tensor.py 71.3 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
16 17 18
import numpy
import warnings

Y
Yu Yang 已提交
19
from ..layer_helper import LayerHelper
20
from ..param_attr import ParamAttr
21
from ..initializer import Initializer
22
from ..framework import _current_expected_place, convert_np_dtype_to_dtype_, _non_static_mode, _varbase_creator, device_guard, _in_legacy_dygraph, in_dygraph_mode, _get_paddle_place
X
xuwei06 已提交
23
from ..framework import Variable
24
from ..initializer import Constant
25
from ..core import VarDesc
26
from .. import core
27
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
28
from . import utils
29
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
30
from paddle.utils import deprecated
31

32
from .utils import check_shape
33
from paddle import _C_ops, _legacy_C_ops
Y
Yu Yang 已提交
34 35

__all__ = [
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    'create_tensor',
    'create_parameter',
    'create_global_var',
    'cast',
    'tensor_array_to_tensor',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'argmin',
    'argmax',
    'argsort',
    'ones',
    'zeros',
    'reverse',
    'has_inf',
    'has_nan',
    'isfinite',
    'range',
    'linspace',
    'zeros_like',
    'ones_like',
    'diag',
    'eye',
    'triu',
Y
Yu Yang 已提交
62 63 64
]


X
xuwei06 已提交
65
def create_tensor(dtype, name=None, persistable=False):
66
    """
W
wangchaochaohu 已提交
67
    Create a variable, which will hold a Tensor with data type dtype.
68 69

    Args:
W
wangchaochaohu 已提交
70 71
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
72
        name(string, optional): The default value is None.  Normally there is no need for
W
wangchaochaohu 已提交
73
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
74
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
75
            default value is False.
76 77

    Returns:
W
wangchaochaohu 已提交
78
        Variable: The tensor to be created according to dtype.
79 80 81 82

    Examples:
        .. code-block:: python

83
          import paddle.fluid as fluid
84 85
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
86 87 88 89
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
90
    helper = LayerHelper("create_tensor", **locals())
91 92 93
    return helper.create_variable(name=helper.name,
                                  dtype=dtype,
                                  persistable=persistable)
Y
Yu Yang 已提交
94 95


96 97
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
98
                     name=None,
99 100 101 102
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
103
	:api_attr: Static Graph
S
swtkiwi 已提交
104

105
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
106 107 108 109 110
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

111 112 113 114 115 116 117
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
118 119 120
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
121
        default_initializer (Initializer, optional): Initializer for the parameter
122 123

    Returns:
124
        The created parameter.
Y
yuyang18 已提交
125 126

    Examples:
127 128
        .. code-block:: python

129 130 131
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
132
    """
133 134
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
T
tianshuo78520a 已提交
135 136 137
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_parameter')
138 139 140 141 142 143 144 145 146

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
147
    helper = LayerHelper("create_parameter", **locals())
148
    if attr is None:
X
xuwei06 已提交
149
        attr = ParamAttr(name=name)
150
    return helper.create_parameter(attr, shape, convert_dtype(dtype), is_bias,
151 152 153
                                   default_initializer)


154 155 156 157 158 159 160
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
161
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
162

163
    Parameters:
164
        shape (list[int]|tuple[int]): Shape of the variable
165
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
166
                      variable will be filled with it.
167 168
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
169
                           Default: False
170
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
171
                         Default: False
172 173
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
174 175

    Returns:
176
        Variable: The created Variable
F
fengjiayi 已提交
177 178 179 180

    Examples:
        .. code-block:: python

181 182 183
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
184
                                           persistable=True, force_cpu=True, name='new_var')
185
    """
186 187 188
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
T
tianshuo78520a 已提交
189 190 191
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_global_var')
192 193

    check_dtype(dtype, 'dtype', [
194 195 196 197 198 199 200 201 202 203
        'bool',
        'float16',
        'float32',
        'float64',
        'int8',
        'int16',
        'int32',
        'int64',
        'uint8',
        'uint16',
204 205
    ], 'create_global_var')

Q
Qiao Longfei 已提交
206
    helper = LayerHelper("global_var", **locals())
207 208 209 210 211 212 213 214
    var = helper.create_global_variable(dtype=dtype,
                                        shape=shape,
                                        persistable=persistable,
                                        name=name,
                                        stop_gradient=True)
    helper.set_variable_initializer(var,
                                    initializer=Constant(value=float(value),
                                                         force_cpu=force_cpu))
M
minqiyang 已提交
215

Q
Qiao Longfei 已提交
216 217 218
    return var


219
def cast(x, dtype):
Y
Yu Yang 已提交
220
    """
S
swtkiwi 已提交
221

222
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
223 224
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
225 226

