tensor.py 64.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16 17

import numpy
18
import six
19
import warnings
20
from six.moves import reduce
21

Y
Yu Yang 已提交
22
from ..layer_helper import LayerHelper
23
from ..param_attr import ParamAttr
24
from ..initializer import Initializer
25
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard
X
xuwei06 已提交
26
from ..framework import Variable
27
from ..initializer import Constant
28
from ..core import VarDesc
29
from .. import core
30
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
31
from . import utils
32
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
33
from paddle.utils import deprecated
34

35
from .utils import check_shape
Y
Yu Yang 已提交
36 37

__all__ = [
L
li099 已提交
38 39 40
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
41
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
Y
yaoxuefeng 已提交
42
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye', 'triu'
Y
Yu Yang 已提交
43 44 45
]


X
xuwei06 已提交
46
def create_tensor(dtype, name=None, persistable=False):
47
    """
W
wangchaochaohu 已提交
48
    Create a variable, which will hold a Tensor with data type dtype.
49 50

    Args:
W
wangchaochaohu 已提交
51 52 53 54
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
55
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
56
            default value is False.
57 58

    Returns:
W
wangchaochaohu 已提交
59
        Variable: The tensor to be created according to dtype.
60 61 62 63

    Examples:
        .. code-block:: python

64
          import paddle.fluid as fluid
65 66
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
67 68 69 70
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
71
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
72 73
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
74 75


76 77
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
78
                     name=None,
79 80 81 82
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
83
	:api_attr: Static Graph
S
swtkiwi 已提交
84

85
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
86 87 88 89 90
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

91 92 93 94 95 96 97
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
98 99 100
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
101
        default_initializer (Initializer, optional): Initializer for the parameter
102 103

    Returns:
104
        The created parameter.
Y
yuyang18 已提交
105 106

    Examples:
107 108
        .. code-block:: python

109 110 111
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
112
    """
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_parameter')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_parameter')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
132
    helper = LayerHelper("create_parameter", **locals())
133
    if attr is None:
X
xuwei06 已提交
134
        attr = ParamAttr(name=name)
135 136
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
137 138 139
                                   default_initializer)


140 141 142 143 144 145 146
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
147
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
148

149 150 151
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
152
                      variable will be filled with it.
153 154
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
155
                           Default: False
156
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
157
                         Default: False
158 159
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
160 161

    Returns:
162
        Variable: The created Variable
F
fengjiayi 已提交
163 164 165 166

    Examples:
        .. code-block:: python

167 168 169
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
170
                                           persistable=True, force_cpu=True, name='new_var')
171
    """
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_global_var')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_global_var')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_global_var')

Q
Qiao Longfei 已提交
189 190
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
191 192 193 194 195
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
196 197 198
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
199

Q
Qiao Longfei 已提交
200 201 202
    return var


203
def cast(x, dtype):
Y
Yu Yang 已提交
204
    """
S
swtkiwi 已提交
205

206
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
207 208
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
209 210

    Args:
211
        x(Tensor): An input N-D Tensor with data type bool, float16,
212 213
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
214
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
215 216

    Returns:
217
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
218 219 220

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
221

222
            import paddle
223

224 225
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
226
    """
227 228 229 230
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        out = core.ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
231
        return out
232

233 234
    check_variable_and_dtype(
        x, 'x',
235 236
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
237 238 239 240 241 242
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
        'uint8'
    ], 'cast')

    helper = LayerHelper('cast', **locals())
243 244
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
Y
Yu Yang 已提交
245 246 247 248 249 250 251 252 253
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


254
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
255
    """
256
    This OP concatenates the input along the axis.
257 258

    Args:
259 260
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
261 262
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
263
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
264
            as ``axis+R``. Default is 0.
265 266 267
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
268 269

    Returns:
270
        Tensor: A Tensor with the same data type as ``input``.
271 272 273

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
274

275
            import paddle.fluid as fluid
276 277
            import numpy as np

278 279 280 281 282 283
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
284 285 286 287
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
288 289
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
290 291
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
292 293 294 295 296 297 298 299
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
300
    """
301 302

    if in_dygraph_mode():
S
songyouwei 已提交
303 304
        if isinstance(axis, Variable):
            axis = axis.numpy()
305
            axis = axis.item(0)
306
        return core.ops.concat(input, 'axis', axis)
307

308 309 310 311 312 313 314 315 316 317 318
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
319
        input = [input]
320
    check_type(axis, 'axis', (int, Variable), 'concat')
321

