activation.py 39.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define activation functions of neural network
16

Z
zhiboniu 已提交
17 18
from ...framework import ParamAttr
from ..initializer import Constant
Q
Qi Li 已提交
19
from paddle.framework import get_default_dtype
20
from .. import functional as F
Z
zhiboniu 已提交
21
from paddle.nn import Layer
22

23 24
__all__ = []

25

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
class CELU(Layer):
    r"""
    CELU Activation.

    .. math::
    
        CELU(x) = max(0, x) + min(0, \alpha * (e^{x/\alpha}-1))

    Parameters:
        alpha (float, optional): The 'alpha' value of the CELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            
            x = paddle.to_tensor([[-1. ,6.], [1., 15.6]])
            m = paddle.nn.CELU(0.2)
            out = m(x)
            # [[-0.19865242,  6.        ],
            #  [ 1.        , 15.60000038]]
    """

    def __init__(self, alpha=1.0, name=None):
        super(CELU, self).__init__()
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.celu(x, self._alpha, self._name)

    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'alpha={}{}'.format(self._alpha, name_str)


Z
zhiboniu 已提交
68
class ELU(Layer):
69
    r"""
70 71
    ELU Activation.

72
    .. math::
73

Z
zhupengyang 已提交
74 75 76 77 78 79 80
        ELU(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
81 82 83 84 85

    Parameters:
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
86

87 88 89
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
90

91 92 93
    Examples:
        .. code-block:: python

94
            import paddle
95

Z
zhupengyang 已提交
96
            x = paddle.to_tensor([[-1. ,6.], [1., 15.6]])
97 98 99 100
            m = paddle.nn.ELU(0.2)
            out = m(x)
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
101 102 103 104 105 106 107 108 109 110
    """

    def __init__(self, alpha=1.0, name=None):
        super(ELU, self).__init__()
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.elu(x, self._alpha, self._name)

111 112 113 114
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'alpha={}{}'.format(self._alpha, name_str)

115

Z
zhiboniu 已提交
116
class GELU(Layer):
117
    r"""
118 119 120 121
    GELU Activation.

    If approximate is True

122
    .. math::
123

124
        GELU(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
125 126 127

    else

128
    .. math::
129

130
        GELU(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
131 132 133 134 135

    Parameters:
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
136

137 138 139
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
140

141 142 143
    Examples:
        .. code-block:: python

144 145
            import paddle
            import numpy as np
146

147
            x = paddle.to_tensor(np.array([[-1, 0.5],[1, 1.5]]))
148

149 150
            m = paddle.nn.GELU()
            out = m(x) # [-0.158655 0.345731 0.841345 1.39979]
151

152 153
            m = paddle.nn.GELU(True)
            out = m(x) # [-0.158808 0.345714 0.841192 1.39957]
154 155 156 157 158 159 160 161 162 163
    """

    def __init__(self, approximate=False, name=None):
        super(GELU, self).__init__()
        self._approximate = approximate
        self._name = name

    def forward(self, x):
        return F.gelu(x, self._approximate, self._name)

164 165 166 167
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'approximate={}{}'.format(self._approximate, name_str)

168

Z
zhiboniu 已提交
169
class Hardshrink(Layer):
170
    r"""
171 172 173 174 175
    Hardshrink Activation

    .. math::

        hardshrink(x)=
176 177 178 179 180 181 182
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x > threshold \\
                    x, & & if \ x < -threshold \\
                    0, & & if \ others
            \end{array}
            \right.
183 184 185 186 187 188 189 190 191 192 193 194 195 196

    Parameters:
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

197
            import paddle
198

Z
zhupengyang 已提交
199
            x = paddle.to_tensor([-1, 0.3, 2.5])
200 201
            m = paddle.nn.Hardshrink()
            out = m(x) # [-1., 0., 2.5]
202 203 204 205 206 207 208 209
    """

    def __init__(self, threshold=0.5, name=None):
        super(Hardshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
210
        return F.hardshrink(x, self._threshold, self._name)
211

212 213 214 215
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

216

Z
zhiboniu 已提交
217
class Hardswish(Layer):
218
    r"""
219 220 221 222 223 224 225 226 227
    Hardswish activation