    Args:
227
        x(Tensor): An input N-D Tensor with data type bool, float16,
228
            float32, float64, int32, int64, uint8.
229
        dtype(np.dtype|str): Data type of the output:
230
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
231 232

    Returns:
233
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
234 235 236

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
237

238
            import paddle
239

240 241
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
242
    """
H
hong 已提交
243 244 245
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
246
        return _C_ops.cast(x, dtype)
H
hong 已提交
247

J
Jiabin Yang 已提交
248
    if _non_static_mode():
249 250
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
251
        out = _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
252
        return out
253

254
    check_variable_and_dtype(x, 'x', [
255 256
        'bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64',
        'uint8', 'uint16'
257
    ], 'cast')
258
    check_dtype(dtype, 'dtype', [
259 260
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8', 'uint16'
261 262 263
    ], 'cast')

    helper = LayerHelper('cast', **locals())
264 265
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
266 267 268 269 270 271 272
    helper.append_op(type='cast',
                     inputs={'X': [x]},
                     outputs={'Out': [out]},
                     attrs={
                         'in_dtype': x.dtype,
                         'out_dtype': out.dtype
                     })
Y
Yu Yang 已提交
273 274 275
    return out


276
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
277
    """
278
    This OP concatenates the input along the axis.
279 280

    Args:
281
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
282
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type.
283 284
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
285
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
286
            as ``axis+R``. Default is 0.
287 288 289
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
290 291

    Returns:
292
        Tensor: A Tensor with the same data type as ``input``.
293 294 295

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
296

297
            import paddle.fluid as fluid
298 299
            import numpy as np

300 301 302 303 304 305
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
306 307 308 309
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
310 311
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
312 313
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
314 315 316 317 318 319 320 321
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
322
    """
323

324 325 326 327 328 329
    if in_dygraph_mode():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
330
        out = _C_ops.concat(input, axis)
331
        return out
332 333

    if _in_legacy_dygraph():
S
songyouwei 已提交
334 335
        if isinstance(axis, Variable):
            axis = axis.numpy()
336
            axis = axis.item(0)
337 338
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
339
        out = _varbase_creator()
340
        _legacy_C_ops.concat(input, out, 'axis', axis)
341
        return out
342

343 344 345 346 347 348 349 350 351
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
352 353
                    "All the Tensors in the input must have the same data type."
                )
354
    else:
355
        input = [input]
356
    check_type(axis, 'axis', (int, Variable), 'concat')
357

358 359 360
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
361 362
            "The data type of axis must be int32 or int64 when axis is a Tensor"
        )
363

364
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
365
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
366 367

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
368 369 370 371
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

372
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
373
                "number of the elements must be 1, but received %s." % len(input)
374
        out_index = helper.create_variable_for_type_inference(dtype="int32")
375 376 377 378 379 380 381 382 383 384
        helper.append_op(type='tensor_array_to_tensor',
                         inputs={'X': input[0]},
                         outputs={
                             'Out': [out],
                             'OutIndex': [out_index]
                         },
                         attrs={
                             'axis': axis,
                             'use_stack': False
                         })
385 386 387 388 389
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
390
        attrs['axis'] = axis
391

392 393 394 395
        helper.append_op(type='concat',
                         inputs=inputs,
                         outputs={'Out': [out]},
                         attrs=attrs)
Y
Yu Yang 已提交
396 397 398
    return out


G
Guo Sheng 已提交
399
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
400
    r"""
G
Guo Sheng 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
451 452

    Args:
G
Guo Sheng 已提交
453 454 455 456 457 458 459
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
460 461

    Returns:
G
Guo Sheng 已提交
462 463 464
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
465 466 467 468

    Examples:
        .. code-block:: python

469
            import paddle.fluid as fluid
470
            import numpy as np
G
Guo Sheng 已提交
471 472 473 474 475 476 477
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
478
    """
J
Jiabin Yang 已提交
479
    if _non_static_mode():
480 481 482 483 484 485 486 487 488 489
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

490 491 492 493 494
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
495
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
496 497
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
498 499 500 501 502 503 504 505 506 507
    helper.append_op(type='tensor_array_to_tensor',
                     inputs={'X': input},
                     outputs={
                         'Out': [out],
                         'OutIndex': [out_index]
                     },
                     attrs={
                         'axis': axis,
                         'use_stack': use_stack
                     })
L
li099 已提交
508 509 510
    return out, out_index


511
def sums(input, out=None):
512
    r"""
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
534 535

    Args:
536 537 538 539
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
540 541