322 323 324 325 326
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

327
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
328
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
329 330

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
331 332 333 334
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

335
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
336
                "number of the elements must be 1, but received %s." % len(input)
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
356 357 358
    return out


G
Guo Sheng 已提交
359
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
360
    r"""
G
Guo Sheng 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
411 412

    Args:
G
Guo Sheng 已提交
413 414 415 416 417 418 419
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
420 421

    Returns:
G
Guo Sheng 已提交
422 423 424
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
425 426 427 428

    Examples:
        .. code-block:: python

429
            import paddle.fluid as fluid
430
            import numpy as np
G
Guo Sheng 已提交
431 432 433 434 435 436 437
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
438
    """
439 440 441 442 443 444 445 446 447 448 449
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

450 451 452 453 454
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
455
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
456 457 458
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
459
        type='tensor_array_to_tensor',
L
li099 已提交
460 461 462
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
463 464
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
465 466 467
    return out, out_index


468
def sums(input, out=None):
469
    r"""
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
491 492

    Args:
493 494 495 496
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
497 498

    Returns:
499 500
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
501 502

    Examples:
F
fengjiayi 已提交
503
        .. code-block:: python
K
kavyasrinet 已提交
504

505 506 507 508 509 510 511 512 513
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
514

515 516
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
517
    """
518 519 520 521 522 523 524 525 526
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
527 528
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
529 530
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
531 532 533 534
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
535 536 537 538 539
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
540 541 542
    return out


F
fengjiayi 已提交
543
def assign(input, output=None):
544
    """
S
swtkiwi 已提交
545

546
    The OP copies the :attr:`input` to the :attr:`output`.
547

548
    Parameters:
549
        input (Tensor|numpy.ndarray): A tensor or numpy ndarray, its data type supports
550
            float16, float32, float64, int32 and int64.
551
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
552
            be created as :attr:`output`. Default: None.
553 554

    Returns:
555
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
556 557 558

    Examples:
        .. code-block:: python
559

560
          import paddle
561
          import numpy as np
562
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
563 564 565 566
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
567 568 569
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
570
    """
Y
Yu Yang 已提交
571
    helper = LayerHelper('assign', **locals())
572
    check_type(input, 'input', (Variable, numpy.ndarray), 'assign')
573 574
    is_inplace = True if output is not None else False

X
xuwei06 已提交
575
    if isinstance(input, Variable):
576 577 578 579
        check_dtype(
            input.dtype, 'input',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
            'assign', '(When the type of input in assign is Variable.)')
580 581 582
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
583
        helper.append_op(
R
robot 已提交
584
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
585 586
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
587 588 589 590
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
591
            value_name = "fp32_values"
592
            values = [float(v) for v in input.flat]
593
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
594
            value_name = "int32_values"
595
            values = [int(v) for v in input.flat]
596 597 598
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
599
        else:
600 601
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
602
                "the data type of 'input' must be bool, float32, int32 or int64, but "
603
                "received %s." % convert_dtype(dtype))
604 605 606
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
607 608 609
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
610 611 612 613 614 615
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
616
                value_name: values
X
xuwei06 已提交
617 618
            })

619 620 621
    if is_inplace and in_dygraph_mode():
        output._bump_inplace_version()

Y
Yu Yang 已提交
622 623 624
    return output


625
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
626
    """
S
swtkiwi 已提交
627

W
wangchaochaohu 已提交
628
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
629
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
630

T
tianshuo78520a 已提交
631
    The attribute `stop_gradient` of the created Tensor is set to True.
632 633

    Args:
634 635 636
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
637
        dtype(np.dtype|str): Data type of the output Tensor which can
638
            be float16, float32, float64, uint8, int32, int64.
639 640 641 642 643 644
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
645 646
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
647 648

    Returns:
649
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
650

651 652 653
    Examples:
        .. code-block:: python

654
          import paddle.fluid as fluid
655
          # attr shape is a list which doesn't contain  Tensor.
656 657
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
658
          # data1=[[5], [5]] data2=[[5], [5]]
659

660
          # attr shape is a list which contains Tensor.
661
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
662
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
663

664
          # attr shape is a Tensor.
665
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
666
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
667
          
668
          # attr value is a Tensor.
W
wangchaochaohu 已提交
669 670
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
671
    """
672