    Hardswish is proposed in MobileNetV3, and performs better in computational stability
    and efficiency compared to swish function. For more details please refer
    to: https://arxiv.org/pdf/1905.02244.pdf

    .. math::

        Hardswish(x)=
228 229 230 231 232 233 234 235
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
            
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-4., 5., 1.])
            m = paddle.nn.Hardswish()
            out = m(x) # [0., 5., 0.666667]
    """

    def __init__(self, name=None):
        super(Hardswish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.hardswish(x, self._name)

263 264 265 266
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

267

Z
zhiboniu 已提交
268
class Tanh(Layer):
269
    r"""
W
WangXi 已提交
270 271 272
    Tanh Activation.

    .. math::
273
        Tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Tanh()
            out = m(x)
W
WangXi 已提交
293
            print(out)
W
WangXi 已提交
294 295 296 297 298 299 300 301 302 303
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """

    def __init__(self, name=None):
        super(Tanh, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanh(x, self._name)

304 305 306 307
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

W
WangXi 已提交
308

Z
zhiboniu 已提交
309
class Hardtanh(Layer):
310
    r"""
311 312 313 314
    Hardtanh Activation

    .. math::

315 316 317 318 319 320 321 322 323
        Hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.

324 325 326 327 328 329

    Parameters:
        min (float, optional): The value of min for Hardtanh. Default is -1.
        max (float, optional): The value of max for Hardtanh. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
330

331 332 333
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
334

335 336 337 338 339
    Examples:
        .. code-block:: python

            import paddle

Z
zhupengyang 已提交
340
            x = paddle.to_tensor([-1.5, 0.3, 2.5])
341
            m = paddle.nn.Hardtanh()
Z
zhupengyang 已提交
342
            out = m(x) # [-1., 0.3, 1.]
343 344 345 346 347 348 349 350 351 352 353
    """

    def __init__(self, min=-1.0, max=1.0, name=None):
        super(Hardtanh, self).__init__()
        self._min = min
        self._max = max
        self._name = name

    def forward(self, x):
        return F.hardtanh(x, self._min, self._max, self._name)

354 355 356 357
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'min={}, max={}{}'.format(self._min, self._max, name_str)

358

Z
zhiboniu 已提交
359
class PReLU(Layer):
360 361 362 363 364 365 366 367 368
    """
    PReLU Activation.

    .. math::

        PReLU(x) = max(0, x) + weight * min(0, x)

    Parameters:
        num_parameters (int, optional): Number of `weight` to learn. The supported values are:
369
            1 - a single parameter `alpha` is used for all input channels;
370 371 372
            Number of channels - a seperate `alpha` is used for each input channel.
            Default is 1.
        init (float, optional): Init value of learnable `weight`. Default is 0.25.
373
        weight_attr(ParamAttr, optional): The parameter attribute for the learnable `weight`.
374
            Default is None. For more information, please refer to :ref:`api_paddle_ParamAttr`.
375 376
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
377 378
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
379

380
    Shape:
Q
Qi Li 已提交
381
        - input: Tensor with any shape. Default dtype is float32.
382
        - output: Tensor with the same shape as input.
383

384 385 386 387 388 389
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

Q
Qi Li 已提交
390
            paddle.set_default_dtype("float64")
391 392 393 394 395 396

            data = np.array([[[[-2.0,  3.0, -4.0,  5.0],
                            [ 3.0, -4.0,  5.0, -6.0],
                            [-7.0, -8.0,  8.0,  9.0]],
                            [[ 1.0, -2.0, -3.0,  4.0],
                            [-5.0,  6.0,  7.0, -8.0],
Q
Qi Li 已提交
397
                            [ 6.0,  7.0,  8.0,  9.0]]]], 'float64')
398 399 400 401 402 403 404 405 406 407 408
            x = paddle.to_tensor(data)
            m = paddle.nn.PReLU(1, 0.25)
            out = m(x)
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """

409 410 411 412 413
    def __init__(self,
                 num_parameters=1,
                 init=0.25,
                 weight_attr=None,
                 data_format="NCHW",
414 415 416 417 418 419
                 name=None):
        super(PReLU, self).__init__()
        self._num_parameters = num_parameters
        self._init = init
        self._weight_attr = weight_attr
        self._name = name
420
        self._data_format = data_format
421 422 423

        self._weight = self.create_parameter(
            attr=self._weight_attr,
Q
Qi Li 已提交
424 425
            shape=[self._num_parameters],
            dtype=get_default_dtype(),
426
            is_bias=False,
Q
Qi Li 已提交
427
            default_initializer=Constant(self._init))
428 429

    def forward(self, x):
430
        return F.prelu(x, self._weight, data_format=self._data_format)
431

432 433
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
434 435 436
        return 'num_parameters={}, data_format={}, init={}, dtype={}{}'.format(
            self._num_parameters, self._data_format, self._init, self._dtype,
            name_str)
437

438

Z
zhiboniu 已提交
439
class ReLU(Layer):
440 441 442
    """
    ReLU Activation.

443
    .. math::
444

445
        ReLU(x) = max(x, 0)
446 447

    Parameters:
448 449 450 451 452 453
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
454

455 456 457
    Examples:
        .. code-block:: python

458
            import paddle
459

Z
zhupengyang 已提交
460
            x = paddle.to_tensor([-2., 0., 1.])
461 462
            m = paddle.nn.ReLU()
            out = m(x) # [0., 0., 1.]
463 464
    """

465
    def __init__(self, name=None):
466
        super(ReLU, self).__init__()
467
        self._name = name
468

469 470
    def forward(self, x):
        return F.relu(x, self._name)
471

472 473 474 475
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

476

Z
zhiboniu 已提交
477
class ReLU6(Layer):
478 479 480 481 482
    """
    ReLU6 Activation

    .. math::

483
        ReLU6(x) = min(max(0,x), 6)
484 485 486 487 488 489 490 491 492 493 494 495

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

496 497
            import paddle
            import numpy as np
498

499 500 501
            x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
            m = paddle.nn.ReLU6()
            out = m(x) # [0, 0.3, 6]
502 503 504 505 506 507 508 509 510
    """

    def __init__(self, name=None):
        super(ReLU6, self).__init__()
        self._name = name

    def forward(self, x):
        return F.relu6(x, self._name)

511 512 513 514
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

515

Z
zhiboniu 已提交
516
class SELU(Layer):
517
    r"""
518 519 520 521
    SELU Activation

    .. math::

522
        SELU(x)= scale *
523 524 525 526 527 528
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
529 530

    Parameters:
531 532
        scale (float, optional): The value of scale(must be greater than 1.0) for SELU. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for SELU. Default is 1.6732632423543772848170429916717
533 534 535 536 537 538 539 540 541 542
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

543 544
            import paddle
            import numpy as np
545

546
            x = paddle.to_tensor(np.array([[0.0, 1.0],[2.0, 3.0]]))
547 548
            m = paddle.nn.SELU()
            out = m(x) # [[0, 1.050701],[2.101402, 3.152103]]
549 550 551 552 553 554 555 556 557 558 559 560 561 562
    """

    def __init__(self,
                 scale=1.0507009873554804934193349852946,
                 alpha=1.6732632423543772848170429916717,
                 name=None):
        super(SELU, self).__init__()
        self._scale = scale
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.selu(x, self._scale, self._alpha, self._name)

563 564 565 566 567
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'scale={:.16f}, alpha={:.16f}{}'.format(self._scale, self._alpha,
                                                       name_str)

568

Z
zhiboniu 已提交
569
class LeakyReLU(Layer):
570
    r"""
C
ceci3 已提交
571 572
    Leaky ReLU Activation.

573
    .. math::
C
ceci3 已提交
574

575
        LeakyReLU(x)=
576 577 578 579 580 581 582
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    negative\_slope * x, & & otherwise \\
                \end{array}
            \right.