    Returns:
542 543
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
544 545

    Examples:
F
fengjiayi 已提交
546
        .. code-block:: python
K
kavyasrinet 已提交
547

548 549 550 551 552 553 554 555 556
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
557

558 559
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
560
    """
561 562 563 564
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
565
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
566 567
    else:
        check_variable_and_dtype(input, "input", \
568
                ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
569

Y
Yu Yang 已提交
570 571
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
572 573
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
574
    else:
575 576 577 578 579 580 581 582
        check_variable_and_dtype(out, "out",
                                 ['float32', 'float64', 'int32', 'int64'],
                                 'sums')

    helper.append_op(type='sum',
                     inputs={'X': input},
                     outputs={'Out': out},
                     attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
583 584 585
    return out


F
fengjiayi 已提交
586
def assign(input, output=None):
587
    """
S
swtkiwi 已提交
588

589
    The OP copies the :attr:`input` to the :attr:`output`.
590

591
    Parameters:
592 593 594 595
        input (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
596
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
597
            be created as :attr:`output`. Default: None.
598 599

    Returns:
600
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
601 602 603

    Examples:
        .. code-block:: python
604

605
          import paddle
606
          import numpy as np
607
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
608 609 610 611
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
612 613 614
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
615
    """
Y
Yu Yang 已提交
616
    helper = LayerHelper('assign', **locals())
617 618 619
    check_type(input, 'input',
               (Variable, numpy.ndarray, list, tuple, float, int, bool),
               'assign')
620 621
    is_inplace = True if output is not None else False

622 623 624 625
    if numpy.isscalar(input) and not isinstance(input, str):
        input = numpy.array([input])
    elif isinstance(input, (list, tuple)):
        input = numpy.array(input)
626 627
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
J
Jiabin Yang 已提交
628
    # but _non_static_mode()==False under @to_static, which means
629 630 631
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
    if isinstance(input, (Variable, core.VarBase)):
632
        if _non_static_mode():
C
chentianyu03 已提交
633
            if in_dygraph_mode() and output is None:
634
                output = _C_ops.assign(input)
635 636
            elif in_dygraph_mode() and output is not None:
                _C_ops.assign_out_(input, output)
C
chentianyu03 已提交
637 638 639 640 641 642
            else:
                if output is None:
                    if _in_legacy_dygraph():
                        output = core.VarBase()
                    else:
                        output = core.eager.Tensor()
643
                _legacy_C_ops.assign(input, output)
644 645 646 647 648 649 650 651
        else:
            check_dtype(input.dtype, 'input', [
                'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
                'uint8', 'bool'
            ], 'assign', '(When the type of input in assign is Variable.)')
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
652 653 654
            helper.append_op(type='assign',
                             inputs={'X': [input]},
                             outputs={'Out': [output]})
X
xuwei06 已提交
655
    elif isinstance(input, numpy.ndarray):
656 657 658 659 660
        # Not support [var, var, ...] currently.
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
            raise TypeError(
                "Required type(input) numpy.ndarray, but found `list(Variable)` in input."
            )
X
xuwei06 已提交
661
        dtype = convert_np_dtype_to_dtype_(input.dtype)
662 663 664 665 666 667 668 669
        if dtype == VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = VarDesc.VarType.FP32
670 671
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
W
wanghuancoder 已提交
672
            values = [int(v) for v in input.flat]
673
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
674
            value_name = "fp32_values"
675
            values = [float(v) for v in input.flat]
676
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
677
            value_name = "int32_values"
678
            values = [int(v) for v in input.flat]
679 680 681
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
682
        else:
683 684
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
685
                "the data type of 'input' must be bool, float32, int32 or int64, but "
686
                "received %s." % convert_dtype(dtype))
687 688 689
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
690 691 692
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
693 694
            _C_ops.assign_value_(output, list(input.shape), dtype, values,
                                 _current_expected_place())
695 696 697
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
698 699
            _legacy_C_ops.assign_value(output, 'shape', list(input.shape),
                                       'dtype', dtype, value_name, values)
700
        else:
701 702 703
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
704 705 706 707 708 709 710
            helper.append_op(type='assign_value',
                             outputs={'Out': [output]},
                             attrs={
                                 'dtype': dtype,
                                 'shape': list(input.shape),
                                 value_name: values
                             })
X
xuwei06 已提交
711

J
Jiabin Yang 已提交
712
    if is_inplace and _non_static_mode():
713
        output._bump_inplace_version()
714

Y
Yu Yang 已提交
715 716 717
    return output


718
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
719
    """
S
swtkiwi 已提交
720