W
wangchaochaohu 已提交
673
    attrs = {'force_cpu': force_cpu}
674
    dtype = convert_dtype(dtype)
675
    if not isinstance(value, Variable):
676
        if dtype in ['uint8', 'int64', 'int32']:
W
wangchaochaohu 已提交
677
            attrs['str_value'] = str(int(value))
678
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
679 680
        else:
            attrs['str_value'] = str(float(value))
681
            attrs['value'] = float(value)
682 683

    if in_dygraph_mode():
684
        shape = utils.convert_shape_to_list(shape)
685 686
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
687 688

        if isinstance(value, Variable):
689
            if dtype in ['uint8', 'int64', 'int32']:
690
                attrs['str_value'] = str(int(value.numpy().item(0)))
W
wangchaochaohu 已提交
691
            else:
692
                attrs['str_value'] = str(float(value.numpy().item(0)))
W
wangchaochaohu 已提交
693

694 695
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
696 697
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
698 699 700
        out.stop_gradient = True
        return out

701 702 703
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
704 705
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
706 707
        inputs['ValueTensor'] = value

708
    check_shape(shape)
709 710 711 712
    check_dtype(
        dtype, 'dtype',
        ['bool', 'float16', 'float32', 'float64', 'uint8', 'int32', 'int64'],
        'fill_constant')
713
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
714

715 716 717 718 719
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
720
    utils.get_shape_tensor_inputs(
721
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
722

Y
Yu Yang 已提交
723
    if out is None:
X
Xin Pan 已提交
724
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
725
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
726 727
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
728
        inputs=inputs,
Y
Yu Yang 已提交
729
        outputs={'Out': [out]},
L
liym27 已提交
730
        attrs=attrs,
M
minqiyang 已提交
731
        stop_gradient=True)
Y
Yu Yang 已提交
732 733 734 735
    out.stop_gradient = True
    return out


736
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
737
@templatedoc()
Y
Yu Yang 已提交
738 739 740 741 742
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
743 744
                                  output_dim_idx=0,
                                  force_cpu=False):
745
    """
T
tianshuo78520a 已提交
746
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
747 748 749 750
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
751 752

    Args:
W
wangchaochaohu 已提交
753 754 755 756 757 758 759 760 761 762 763
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
764
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
765 766

    Returns:
W
wangchaochaohu 已提交
767
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
768 769 770 771 772

    Examples:

        .. code-block:: python

773
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
774
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
775
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
776
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
777

778
    """
Y
Yu Yang 已提交
779
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
780
    out = helper.create_variable_for_type_inference(dtype=dtype)
781 782 783 784 785 786
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
787
        'force_cpu': force_cpu
788 789 790 791 792
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
793 794 795 796
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
797
        attrs=attrs)
Y
Yu Yang 已提交
798 799 800 801
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
802 803
def argmin(x, axis=0):
    """
804 805 806
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
807

S
sneaxiy 已提交
808 809
    **argmin**

810 811
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
812 813

    Args:
814 815 816 817 818
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
819

S
sneaxiy 已提交
820
    Returns:
821
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
822

S
sneaxiy 已提交
823 824
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
825

826
            import paddle.fluid as fluid
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
854
    """
855 856 857
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
858
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
859
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
860 861 862 863 864
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
865
    out.stop_gradient = True
S
sneaxiy 已提交
866 867 868 869 870 871 872
    return out


def argmax(x, axis=0):
    """
    **argmax**

873 874
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
875 876

    Args:
877 878 879 880 881
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
882

S
sneaxiy 已提交
883
    Returns:
884
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
885

S
sneaxiy 已提交
886 887
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
888

889
            import paddle.fluid as fluid
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
917
    """
918 919 920
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
921
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
922
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
923 924 925 926 927
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
928
    out.stop_gradient = True
S
sneaxiy 已提交
929 930 931
    return out


932
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
933
    """
934 935 936
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
937

938 939 940
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
941 942

    Args:
943 944 945 946 947
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
948 949 950
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
951 952 953
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
954 955

    Returns:
956 957 958
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
959 960 961 962

    Examples:
        .. code-block:: python

963
            import paddle.fluid as fluid
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1005
    """
1006 1007 1008
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1009
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1010 1011 1012 1013
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1014 1015 1016 1017
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1018
                 'Indices': ids},
1019 1020
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1021 1022 1023
    return out, ids


Y
Yang Yu 已提交
1024
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1025
    """
1026 1027
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1028

