1.6732632423543772848170429916717
479 480 481 482 483 484 485 486 487 488
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

489 490
            import paddle
            import numpy as np
491

492
            x = paddle.to_tensor(np.array([[0.0, 1.0],[2.0, 3.0]]))
493 494
            m = paddle.nn.SELU()
            out = m(x) # [[0, 1.050701],[2.101402, 3.152103]]
495 496 497 498 499 500 501 502 503 504 505 506 507 508
    """

    def __init__(self,
                 scale=1.0507009873554804934193349852946,
                 alpha=1.6732632423543772848170429916717,
                 name=None):
        super(SELU, self).__init__()
        self._scale = scale
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.selu(x, self._scale, self._alpha, self._name)

509 510 511 512 513
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'scale={:.16f}, alpha={:.16f}{}'.format(self._scale, self._alpha,
                                                       name_str)

514

Z
zhiboniu 已提交
515
class LeakyReLU(Layer):
516
    r"""
C
ceci3 已提交
517 518
    Leaky ReLU Activation.

519
    .. math::
C
ceci3 已提交
520

521
        LeakyReLU(x)=
522 523 524 525 526 527 528
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    negative\_slope * x, & & otherwise \\
                \end{array}
            \right.

C
ceci3 已提交
529 530

    Parameters:
531 532
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
533 534
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
535

536 537 538
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
539

C
ceci3 已提交
540 541 542
    Examples:
        .. code-block:: python

543
            import paddle
C
Chen Long 已提交
544
            import numpy as np
545

546
            m = paddle.nn.LeakyReLU()
Z
zhupengyang 已提交
547
            x = paddle.to_tensor(np.array([-2, 0, 1], 'float32'))
548
            out = m(x)  # [-0.02, 0., 1.]
C
ceci3 已提交
549 550
    """

551
    def __init__(self, negative_slope=0.01, name=None):
C
ceci3 已提交
552
        super(LeakyReLU, self).__init__()
553
        self._negative_slope = negative_slope
554
        self._name = name
C
ceci3 已提交
555

556
    def forward(self, x):
557
        return F.leaky_relu(x, self._negative_slope, self._name)
C
ceci3 已提交
558

559 560 561 562
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'negative_slope={}{}'.format(self._negative_slope, name_str)

C
ceci3 已提交
563

Z
zhiboniu 已提交
564
class Sigmoid(Layer):
565
    """
566
    this interface is used to construct a callable object of the ``Sigmoid`` class. This layer calcluate the `sigmoid` of input x.
567

568
    .. math::
S
swtkiwi 已提交
569

570
        Sigmoid(x) = \\frac{1}{1 + e^{-x}}
571

572 573
    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
574

575 576
    Shape:
        x: N-D tensor, available dtype is float16, float32, float64.
577 578

    Returns:
579
        A callable object of Sigmoid.
580

581
    Examples:
582

583 584
        .. code-block:: python

585 586 587
          import paddle

          m = paddle.nn.Sigmoid()
588 589
          x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
          out = m(x) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
590 591
    """

592
    def __init__(self, name=None):
593
        super(Sigmoid, self).__init__()
594
        self.name = name
595

596 597
    def forward(self, x):
        return F.sigmoid(x, self.name)
598

599 600 601 602
    def extra_repr(self):
        name_str = 'name={}'.format(self.name) if self.name else ''
        return name_str

603

Z
zhiboniu 已提交
604
class Hardsigmoid(Layer):
605
    r"""
606 607 608 609 610 611 612 613 614
    This interface is used to construct a callable object of the ``Hardsigmoid`` class.
    This layer calcluate the `hardsigmoid` of input x.

    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        Hardsigmoid(x)=
615 616 617 618 619 620 621 622
            \left\{
                \begin{array}{rcl}
            0, & & \text{if } \ x \leq -3 \\
            1, & & \text{if } \ x \geq 3 \\
            x/6 + 1/2, & & \text{otherwise}
                \end{array}
            \right.

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638

    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        x: N-D tensor, available dtype is float32, float64.

    Returns:
        A callable object of Hardsigmoid.