W
wangchaochaohu 已提交
721
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
722
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
723

T
tianshuo78520a 已提交
724
    The attribute `stop_gradient` of the created Tensor is set to True.
725 726

    Args:
727 728 729
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
730
        dtype(np.dtype|str): Data type of the output Tensor which can
731
            be float16, float32, float64, uint8, int16, int32, int64.
732
        value(bool|float|int|Tensor): The constant value used to initialize
733 734
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
735
        out(Tensor, optional): Optional output which can be any created
736 737
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
738 739
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
740 741

    Returns:
742
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
743

744 745 746
    Examples:
        .. code-block:: python

747
          import paddle.fluid as fluid
748
          # attr shape is a list which doesn't contain  Tensor.
749 750
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
751
          # data1=[[5], [5]] data2=[[5], [5]]
752

753
          # attr shape is a list which contains Tensor.
754
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
755
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
756

757
          # attr shape is a Tensor.
758
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
759
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
760

761
          # attr value is a Tensor.
W
wangchaochaohu 已提交
762 763
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
764
    """
765

W
wangchaochaohu 已提交
766
    attrs = {'force_cpu': force_cpu}
767
    dtype = convert_dtype(dtype)
768
    if not isinstance(value, Variable):
769
        if dtype in ['uint8', 'int16', 'int32', 'int64']:
W
wangchaochaohu 已提交
770
            attrs['str_value'] = str(int(value))
771
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
772 773
        else:
            attrs['str_value'] = str(float(value))
774
            attrs['value'] = float(value)
775

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
    if in_dygraph_mode():
        place = _current_expected_place()
        if force_cpu:
            place = core.CPUPlace()
        if isinstance(shape, (list, tuple)):
            for item in shape:
                if not isinstance(item, Variable):
                    shape = list(
                        map(
                            lambda x: x.numpy().flat[0]
                            if isinstance(x, Variable) else x, shape))
                    break

        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

        if out is None:
793
            out = _C_ops.full(shape, float(value), dtype, place)
794 795 796
            out.stop_gradient = True
            return out

797 798
        if out is not None:
            # final state mode is support out is not None.
799
            _C_ops.full_(out, shape, float(value), dtype, place)
800 801
            out.stop_gradient = True
            return out
802

803 804 805 806 807 808 809 810 811 812 813
    if _in_legacy_dygraph():
        shape = utils.convert_shape_to_list(shape)
        if out is None:
            out = _varbase_creator(dtype=dtype)

        if isinstance(value, Variable):
            if dtype in ['uint8', 'int16', 'int32', 'int64']:
                attrs['str_value'] = str(int(value.numpy().item(0)))
            else:
                attrs['str_value'] = str(float(value.numpy().item(0)))

814 815 816
        _legacy_C_ops.fill_constant(out, 'value', float(value), 'force_cpu',
                                    force_cpu, 'dtype', out.dtype, 'str_value',
                                    attrs['str_value'], 'shape', shape)
817 818 819
        out.stop_gradient = True
        return out

820 821 822
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
823 824
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
825 826
        inputs['ValueTensor'] = value

827
    check_shape(shape)
828 829
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'uint8', 'int16', 'int32',
830
        'int64', 'complex64', 'complex128'
831
    ], 'fill_constant')
832
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
833

834 835 836 837 838
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
839 840 841 842
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type='fill_constant')
L
liym27 已提交
843

Y
Yu Yang 已提交
844
    if out is None:
X
Xin Pan 已提交
845
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
846
    attrs['dtype'] = out.dtype
847 848 849 850 851
    helper.append_op(type='fill_constant',
                     inputs=inputs,
                     outputs={'Out': [out]},
                     attrs=attrs,
                     stop_gradient=True)
Y
Yu Yang 已提交
852 853 854 855
    out.stop_gradient = True
    return out


856
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
857
@templatedoc()
Y
Yu Yang 已提交
858 859 860 861 862
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
863 864
                                  output_dim_idx=0,
                                  force_cpu=False):
865
    """
T
tianshuo78520a 已提交
866
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
867 868 869 870
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
871 872

    Args:
W
wangchaochaohu 已提交
873 874 875 876 877
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
878
        value(float|int): The constant value used to initialize the Tensor to be created.
W
wangchaochaohu 已提交
879 880 881 882 883
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
884
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
885 886

    Returns:
W
wangchaochaohu 已提交
887
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
888 889 890 891 892

    Examples:

        .. code-block:: python

893
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
894
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
895
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
896
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
897