C
ceci3 已提交
583 584

    Parameters:
585 586
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
587 588
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
589

590 591 592
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
593

C
ceci3 已提交
594 595 596
    Examples:
        .. code-block:: python

597
            import paddle
C
Chen Long 已提交
598
            import numpy as np
599

600
            m = paddle.nn.LeakyReLU()
Z
zhupengyang 已提交
601
            x = paddle.to_tensor(np.array([-2, 0, 1], 'float32'))
602
            out = m(x)  # [-0.02, 0., 1.]
C
ceci3 已提交
603 604
    """

605
    def __init__(self, negative_slope=0.01, name=None):
C
ceci3 已提交
606
        super(LeakyReLU, self).__init__()
607
        self._negative_slope = negative_slope
608
        self._name = name
C
ceci3 已提交
609

610
    def forward(self, x):
611
        return F.leaky_relu(x, self._negative_slope, self._name)
C
ceci3 已提交
612

613 614 615 616
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'negative_slope={}{}'.format(self._negative_slope, name_str)

C
ceci3 已提交
617

Z
zhiboniu 已提交
618
class Sigmoid(Layer):
619
    """
620
    this interface is used to construct a callable object of the ``Sigmoid`` class. This layer calcluate the `sigmoid` of input x.
621

622
    .. math::
S
swtkiwi 已提交
623

624
        Sigmoid(x) = \\frac{1}{1 + e^{-x}}
625

626 627
    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
628

629 630
    Shape:
        x: N-D tensor, available dtype is float16, float32, float64.
631 632

    Returns:
633
        A callable object of Sigmoid.
634

635
    Examples:
636

637 638
        .. code-block:: python

639 640 641
          import paddle

          m = paddle.nn.Sigmoid()
642 643
          x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
          out = m(x) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
644 645
    """

646
    def __init__(self, name=None):
647
        super(Sigmoid, self).__init__()
648
        self.name = name
649

650 651
    def forward(self, x):
        return F.sigmoid(x, self.name)
652

653 654 655 656
    def extra_repr(self):
        name_str = 'name={}'.format(self.name) if self.name else ''
        return name_str

657

Z
zhiboniu 已提交
658
class Hardsigmoid(Layer):
659
    r"""
660 661 662 663 664 665 666 667 668
    This interface is used to construct a callable object of the ``Hardsigmoid`` class.
    This layer calcluate the `hardsigmoid` of input x.

    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        Hardsigmoid(x)=
669 670 671 672 673 674 675 676
            \left\{
                \begin{array}{rcl}
            0, & & \text{if } \ x \leq -3 \\
            1, & & \text{if } \ x \geq 3 \\
            x/6 + 1/2, & & \text{otherwise}
                \end{array}
            \right.

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692

    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        x: N-D tensor, available dtype is float32, float64.

    Returns:
        A callable object of Hardsigmoid.

    Examples:

        .. code-block:: python

          import paddle

Z
zhupengyang 已提交
693
          m = paddle.nn.Hardsigmoid()
694 695 696 697 698 699 700 701 702
          x = paddle.to_tensor([-4., 5., 1.])
          out = m(x) # [0., 1, 0.666667]
    """

    def __init__(self, name=None):
        super(Hardsigmoid, self).__init__()
        self.name = name

    def forward(self, x):
703
        return F.hardsigmoid(x, name=self.name)
704

705 706 707 708
    def extra_repr(self):
        name_str = 'name={}'.format(self.name) if self.name else ''
        return name_str

709

Z
zhiboniu 已提交
710
class Softplus(Layer):
711
    r"""
712 713 714 715
    Softplus Activation

    .. math::

716 717
        Softplus(x) = \frac{1}{beta} * \log(1 + e^{beta * x}) \\
        \text{For numerical stability, the implementation reverts to the linear function when: beta * x > threshold.}
718 719

    Parameters:
720 721
        beta (float, optional): The value of beta for Softplus. Default is 1
        threshold (float, optional): The value of threshold for Softplus. Default is 20
722 723 724 725 726 727 728 729 730 731
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

732 733
            import paddle
            import numpy as np
734

735 736 737
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Softplus()
            out = m(x) # [0.513015, 0.598139, 0.744397, 0.854355]
738 739 740 741 742 743 744 745 746 747 748
    """

    def __init__(self, beta=1, threshold=20, name=None):
        super(Softplus, self).__init__()
        self._beta = beta
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softplus(x, self._beta, self._threshold, self._name)

749 750 751 752 753
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'beta={}, threshold={}{}'.format(self._beta, self._threshold,
                                                name_str)

754

Z
zhiboniu 已提交
755
class Softshrink(Layer):
756
    r"""
757 758 759 760
    Softshrink Activation

    .. math::

761 762 763 764 765 766 767 768 769
        Softshrink(x)=
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.