    Examples:

        .. code-block:: python

          import paddle

Z
zhupengyang 已提交
639
          m = paddle.nn.Hardsigmoid()
640 641 642 643 644 645 646 647 648
          x = paddle.to_tensor([-4., 5., 1.])
          out = m(x) # [0., 1, 0.666667]
    """

    def __init__(self, name=None):
        super(Hardsigmoid, self).__init__()
        self.name = name

    def forward(self, x):
649
        return F.hardsigmoid(x, name=self.name)
650

651 652 653 654
    def extra_repr(self):
        name_str = 'name={}'.format(self.name) if self.name else ''
        return name_str

655

Z
zhiboniu 已提交
656
class Softplus(Layer):
657
    r"""
658 659 660 661
    Softplus Activation

    .. math::

662 663
        Softplus(x) = \frac{1}{beta} * \log(1 + e^{beta * x}) \\
        \text{For numerical stability, the implementation reverts to the linear function when: beta * x > threshold.}
664 665

    Parameters:
666 667
        beta (float, optional): The value of beta for Softplus. Default is 1
        threshold (float, optional): The value of threshold for Softplus. Default is 20
668 669 670 671 672 673 674 675 676 677
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

678 679
            import paddle
            import numpy as np
680

681 682 683
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Softplus()
            out = m(x) # [0.513015, 0.598139, 0.744397, 0.854355]
684 685 686 687 688 689 690 691 692 693 694
    """

    def __init__(self, beta=1, threshold=20, name=None):
        super(Softplus, self).__init__()
        self._beta = beta
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softplus(x, self._beta, self._threshold, self._name)

695 696 697 698 699
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'beta={}, threshold={}{}'.format(self._beta, self._threshold,
                                                name_str)

700

Z
zhiboniu 已提交
701
class Softshrink(Layer):
702
    r"""
703 704 705 706
    Softshrink Activation

    .. math::

707 708 709 710 711 712 713 714 715
        Softshrink(x)=
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.

716 717

    Parameters:
718
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
719 720 721 722 723 724 725 726 727 728
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

729 730
            import paddle
            import numpy as np
731

732 733 734
            x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
            m = paddle.nn.Softshrink()
            out = m(x) # [-0.4, 0, 0, 0.3]
735 736 737 738 739 740 741 742 743 744
    """

    def __init__(self, threshold=0.5, name=None):
        super(Softshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softshrink(x, self._threshold, self._name)

745 746 747 748
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

749

Z
zhiboniu 已提交
750
class Softsign(Layer):
751
    r"""
752 753 754 755
    Softsign Activation

    .. math::

756
        Softsign(x) = \frac{x}{1 + |x|}
757 758 759 760 761 762 763 764 765 766 767 768

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

769 770
            import paddle
            import numpy as np
771

772 773 774
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Softsign()
            out = m(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
775 776 777 778 779 780 781 782 783
    """

    def __init__(self, name=None):
        super(Softsign, self).__init__()
        self._name = name

    def forward(self, x):
        return F.softsign(x, self._name)

784 785 786 787
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

788

Z
zhiboniu 已提交
789
class Swish(Layer):
790
    r"""
791 792 793 794
    Swish Activation.

    .. math::

795
        Swish(x) = \frac{x}{1 + e^{-x}}
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([-2., 0., 1.]))
            m = paddle.nn.Swish()
            out = m(x) # [-0.238406, 0., 0.731059]
    """

    def __init__(self, name=None):
        super(Swish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.swish(x, self._name)

823 824 825 826
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

827

Z
zhiboniu 已提交
828
class Tanhshrink(Layer):
829 830 831 832 833
    """
    Tanhshrink Activation

    .. math::

834
        Tanhshrink(x) = x - tanh(x)
835 836 837 838 839 840 841 842 843 844 845 846

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

847 848
            import paddle
            import numpy as np
849

850 851 852
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Tanhshrink()
            out = m(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
853 854 855 856 857 858 859 860 861
    """

    def __init__(self, name=None):
        super(Tanhshrink, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanhshrink(x, self._name)

862 863 864 865
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

866

Z
zhiboniu 已提交
867
class ThresholdedReLU(Layer):
868
    r"""
869 870 871 872
    Thresholded ReLU Activation

    .. math::

873 874 875 876 877 878 879 880
        ThresholdedReLU(x) =
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909

    Parameters:
        threshold (float, optional): The value of threshold for ThresholdedReLU. Default is 1.0
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([2., 0., 1.]))
            m = paddle.nn.ThresholdedReLU()
            out = m(x) # [2., 0., 0.]
    """

    def __init__(self, threshold=1.0, name=None):
        super(ThresholdedReLU, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.thresholded_relu(x, self._threshold, self._name)

