tensor.py 25.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
from ..layer_helper import LayerHelper
18
from ..param_attr import ParamAttr
X
xuwei06 已提交
19 20
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
21
from ..initializer import Constant, force_init_on_cpu
22
from ..core import VarDesc
M
minqiyang 已提交
23
from ..imperative import base as imperative_base
24
from .layer_function_generator import templatedoc
X
xuwei06 已提交
25
import numpy
Y
Yu Yang 已提交
26 27

__all__ = [
L
li099 已提交
28 29 30
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
31 32
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
    'linspace'
Y
Yu Yang 已提交
33 34 35
]


X
xuwei06 已提交
36
def create_tensor(dtype, name=None, persistable=False):
37
    """
Q
update  
qiaolongfei 已提交
38
    Create an variable, which will hold a LoDTensor with data type dtype.
39 40

    Args:
Q
update  
qiaolongfei 已提交
41
        dtype(string): 'float32'|'int32'|..., the data type of the
42
            created tensor.
Q
update  
qiaolongfei 已提交
43
        name(string): The name of the created tensor, if not set,
44
            the name will be a random unique one.
Q
update  
qiaolongfei 已提交
45
        persistable(bool): Set the persistable flag of the create tensor.
46 47 48 49 50 51 52 53 54

    Returns:
        Variable: The tensor variable storing the created tensor.

    Examples:
        .. code-block:: python

          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
55
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
56 57
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
58 59


60 61
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
62
                     name=None,
63 64 65 66
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
Y
yuyang18 已提交
67 68 69 70 71 72
    Create a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

73 74 75 76 77 78 79 80 81 82 83
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
Y
yuyang18 已提交
84 85 86 87 88 89
        the created parameter.

    Examples:
        >>> W = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
        >>> data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
        >>> hidden = fluid.layers.matmul(x=data, y=W)
90
    """
Q
Qiao Longfei 已提交
91
    helper = LayerHelper("create_parameter", **locals())
92
    if attr is None:
X
xuwei06 已提交
93
        attr = ParamAttr(name=name)
94 95 96 97
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


98 99 100 101 102 103 104
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
X
Xin Pan 已提交
105
    Create a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
106

107 108
    Args:
        shape(list[int]): shape of the variable
M
minqiyang 已提交
109
        value(float): the value of the variable. The new created
F
fengjiayi 已提交
110 111
                      variable will be filled with it.
        dtype(string): data type of the variable
M
minqiyang 已提交
112
        persistable(bool): if this variable is persistable.
F
fengjiayi 已提交
113
                           Default: False
M
minqiyang 已提交
114
        force_cpu(bool): force this variable to be on CPU.
F
fengjiayi 已提交
115
                         Default: False
M
minqiyang 已提交
116 117
        name(str|None): The name of the variable. If set to None the variable
                        name will be generated automatically.
F
fengjiayi 已提交
118
                        Default: None
119 120 121

    Returns:
        Variable: the created Variable
F
fengjiayi 已提交
122 123 124 125

    Examples:
        .. code-block:: python

M
minqiyang 已提交
126
            var = fluid.create_global_var(shape=[2,3], value=1.0, dtype='float32',
F
fengjiayi 已提交
127
                                 persistable=True, force_cpu=True, name='new_var')
128
    """
Q
Qiao Longfei 已提交
129 130
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
131 132 133 134 135
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
136 137 138
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
139

Q
Qiao Longfei 已提交
140 141 142
    return var


143
def cast(x, dtype):
Y
Yu Yang 已提交
144
    """
M
minqiyang 已提交
145
    This layer takes in the Variable :attr:`x` with :attr:`x.dtype` and casts
T
tensor-tang 已提交
146 147
    it to the output with :attr:`dtype`. It's meaningless if the output
    dtype equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
148 149 150 151 152 153 154 155 156 157

    Args:
        x (Variable): The input Variable for casting.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output Variable.