898
    """
899 900 901 902 903 904 905
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

        place = _current_expected_place()
        if force_cpu:
            place = core.CPUPlace()
906 907
        out = _C_ops.full_batch_size_like(input, shape, dtype, value,
                                          input_dim_idx, output_dim_idx, place)
908 909 910
        out.stop_gradient = True
        return out

Y
Yu Yang 已提交
911
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
912
    out = helper.create_variable_for_type_inference(dtype=dtype)
913 914 915 916 917 918
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
919
        'force_cpu': force_cpu
920 921 922 923 924
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
925 926 927 928
    helper.append_op(type='fill_constant_batch_size_like',
                     inputs={'Input': input},
                     outputs={'Out': [out]},
                     attrs=attrs)
Y
Yu Yang 已提交
929 930 931 932
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
933 934
def argmin(x, axis=0):
    """
935 936 937
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
938

S
sneaxiy 已提交
939 940
    **argmin**

941 942
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
943 944

    Args:
945 946 947 948 949
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
950

S
sneaxiy 已提交
951
    Returns:
952
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
953

S
sneaxiy 已提交
954 955
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
956

957
            import paddle.fluid as fluid
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
985
    """
986 987 988
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
989
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
990
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
991 992 993 994
    helper.append_op(type='arg_min',
                     inputs={'X': x},
                     outputs={'Out': [out]},
                     attrs={'axis': axis})
995
    out.stop_gradient = True
S
sneaxiy 已提交
996 997 998 999 1000 1001 1002
    return out


def argmax(x, axis=0):
    """
    **argmax**

1003 1004
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
1005 1006

    Args:
1007 1008 1009 1010 1011
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
1012

S
sneaxiy 已提交
1013
    Returns:
1014
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
1015

S
sneaxiy 已提交
1016 1017
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1018

1019
            import paddle.fluid as fluid
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
1047
    """
1048 1049 1050
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
1051
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
1052
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
1053 1054 1055 1056
    helper.append_op(type='arg_max',
                     inputs={'X': x},
                     outputs={'Out': [out]},
                     attrs={'axis': axis})
1057
    out.stop_gradient = True
S
sneaxiy 已提交
1058 1059 1060
    return out


1061
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
1062
    """
1063 1064 1065
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
1066

1067 1068 1069
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
1070 1071

    Args:
1072 1073 1074 1075 1076
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
1077 1078 1079
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
1080 1081 1082
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
1083 1084

    Returns:
1085 1086 1087
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
1088 1089 1090 1091

    Examples:
        .. code-block:: python

1092
            import paddle.fluid as fluid
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1134
    """
1135 1136 1137
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1138
    helper = LayerHelper("argsort", **locals())
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
    out = helper.create_variable_for_type_inference(dtype=input.dtype,
                                                    stop_gradient=True)
    ids = helper.create_variable_for_type_inference(VarDesc.VarType.INT64,
                                                    stop_gradient=True)
    helper.append_op(type='argsort',
                     inputs={'X': input},
                     outputs={
                         'Out': out,
                         'Indices': ids
                     },
                     attrs={
                         'axis': axis,
                         'descending': descending
                     })
Y
Yibing Liu 已提交
1153 1154 1155
    return out, ids


Y
Yang Yu 已提交
1156
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1157
    """
1158 1159
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1160

1161
    Parameters:
1162
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1163
        dtype (np.dtype|str): Data type of output Tensor, it supports
1164
            bool, float16, float32, float64, int32 and int64.
1165 1166
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1167
            Default: False.
1168 1169

    Returns:
1170
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1171 1172 1173 1174

    Examples:
        .. code-block:: python

1175
          import paddle.fluid as fluid
1176
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
1177

1178 1179 1180
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1181 1182 1183 1184
    """
    return fill_constant(value=1.0, **locals())


1185
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1186
    """
1187 1188
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1189

1190
    Parameters:
1191
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1192
        dtype (np.dtype|str): Data type of output Tensor, it supports
1193
            bool, float16, float32, float64, int32 and int64.
1194 1195
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1196
            Default: False.
1197 1198
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1199 1200

    Returns:
1201
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1202 1203 1204 1205

    Examples:
        .. code-block:: python

1206
          import paddle.fluid as fluid
1207
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1208

1209 1210 1211
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1212 1213
    """
    return fill_constant(value=0.0, **locals())
1214 1215


F
fengjiayi 已提交
1216 1217
def reverse(x, axis):
    """
1218 1219 1220
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1221

1222
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1223

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1248
    Parameters:
1249 1250
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1251 1252
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1253 1254
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1255 1256

    Returns:
1257
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1258 1259 1260 1261