910 911 912 913
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

914

Z
zhiboniu 已提交
915
class Silu(Layer):
M
minghaoBD 已提交
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
    """
    Silu Activation.
    .. math::

        Silu(x) = \frac{x}{1 + e^{-x}}

    Parameters:
        x (Tensor): The input Tensor with data type float32, or float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            m = paddle.nn.Silu()
            out = m(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
    """

    def __init__(self, name=None):
        super(Silu, self).__init__()
        self._name = name

    def forward(self, x):
        return F.silu(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str


Z
zhiboniu 已提交
953
class LogSigmoid(Layer):
954
    r"""
955
    LogSigmoid Activation.
956

957
    .. math::
958

959
        LogSigmoid(x) = log \frac{1}{1 + e^{-x}}
960 961 962 963 964

    Parameters:
        x (Tensor): The input Tensor with data type float32, or float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
965

966 967 968
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
969

970 971 972
    Examples:
        .. code-block:: python

973
            import paddle
974

975
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
976 977
            m = paddle.nn.LogSigmoid()
            out = m(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
978 979 980 981 982 983 984
    """

    def __init__(self, name=None):
        super(LogSigmoid, self).__init__()
        self._name = name

    def forward(self, x):
985
        return F.log_sigmoid(x, self._name)
986

987 988 989 990
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

991

Z
zhiboniu 已提交
992
class Softmax(Layer):
993
    r"""
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
    Softmax Activation.

    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1021
        Softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

    Parameters:
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = np.array([[[2.0, 3.0, 4.0, 5.0],
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.Softmax()
            out = m(x)
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
    """

    def __init__(self, axis=-1, name=None):
        super(Softmax, self).__init__()
        self._axis = axis
        self._dtype = None
        self._name = name

    def forward(self, x):
        return F.softmax(x, self._axis, self._dtype, self._name)

1114 1115 1116 1117
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'axis={}{}'.format(self._axis, name_str)

1118

Z
zhiboniu 已提交
1119
class LogSoftmax(Layer):
1120
    r"""
1121 1122 1123 1124
    This operator implements the log_softmax layer. The calculation process is as follows:

    .. math::

1125 1126 1127 1128
        \begin{array} {rcl}
            Out[i, j] &= &log(softmax(x)) \\
            &= &log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{array}
1129 1130

    Parameters:
1131 1132 1133 1134 1135 1136
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of the input Tensor . If ``axis`` < 0, it works the
            same way as :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1137

1138 1139 1140
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
1141 1142 1143 1144

    Examples:
        .. code-block:: python

1145 1146
            import paddle

Z
zhupengyang 已提交
1147 1148 1149 1150 1151 1152
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1153 1154 1155 1156 1157 1158 1159 1160 1161
            m = paddle.nn.LogSoftmax()
            x = paddle.to_tensor(x)
            out = m(x)
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
1162 1163
    """

1164
    def __init__(self, axis=-1, name=None):
1165 1166
        super(LogSoftmax, self).__init__()
        self._axis = axis
1167
        self._name = name
1168

1169 1170
    def forward(self, x):
        return F.log_softmax(x, self._axis)
1171

1172 1173 1174 1175
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'axis={}{}'.format(self._axis, name_str)

1176

Z
zhiboniu 已提交
1177
class Maxout(Layer):
1178
    r"""
1179 1180 1181 1182 1183 1184 1185 1186
    Maxout Activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

1187 1188 1189 1190 1191 1192 1193 1194
        \begin{array}{l}
            &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
            &g = groups \\
            &s = \frac{input.size}{num\_channels} \\
            &0 \le i < \frac{num\_channels}{groups} \\
            &0 \le j < s \\
            &0 \le k < groups
        \end{array}
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237

    Parameters:
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: :math:`(N, C_{in}, H_{in}, W_{in})`
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            m = paddle.nn.Maxout(groups=2)
            out = m(x)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """

    def __init__(self, groups, axis=1, name=None):
        super(Maxout, self).__init__()
        self._groups = groups
        self._axis = axis
        self._name = name

    def forward(self, x):
        return F.maxout(x, self._groups, self._axis, self._name)
1238 1239 1240 1241

    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'groups={}, axis={}{}'.format(self._groups, self._axis, name_str)