1029
    Parameters:
1030
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1031
        dtype (np.dtype|str): Data type of output Tensor, it supports
1032
            bool, float16, float32, float64, int32 and int64.
1033 1034
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1035
            Default: False.
1036 1037

    Returns:
1038
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1039 1040 1041 1042

    Examples:
        .. code-block:: python

1043
          import paddle.fluid as fluid
1044 1045 1046 1047 1048
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1049 1050 1051 1052
    """
    return fill_constant(value=1.0, **locals())


1053
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1054
    """
1055 1056
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1057

1058
    Parameters:
1059
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1060
        dtype (np.dtype|str): Data type of output Tensor, it supports
1061
            bool, float16, float32, float64, int32 and int64.
1062 1063
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1064
            Default: False.
1065 1066
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1067 1068

    Returns:
1069
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1070 1071 1072 1073

    Examples:
        .. code-block:: python

1074
          import paddle.fluid as fluid
1075
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1076 1077 1078 1079
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1080 1081
    """
    return fill_constant(value=0.0, **locals())
1082 1083


F
fengjiayi 已提交
1084 1085
def reverse(x, axis):
    """
1086 1087 1088
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1089

1090
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1091

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1116
    Parameters:
1117 1118
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1119 1120
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1121 1122
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1123 1124

    Returns:
1125
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1126 1127 1128 1129

    Examples:
        .. code-block:: python

1130
          import paddle.fluid as fluid
1131 1132 1133 1134
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1145
    """
1146 1147 1148
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1149 1150 1151
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1152
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1153 1154
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1155
        inputs={'X': x},
F
fengjiayi 已提交
1156 1157 1158 1159 1160
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1161 1162 1163 1164 1165 1166 1167
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1168 1169 1170
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1186 1187
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1188
        file_path(str): The file path where variables will be saved.
1189
        overwrite(bool): Whether or not cover the given file when it has already
1190 1191
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1192 1193 1194 1195 1196 1197 1198 1199

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1200
            import paddle.fluid as fluid
1201 1202 1203 1204 1205 1206 1207
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1220
    Loads a list of variable from a single file.
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1232 1233 1234 1235 1236 1237 1238


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1239
       x (Tensor): The Tensor to be checked.
1240 1241

    Returns:
S
Steffy-zxf 已提交
1242
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1243 1244 1245 1246
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1247 1248
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1249
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1250
          # [False]
1251

1252
    """
S
Steffy-zxf 已提交
1253 1254 1255
    if in_dygraph_mode():
        return core.ops.isinf(x)

1256
    check_type(x, 'x', (Variable), 'has_inf')
1257
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1258
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1259 1260 1261 1262 1263 1264 1265 1266 1267
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1268
       x (Tensor): The Tensor to be checked.
1269 1270

    Returns:
S
Steffy-zxf 已提交
1271
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1272 1273 1274 1275
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1276 1277
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1278
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1279
          # [False]
1280

1281
    """
S
Steffy-zxf 已提交
1282 1283 1284
    if in_dygraph_mode():
        return core.ops.isnan(x)

1285
    check_type(x, 'x', (Variable), 'has_nan')
1286
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1287
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1288 1289 1290 1291 1292 1293
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1294

1295 1296 1297 1298
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1299
        x(Tensor): The Tensor to be checked.
1300 1301

    Returns:
N
Noel 已提交
1302
        Tensor: The tensor storing the output, contains a bool value.
1303 1304 1305 1306 1307

    Examples:

        .. code-block:: python

N
Noel 已提交
1308 1309 1310 1311 1312 1313
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1314
    """
1315 1316
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1317
    helper = LayerHelper("isfinite", **locals())
1318

1319
    out = helper.create_variable_for_type_inference(dtype='bool')
1320 1321
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1322 1323


1324
def range(start, end, step, dtype, name=None):
W
whs 已提交
1325
    """
1326
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1327

1328 1329
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1330

1331 1332
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1333

L
Liufang Sang 已提交
1334
    Parameters:
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1358 1359 1360 1361 1362

    examples:

        .. code-block:: python

1363
            import paddle.fluid as fluid
W
whs 已提交
1364

1365 1366
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1367

1368 1369 1370 1371 1372 1373 1374
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1375

W
whs 已提交
1376
    if not isinstance(start, Variable):
1377
        with device_guard("cpu"):
1378
            start = fill_constant([1], dtype, start, force_cpu=True)
1379 1380
    elif start.dtype != dtype:
        start = cast(start, dtype)
1381