    Examples:
        .. code-block:: python

1262
          import paddle.fluid as fluid
1263 1264 1265 1266
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1277
    """
1278 1279 1280
    check_variable_and_dtype(x, 'x',
                             ('float32', 'float64', 'int32', 'int64', 'uint8'),
                             'reverse')
1281
    check_type(axis, 'axis', (int, tuple, list, Variable), 'reverse')
F
fengjiayi 已提交
1282 1283
    if isinstance(axis, int):
        axis = [axis]
W
wanghuancoder 已提交
1284
    if in_dygraph_mode():
1285
        return _C_ops.reverse(x, axis)
F
fengjiayi 已提交
1286
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1287
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1288 1289 1290 1291
    helper.append_op(type='reverse',
                     inputs={'X': x},
                     outputs={'Out': [out]},
                     attrs={'axis': axis})
F
fengjiayi 已提交
1292 1293 1294
    return out


1295 1296 1297 1298 1299 1300 1301
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1302 1303 1304
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1305 1306
    """
    helper = LayerHelper("save", **locals())
1307 1308 1309 1310 1311 1312 1313
    helper.append_op(type="save",
                     inputs={"input": x},
                     outputs={},
                     args={
                         "file_path": file_path,
                         "overwrite": overwrite
                     })
1314 1315 1316 1317 1318 1319 1320


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1321 1322
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1323
        file_path(str): The file path where variables will be saved.
1324
        overwrite(bool): Whether or not cover the given file when it has already
1325 1326
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1327 1328 1329 1330 1331 1332 1333 1334

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1335
            import paddle.fluid as fluid
1336 1337 1338 1339 1340 1341 1342
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1343 1344
    """
    helper = LayerHelper("save_combine", **locals())
1345 1346 1347 1348 1349 1350 1351
    helper.append_op(type="save_combine",
                     inputs={"input": x},
                     outputs={},
                     args={
                         "file_path": file_path,
                         "overwrite": overwrite
                     })
1352 1353 1354 1355


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1356
    Loads a list of variable from a single file.
1357 1358 1359 1360 1361 1362

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
1363 1364 1365 1366
    helper.append_op(type="load_combine",
                     inputs={},
                     output={"Out": out},
                     args={"file_path": file_path})
1367 1368 1369 1370 1371 1372 1373


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1374
       x (Tensor): The Tensor to be checked.
1375 1376

    Returns:
S
Steffy-zxf 已提交
1377
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1378

1379 1380
    Examples:
        .. code-block:: python
1381

S
Steffy-zxf 已提交
1382 1383
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1384
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1385
          # [False]
1386

1387
    """
J
Jiabin Yang 已提交
1388
    if _non_static_mode():
1389
        return _legacy_C_ops.isinf(x)
S
Steffy-zxf 已提交
1390

1391
    check_type(x, 'x', (Variable), 'has_inf')
1392
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1393
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1394 1395 1396 1397 1398 1399 1400 1401 1402
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1403
       x (Tensor): The Tensor to be checked.
1404 1405

    Returns:
S
Steffy-zxf 已提交
1406
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1407

1408 1409
    Examples:
        .. code-block:: python
1410

S
Steffy-zxf 已提交
1411 1412
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1413
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1414
          # [False]
1415

1416
    """
J
Jiabin Yang 已提交
1417
    if _non_static_mode():
1418
        return _legacy_C_ops.isnan(x)
S
Steffy-zxf 已提交
1419

1420
    check_type(x, 'x', (Variable), 'has_nan')
1421
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1422
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1423 1424 1425 1426 1427 1428
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1429

1430 1431 1432 1433
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1434
        x(Tensor): The Tensor to be checked.
1435 1436

    Returns:
N
Noel 已提交
1437
        Tensor: The tensor storing the output, contains a bool value.
1438 1439 1440 1441 1442

    Examples:

        .. code-block:: python

N
Noel 已提交
1443 1444 1445 1446 1447 1448
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1449
    """
1450 1451
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1452
    helper = LayerHelper("isfinite", **locals())
1453

1454
    out = helper.create_variable_for_type_inference(dtype='bool')
1455 1456
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1457 1458


1459
def range(start, end, step, dtype, name=None):
W
whs 已提交
1460
    """
1461
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1462

1463 1464
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1465

1466 1467
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1468

L
Liufang Sang 已提交
1469
    Parameters:
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

1486
    Returns:
1487 1488 1489 1490 1491 1492
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1493 1494 1495 1496 1497

    examples:

        .. code-block:: python

1498
            import paddle.fluid as fluid
W
whs 已提交
1499

1500 1501
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1502

1503 1504 1505 1506 1507
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
1508 1509 1510 1511 1512
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