    Returns:
        Variable: The output Variable after casting.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
158

Y
Yibing Liu 已提交
159 160
            data = fluid.layers.data(name='x', shape=[13], dtype='float32')
            result = fluid.layers.cast(x=data, dtype='float64')
Y
Yu Yang 已提交
161 162
    """
    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
163
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
164 165 166 167 168 169 170 171 172
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


173
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
174
    """
175 176 177
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
178
    and returns that as the output.
179 180 181 182

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated
183 184
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
185 186 187 188 189 190

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
191

F
fengjiayi 已提交
192
           out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
193 194
    """
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
195
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
Y
Yu Yang 已提交
196 197 198 199 200 201 202 203
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


L
li099 已提交
204 205 206 207 208 209
def tensor_array_to_tensor(input, axis=1, name=None):
    """
    This function concatenates the input LodTensorArray along the axis mentioned
    and returns that as the output.

    A simple example as below:
M
minqiyang 已提交
210

L
li099 已提交
211
    .. code-block:: text
M
minqiyang 已提交
212

L
li099 已提交
213 214 215 216 217 218 219 220
        Given:

        input.data = {[[0.6, 0.1, 0.3],
                       [0.5, 0.3, 0.2]],
                      [[1.3],
                       [1.8]],
                      [[2.3, 2.1],
                       [2.5, 2.4]]}
M
minqiyang 已提交
221

L
li099 已提交
222
        axis = 1
M
minqiyang 已提交
223

L
li099 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
        Then:

        output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                       [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

        output_index.data = [3, 1, 2]

    Args:
        input(list): Input LodTensorArray
        axis(int): Integer axis along which the tensors will be concatenated
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation
        Variable: The input LodTensorArray items' dims along the axis

    Examples:
        .. code-block:: python

           output, output_index = fluid.layers.tensor_array_to_tensor(input=tensor_array)
    """
L
li099 已提交
246
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
247 248 249
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
250
        type='tensor_array_to_tensor',
L
li099 已提交
251 252 253 254 255 256 257
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
        attrs={'axis': axis})
    return out, out_index


258
def sums(input, out=None):
F
fengjiayi 已提交
259 260
    """
    This function performs the sum operation on the input and returns the
K
kavyasrinet 已提交
261 262 263 264 265
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.
F
fengjiayi 已提交
266
        out (Variable|None): Output parameter. The sum result.
F
fengjiayi 已提交
267
                             Default: None
K
kavyasrinet 已提交
268 269

    Returns:
F
fengjiayi 已提交
270
        Variable: the sum of input. The same as the argument 'out'
K
kavyasrinet 已提交
271 272

    Examples:
F
fengjiayi 已提交
273
        .. code-block:: python
K
kavyasrinet 已提交
274 275 276 277 278 279

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          a0 = layers.array_read(array=tmp, i=i)
          i = layers.increment(x=i)
          a1 = layers.array_read(array=tmp, i=i)
Y
Yu Yang 已提交
280 281
          mean_a0 = layers.mean(a0)
          mean_a1 = layers.mean(a1)
K
kavyasrinet 已提交
282
          a_sum = layers.sums(input=[mean_a0, mean_a1])
Y
Yu Yang 已提交
283 284 285
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
286 287
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
T
tensor-tang 已提交
288 289 290 291 292
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
293 294 295
    return out


F
fengjiayi 已提交
296
def assign(input, output=None):
297 298 299 300 301 302
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
303
        input(Variable|numpy.ndarray): The source variable
F
fengjiayi 已提交
304
        output(Variable|None): The destination variable
305 306 307 308 309 310

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
311

312 313 314 315
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
316
    helper = LayerHelper('assign', **locals())
F
fengjiayi 已提交
317
    if output is None:
X
Xin Pan 已提交
318
        output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
xuwei06 已提交
319 320
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
321
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
322 323
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
324
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
325
            value_name = "fp32_values"
326
            values = [float(v) for v in input.flat]
327
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
328
            value_name = "int32_values"
329
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
330 331
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
332 333 334
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
335 336 337 338 339 340 341

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
342
                value_name: values
X
xuwei06 已提交
343 344 345 346
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
347 348 349
    return output


Q
QI JUN 已提交
350
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
351
    """
352 353
    **fill_constant**

354 355
    This function creates a tensor with specified `shape` and `dtype`, and
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
356