770 771

    Parameters:
772
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
773 774 775 776 777 778 779 780 781 782
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

783 784
            import paddle
            import numpy as np
785

786 787 788
            x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
            m = paddle.nn.Softshrink()
            out = m(x) # [-0.4, 0, 0, 0.3]
789 790 791 792 793 794 795 796 797 798
    """

    def __init__(self, threshold=0.5, name=None):
        super(Softshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softshrink(x, self._threshold, self._name)

799 800 801 802
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

803

Z
zhiboniu 已提交
804
class Softsign(Layer):
805
    r"""
806 807 808 809
    Softsign Activation

    .. math::

810
        Softsign(x) = \frac{x}{1 + |x|}
811 812 813 814 815 816 817 818 819 820 821 822

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

823 824
            import paddle
            import numpy as np
825

826 827 828
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Softsign()
            out = m(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
829 830 831 832 833 834 835 836 837
    """

    def __init__(self, name=None):
        super(Softsign, self).__init__()
        self._name = name

    def forward(self, x):
        return F.softsign(x, self._name)

838 839 840 841
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

842

Z
zhiboniu 已提交
843
class Swish(Layer):
844
    r"""
845 846 847 848
    Swish Activation.

    .. math::

849
        Swish(x) = \frac{x}{1 + e^{-x}}
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([-2., 0., 1.]))
            m = paddle.nn.Swish()
            out = m(x) # [-0.238406, 0., 0.731059]
    """

    def __init__(self, name=None):
        super(Swish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.swish(x, self._name)

877 878 879 880
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

881

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
class Mish(Layer):
    r"""
    Mish Activation.

    ..  math::

        softplus(x) = \begin{cases}
                x, \text{if } x > \text{threshold} \\
                \ln(1 + e^{x}),  \text{otherwise}
            \end{cases}

        Mish(x) = x * \tanh(softplus(x))
    
    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
    
    Examples:

        .. code-block:: python

            import paddle

W
wangxinxin08 已提交
909
            x = paddle.to_tensor([-5., 0., 5.])
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
            m = paddle.nn.Mish()
            out = m(x) # [-0.03357624, 0., 4.99955208]

    """

    def __init__(self, name=None):
        super(Mish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.mish(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str


Z
zhiboniu 已提交
927
class Tanhshrink(Layer):
928 929 930 931 932
    """
    Tanhshrink Activation

    .. math::

933
        Tanhshrink(x) = x - tanh(x)
934 935 936 937 938 939 940 941 942 943 944 945

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

946 947
            import paddle
            import numpy as np
948

949 950 951
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Tanhshrink()
            out = m(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
952 953 954 955 956 957 958 959 960
    """

    def __init__(self, name=None):
        super(Tanhshrink, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanhshrink(x, self._name)

961 962 963 964
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

965

Z
zhiboniu 已提交
966
class ThresholdedReLU(Layer):
967
    r"""
968 969 970 971
    Thresholded ReLU Activation

    .. math::

972 973 974 975 976 977 978 979
        ThresholdedReLU(x) =
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008

    Parameters:
        threshold (float, optional): The value of threshold for ThresholdedReLU. Default is 1.0
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([2., 0., 1.]))
            m = paddle.nn.ThresholdedReLU()
            out = m(x) # [2., 0., 0.]
    """

    def __init__(self, threshold=1.0, name=None):
        super(ThresholdedReLU, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.thresholded_relu(x, self._threshold, self._name)

1009 1010 1011 1012
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

1013

Z
zhiboniu 已提交
1014
class Silu(Layer):
M
minghaoBD 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
    """
    Silu Activation.
    .. math::