1513 1514
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1515

W
whs 已提交
1516
    if not isinstance(start, Variable):
1517
        with device_guard("cpu"):
1518
            start = fill_constant([1], dtype, start, force_cpu=True)
1519 1520
    elif start.dtype != dtype:
        start = cast(start, dtype)
1521

W
whs 已提交
1522
    if not isinstance(end, Variable):
1523
        with device_guard("cpu"):
1524
            end = fill_constant([1], dtype, end, force_cpu=True)
1525 1526
    elif end.dtype != dtype:
        end = cast(end, dtype)
1527

W
whs 已提交
1528
    if not isinstance(step, Variable):
1529
        with device_guard("cpu"):
1530
            step = fill_constant([1], dtype, step, force_cpu=True)
1531 1532
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1533

Z
zyfncg 已提交
1534
    if in_dygraph_mode():
1535
        return _C_ops.arange(start, end, step, dtype, _current_expected_place())
Z
zyfncg 已提交
1536

Z
zyfncg 已提交
1537
    if _in_legacy_dygraph():
1538
        out = _legacy_C_ops.range(start, end, step)
J
Jiawei Wang 已提交
1539 1540
        out.stop_gradient = True
        return out
W
whs 已提交
1541

1542 1543 1544
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
1545
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
1546 1547 1548 1549 1550 1551 1552
    helper.append_op(type='range',
                     inputs={
                         'Start': start,
                         'End': end,
                         'Step': step
                     },
                     outputs={'Out': out})
1553
    out.stop_gradient = True
1554 1555
    if out_shape is not None:
        out.desc.set_shape(out_shape)
W
whs 已提交
1556
    return out
Z
zhoukunsheng 已提交
1557 1558


1559
def linspace(start, stop, num, dtype=None, name=None):
1560
    r"""
1561
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1562 1563

    Args:
1564 1565 1566 1567
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1568
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1569
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1570
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1571
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1572
        name(str, optional): Normally there is no need for user to set this property.
1573
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1574 1575

    Returns:
1576
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1577
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
1578
        the value with input :attr:`start`.
Z
zhoukunsheng 已提交
1579

Z
zhoukunsheng 已提交
1580
    Examples:
Z
zhoukunsheng 已提交
1581 1582
        .. code-block:: python

1583 1584 1585
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1586 1587

    """
1588 1589
    if dtype is None:
        dtype = 'float32'
1590 1591 1592
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1593 1594
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1595 1596
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1597
    if not isinstance(start, Variable):
1598 1599
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1600
    if not isinstance(stop, Variable):
1601 1602
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1603
    if not isinstance(num, Variable):
1604 1605
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1606
    if in_dygraph_mode():
1607 1608
        return _C_ops.linspace(tensor_start, tensor_stop, tensor_num, dtype,
                               _current_expected_place())
1609
    if _in_legacy_dygraph():
1610 1611
        return _legacy_C_ops.linspace(tensor_start, tensor_stop, tensor_num,
                                      'dtype', dtype)
1612 1613
    helper = LayerHelper("linspace", **locals())

1614 1615 1616
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1617
    if isinstance(start, Variable):
1618 1619
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1620 1621
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1622

1623
    if isinstance(stop, Variable):
1624 1625
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1626 1627 1628 1629 1630 1631
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1632 1633 1634 1635
    if ((stop_dtype == "float64" or start_dtype == "float64")
            and out_dtype in ["float32", "int32"]) or (
                (stop_dtype == "int64" or start_dtype == "int64")
                and out_dtype == "int32"):
1636 1637 1638 1639
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1640 1641

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1642

1643 1644 1645 1646 1647 1648 1649 1650
    helper.append_op(type='linspace',
                     inputs={
                         'Start': tensor_start,
                         'Stop': tensor_stop,
                         'Num': tensor_num
                     },
                     attrs={'dtype': dtype},
                     outputs={'Out': [out]})
1651 1652
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1653
    return out
1654 1655


Z
zhoukunsheng 已提交
1656 1657
def zeros_like(x, out=None):
    """
1658
    This OP creates a zeros tensor which has identical shape and dtype
Z
zhoukunsheng 已提交
1659 1660 1661
    with `x`.