357
    The attribute `stop_gradient` of the created tensor is set to True.
358 359

    Args:
360
        shape(tuple|list|None): Shape of the output tensor.
361
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor.
362 363
        value(float): The constant value used to initialize the output tensor.
        out(Variable): The output tensor.
364
        force_cpu(True|False): data should be on CPU if set true.
365 366

    Returns:
367
        Variable: The tensor variable storing the output.
368 369 370 371 372

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
373
    """
374

Y
Yu Yang 已提交
375 376
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
X
Xin Pan 已提交
377
        out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
378 379 380 381
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
382 383 384 385
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
386
            'force_cpu': force_cpu or force_init_on_cpu()
M
minqiyang 已提交
387 388
        },
        stop_gradient=True)
Y
Yu Yang 已提交
389 390 391 392
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
393
@templatedoc()
Y
Yu Yang 已提交
394 395 396 397 398
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
399
                                  output_dim_idx=0):
400
    """
Y
yuyang18 已提交
401
    ${comment}
402 403 404 405

    It also sets *stop_gradient* to True.

    Args:
Y
yuyang18 已提交
406
        input(${input_type}): ${input_comment}.
407

Y
yuyang18 已提交
408
        shape(${shape_type}): ${shape_comment}.
409

Y
yuyang18 已提交
410 411 412
        dtype(${dtype_type}): ${dtype_comment}.

        value(${value_type}): ${value_comment}.
413

Y
yuyang18 已提交
414 415 416 417 418
        input_dim_idx(${input_dim_idx_type}): ${input_dim_idx_comment}.

        output_dim_idx(${output_dim_idx_type}): ${output_dim_idx_comment}.

    Returns:
Y
yuyang18 已提交
419
        ${out_comment}.
H
haowang101779990 已提交
420 421 422 423 424 425 426 427

    Examples:

        .. code-block:: python

             data = fluid.layers.fill_constant_batch_size_like(
                         input=like, shape=[1], value=0, dtype='int64')

428
    """
Y
Yu Yang 已提交
429
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
430
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
446 447 448 449
def argmin(x, axis=0):
    """
    **argmin**

450
    This function computes the indices of the min elements
S
sneaxiy 已提交
451 452 453 454 455 456
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the min elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
457

S
sneaxiy 已提交
458 459
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
460

S
sneaxiy 已提交
461 462
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
463

S
sneaxiy 已提交
464
          out = fluid.layers.argmin(x=in, axis=0)
465
          out = fluid.layers.argmin(x=in, axis=-1)
S
sneaxiy 已提交
466 467
    """
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
468
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
469 470 471 472 473 474 475 476 477 478 479 480
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

481
    This function computes the indices of the max elements
S
sneaxiy 已提交
482 483 484 485 486 487
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the max elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
488

S
sneaxiy 已提交
489 490
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
491

S
sneaxiy 已提交
492 493
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
494

S
sneaxiy 已提交
495
          out = fluid.layers.argmax(x=in, axis=0)
496
          out = fluid.layers.argmax(x=in, axis=-1)
S
sneaxiy 已提交
497 498
    """
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
499
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
500 501 502 503 504 505 506 507
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


508
def argsort(input, axis=-1, name=None):
Y
Yibing Liu 已提交
509
    """
M
minqiyang 已提交
510 511
    Performs sorting on the input Variable along the given axis, and outputs
    sorted data Varibale and its corresponding index Variable with the same
Y
Yibing Liu 已提交
512 513 514
    shape as :attr:`input`.