        Silu(x) = \frac{x}{1 + e^{-x}}

    Parameters:
        x (Tensor): The input Tensor with data type float32, or float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            m = paddle.nn.Silu()
            out = m(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
    """

    def __init__(self, name=None):
        super(Silu, self).__init__()
        self._name = name

    def forward(self, x):
        return F.silu(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str


Z
zhiboniu 已提交
1052
class LogSigmoid(Layer):
1053
    r"""
1054
    LogSigmoid Activation.
1055

1056
    .. math::
1057

1058
        LogSigmoid(x) = log \frac{1}{1 + e^{-x}}
1059 1060 1061 1062 1063

    Parameters:
        x (Tensor): The input Tensor with data type float32, or float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1064

1065 1066 1067
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
1068

1069 1070 1071
    Examples:
        .. code-block:: python

1072
            import paddle
1073

1074
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
1075 1076
            m = paddle.nn.LogSigmoid()
            out = m(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
1077 1078 1079 1080 1081 1082 1083
    """

    def __init__(self, name=None):
        super(LogSigmoid, self).__init__()
        self._name = name

    def forward(self, x):
1084
        return F.log_sigmoid(x, self._name)
1085

1086 1087 1088 1089
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

1090

Z
zhiboniu 已提交
1091
class Softmax(Layer):
1092
    r"""
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
    Softmax Activation.

    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1120
        Softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

    Parameters:
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = np.array([[[2.0, 3.0, 4.0, 5.0],
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.Softmax()
            out = m(x)
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
    """

    def __init__(self, axis=-1, name=None):
        super(Softmax, self).__init__()
        self._axis = axis
        self._dtype = None
        self._name = name

    def forward(self, x):
        return F.softmax(x, self._axis, self._dtype, self._name)

1213 1214 1215 1216
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'axis={}{}'.format(self._axis, name_str)

1217

Z
zhiboniu 已提交
1218
class LogSoftmax(Layer):
1219
    r"""
1220 1221 1222 1223
    This operator implements the log_softmax layer. The calculation process is as follows:

    .. math::

1224 1225 1226 1227
        \begin{array} {rcl}
            Out[i, j] &= &log(softmax(x)) \\
            &= &log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{array}
1228 1229

    Parameters:
1230 1231 1232 1233 1234 1235
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of the input Tensor . If ``axis`` < 0, it works the
            same way as :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1236

1237 1238 1239
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
1240 1241 1242 1243

    Examples:
        .. code-block:: python

1244 1245
            import paddle

Z
zhupengyang 已提交
1246 1247 1248 1249 1250 1251
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1252 1253 1254 1255 1256 1257 1258 1259 1260
            m = paddle.nn.LogSoftmax()
            x = paddle.to_tensor(x)
            out = m(x)
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
1261 1262
    """

1263
    def __init__(self, axis=-1, name=None):
1264 1265
        super(LogSoftmax, self).__init__()
        self._axis = axis
1266
        self._name = name
1267

1268 1269
    def forward(self, x):
        return F.log_softmax(x, self._axis)
1270

1271 1272 1273 1274
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'axis={}{}'.format(self._axis, name_str)

1275

Z
zhiboniu 已提交
1276
class Maxout(Layer):
1277
    r"""
1278 1279 1280 1281 1282 1283 1284 1285
    Maxout Activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

1286 1287 1288 1289 1290 1291 1292 1293
        \begin{array}{l}
            &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
            &g = groups \\
            &s = \frac{input.size}{num\_channels} \\
            &0 \le i < \frac{num\_channels}{groups} \\
            &0 \le j < s \\
            &0 \le k < groups
        \end{array}
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336

    Parameters:
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: :math:`(N, C_{in}, H_{in}, W_{in})`
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            m = paddle.nn.Maxout(groups=2)
            out = m(x)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """

    def __init__(self, groups, axis=1, name=None):
        super(Maxout, self).__init__()
        self._groups = groups
        self._axis = axis
        self._name = name

    def forward(self, x):
        return F.maxout(x, self._groups, self._axis, self._name)
1337 1338 1339 1340

    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'groups={}, axis={}{}'.format(self._groups, self._axis, name_str)