    Args:
1662 1663 1664 1665 1666 1667
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1668 1669

    Returns:
1670 1671 1672
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1673 1674 1675 1676

    Examples:
        .. code-block:: python

1677
          import paddle.fluid as fluid
1678
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1679 1680
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1681
    """
1682 1683
    check_variable_and_dtype(x, "x",
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
1684
                             'zeros_like')
Z
zhoukunsheng 已提交
1685 1686 1687
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1688 1689 1690
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1691
            'zeros_like')
1692
    helper.append_op(type='fill_any_like',
1693
                     inputs={'X': [x]},
1694 1695 1696 1697
                     attrs={
                         'value': 0,
                         "dtype": x.dtype
                     },
1698
                     outputs={'Out': [out]})
Z
zhoukunsheng 已提交
1699 1700
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1701 1702


1703
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1704
def diag(diagonal):
1705
    r"""
1706 1707 1708
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1709

1710
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1711 1712

    Args:
1713 1714
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1715 1716

    Returns:
1717 1718
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1719 1720 1721 1722 1723 1724

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
1725
          #  [0, 0, 5]
1726 1727 1728

          import paddle.fluid as fluid
          import numpy as np
1729 1730 1731
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1732 1733

    """
1734 1735 1736
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1737 1738 1739 1740 1741 1742 1743
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

1744 1745 1746
    helper.append_op(type='diag',
                     inputs={'Diagonal': [diagonal]},
                     outputs={'Out': [out]})
Z
zhoukunsheng 已提交
1747 1748 1749

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1750 1751


1752 1753 1754 1755 1756
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1757
    """
1758
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere.
1759 1760 1761

    Args:
        num_rows(int): the number of rows in each batch tensor.
1762 1763
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1764 1765
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1766
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1767 1768 1769 1770
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1771 1772

    Returns:
1773
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1774 1775 1776 1777 1778

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1779 1780
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1781
          #  [0, 1, 0]
1782 1783
          #  [0, 0, 1]]

1784
          data = fluid.layers.eye(2, 3, dtype='int32')
1785
          # [[1, 0, 0]
1786
          #  [0, 1, 0]]
1787 1788

          data = fluid.layers.eye(2, batch_shape=[3])
1789 1790 1791 1792 1793
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1794 1795 1796 1797 1798 1799 1800
    def _check_attr(attr, message):
        if isinstance(attr, ((Variable, core.VarBase, core.eager.Tensor))):
            assert len(attr.shape) == 1 and attr.shape[0] in [1, -1]
        elif not isinstance(attr, int) or attr < 0:
            raise TypeError("{} should be a non-negative int.".format(message))

    _check_attr(num_rows, "num_rows")
1801 1802
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1803
    if num_columns is not None:
1804
        _check_attr(num_columns, "num_columns")
1805 1806
    else:
        num_columns = num_rows
1807

R
Ruibiao Chen 已提交
1808
    if in_dygraph_mode():
1809 1810
        out = _C_ops.eye(num_rows, num_columns, dtype,
                         _current_expected_place())
R
Ruibiao Chen 已提交
1811
    elif _in_legacy_dygraph():
1812 1813
        out = _legacy_C_ops.eye('dtype', dtype, 'num_rows', num_rows,
                                'num_columns', num_columns)
1814 1815 1816 1817 1818
    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        out = helper.create_variable_for_type_inference(dtype=dtype)
1819 1820 1821 1822 1823 1824 1825 1826 1827
        helper.append_op(type='eye',
                         inputs={},
                         outputs={'Out': [out]},
                         attrs={
                             'num_rows': num_rows,
                             'num_columns': num_columns,
                             'dtype': dtype
                         },
                         stop_gradient=True)
1828 1829

    if batch_shape is not None:
1830 1831 1832
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
J
Jiabin Yang 已提交
1833
        if _non_static_mode():
1834
            out, _ = _legacy_C_ops.reshape2(out, None, 'shape', re_shape)
1835
            return _legacy_C_ops.expand(out, None, 'expand_times', expand_times)
1836

1837 1838
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1839
        for batch_val in (batch_shape):
1840 1841
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1842 1843 1844 1845 1846 1847

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1848 1849 1850
    return out


Z
zhoukunsheng 已提交
1851 1852 1853 1854
def ones_like(x, out=None):
    """
    **ones_like**

1855
    This function creates a ones tensor which has identical shape and dtype
Z
zhoukunsheng 已提交
1856 1857 1858 1859 1860 1861 1862
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1863
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1874 1875 1876
    check_variable_and_dtype(x, "x",
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
                             'ones_like')
Z
zhoukunsheng 已提交
1877 1878 1879 1880

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1881 1882 1883 1884
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
1885 1886 1887 1888
    helper.append_op(type='fill_any_like',
                     inputs={'X': [x]},
                     attrs={'value': 1.0},
                     outputs={'Out': [out]})
Z
zhoukunsheng 已提交
1889
    return out
Y
yaoxuefeng 已提交
1890 1891 1892 1893 1894 1895


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)