    .. code-block:: text
M
minqiyang 已提交
515

Y
Yibing Liu 已提交
516 517 518 519 520 521 522 523 524 525 526 527
        For example, the given axis is -1 and the input Variable

            input = [[0.15849551, 0.45865775, 0.8563702 ],
                     [0.12070083, 0.28766365, 0.18776911]],

        after argsort, the sorted Vairable becomes

            out = [[0.15849551, 0.45865775, 0.8563702 ],
                   [0.12070083, 0.18776911, 0.28766365]],

        and the sorted indices along the given axis turn outs to be

M
minqiyang 已提交
528
            indices = [[0, 1, 2],
Y
Yibing Liu 已提交
529 530 531 532
                       [0, 2, 1]]

    Args:
        input(Variable): The input Variable for sorting.
M
minqiyang 已提交
533 534
        axis(int): The axis along which to sort the input Variable. When
                   :attr:`axis` < 0, the actual axis will be :attr:`axis` +
Y
Yibing Liu 已提交
535
                   rank(:attr:`input`). Default -1, the last dimension.
M
minqiyang 已提交
536
        name(str|None): (optional) A name for this layer. If set None, the
537
                   layer will be named automatically.
Y
Yibing Liu 已提交
538 539 540 541 542 543 544 545 546 547 548

    Returns:
        tuple: A tuple of sorted data Variable and the sorted indices.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(data=[2, 3])
            out, indices = fluid.layers.argsort(input, axis=0)
    """
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
549 550 551 552
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
553 554 555 556
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
557 558
                 'Indices': ids},
        attrs={'axis': axis})
Y
Yibing Liu 已提交
559 560 561
    return out, ids


Y
Yang Yu 已提交
562
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
563
    """
564 565 566 567 568 569 570 571
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
C
chengduozh 已提交
572
        shape(tuple|list): Shape of output tensor
573
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
574 575 576 577 578 579 580 581

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
582
    """
C
chengduozh 已提交
583 584 585 586
    assert isinstance(shape, list) or isinstance(
        shape, tuple), "The shape's type should be list or tuple."
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
587 588 589
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
590
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
591
    """
592 593 594 595 596 597 598 599
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
W
wanghaoshuang 已提交
600 601 602
        shape(tuple|list|None): Shape of output tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor.
        force_cpu(bool, default False): Whether to make output stay on CPU.
603 604

    Returns:
W
wanghaoshuang 已提交
605
        Variable: The tensor variable storing the output.
606 607 608 609 610

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
611 612
    """
    return fill_constant(value=0.0, **locals())
613 614


F
fengjiayi 已提交
615 616 617 618 619 620 621 622
def reverse(x, axis):
    """
    **reverse**

    This function reverse the input 'x' along given axises.

    Args:
        x(Vairbale): the input to be reversed.
623 624 625
        axis(int|tuple|list): Axis that along which order of elements
                    is reversed. If it is a tuple or a list, reversing
                    will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638 639

    Returns:
        Variable: The reversed tensor.

    Examples:
        .. code-block:: python

          out = fluid.layers.reverse(x=in, axis=0)
          # or:
          out = fluid.layers.reverse(x=in, axis=[0,1])
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
640
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
641 642
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
643
        inputs={'X': x},
F
fengjiayi 已提交
644 645 646 647 648
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


649 650 651 652 653 654 655
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
656 657 658
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
674 675
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
676
        file_path(str): The file path where variables will be saved.
677
        overwrite(bool): Whether or not cover the given file when it has already
678 679
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
719 720 721 722 723 724 725 726 727 728 729 730 731


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, only a bool value.
    """
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
732
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, only a bool value.
    """
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
748
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
    """
    helper = LayerHelper("isfinite", **locals())
X
Xin Pan 已提交
765
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
766 767
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
Z
zhoukunsheng 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809


def linspace(start, stop, num, dtype):
    """
    Return fixed number of evenly spaced values within a given interval.

    First entry is start, and last entry is stop. In the case when Num is 1, only Start is returned. Like linspace function of numpy.

    Args:
        start(float|Variable): First entry in the sequence. It is a float scalar, or a tensor of shape [1] with type 'float32'|'float64'.
        end(float|Variable): Last entry in the sequence. It is a float scalar, or a tensor of shape [1] with type 'float32'|'float64'.
        num(int|Variable): Number of entry in the sequence. It is an int scalar, or a tensor of shape [1] with type int32.
        dtype(string): 'float32'|'float64', the data type of the output tensor.

    Returns:
        Variable: The tensor variable storing a 1-D tensor. 

    examples:

        .. code-block:: python

             data = fluid.layers.linspace(0, 10, 5, 'float32')

    """
    helper = LayerHelper("linspace", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out