W
whs 已提交
1382
    if not isinstance(end, Variable):
1383
        with device_guard("cpu"):
1384
            end = fill_constant([1], dtype, end, force_cpu=True)
1385 1386
    elif end.dtype != dtype:
        end = cast(end, dtype)
1387

W
whs 已提交
1388
    if not isinstance(step, Variable):
1389
        with device_guard("cpu"):
1390
            step = fill_constant([1], dtype, step, force_cpu=True)
1391 1392
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1393

1394 1395
    if in_dygraph_mode():
        return core.ops.range(start, end, step)
W
whs 已提交
1396

1397 1398 1399 1400
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
1401 1402 1403 1404 1405
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1406
        outputs={'Out': out})
1407
    out.stop_gradient = True
W
whs 已提交
1408
    return out
Z
zhoukunsheng 已提交
1409 1410


1411
def linspace(start, stop, num, dtype=None, name=None):
1412
    r"""
1413
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1414 1415

    Args:
1416 1417 1418 1419
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1420
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1421
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1422
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1423
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1424 1425
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1426 1427

    Returns:
1428
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1429 1430
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1431

Z
zhoukunsheng 已提交
1432
    Examples:
Z
zhoukunsheng 已提交
1433 1434
        .. code-block:: python

1435 1436 1437
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1438 1439

    """
1440 1441
    if dtype is None:
        dtype = 'float32'
1442 1443 1444
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1445 1446
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1447 1448
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1449
    if not isinstance(start, Variable):
1450 1451
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1452
    if not isinstance(stop, Variable):
1453 1454
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1455
    if not isinstance(num, Variable):
1456 1457
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1458
    if in_dygraph_mode():
1459 1460
        return core.ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                                 dtype)
1461 1462 1463

    helper = LayerHelper("linspace", **locals())

1464 1465 1466
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1467
    if isinstance(start, Variable):
1468 1469
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1470 1471
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1472

1473
    if isinstance(stop, Variable):
1474 1475
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1476 1477 1478 1479 1480 1481
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1482 1483 1484 1485 1486 1487 1488 1489
    if ((stop_dtype == "float64" or start_dtype == "float64") and
            out_dtype in ["float32", "int32"]) or ((stop_dtype == "int64" or
                                                    start_dtype == "int64") and
                                                   out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1490 1491

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1492 1493 1494

    helper.append_op(
        type='linspace',
1495 1496 1497 1498
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1499
        outputs={'Out': [out]})
1500 1501
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1502
    return out
1503 1504


Z
zhoukunsheng 已提交
1505 1506
def zeros_like(x, out=None):
    """
1507
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1508 1509 1510
    with `x`.

    Args:
1511 1512 1513 1514 1515 1516
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1517 1518

    Returns:
1519 1520 1521
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1522 1523 1524 1525

    Examples:
        .. code-block:: python

1526
          import paddle.fluid as fluid
1527
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1528 1529
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1530 1531
    """

1532 1533
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1534 1535 1536
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1537 1538 1539
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1540
            'zeros_like')
1541

Z
zhoukunsheng 已提交
1542 1543 1544 1545
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1546 1547


1548
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1549
def diag(diagonal):
1550
    r"""
1551 1552 1553
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1554

1555
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1556 1557

    Args:
1558 1559
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1560 1561

    Returns:
1562 1563
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1564 1565 1566 1567 1568 1569 1570

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1571 1572 1573

          import paddle.fluid as fluid
          import numpy as np
1574 1575 1576
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1577 1578

    """
1579 1580 1581
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1594 1595


1596 1597 1598 1599 1600
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1601
    """
1602
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1603 1604 1605

    Args:
        num_rows(int): the number of rows in each batch tensor.
1606 1607
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1608 1609
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1610
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1611 1612 1613 1614
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1615 1616

    Returns:
1617
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1618 1619 1620 1621 1622

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1623 1624
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1625
          #  [0, 1, 0]
1626 1627
          #  [0, 0, 1]]

1628
          data = fluid.layers.eye(2, 3, dtype='int32')
1629
          # [[1, 0, 0]
1630
          #  [0, 1, 0]]
1631 1632

          data = fluid.layers.eye(2, batch_shape=[3])
1633 1634 1635 1636 1637
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1638 1639
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1640 1641 1642 1643 1644
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666

    if in_dygraph_mode():
        out = core.ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                           num_columns)

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1667 1668

    if batch_shape is not None:
1669 1670 1671 1672 1673
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
        if in_dygraph_mode():
            out = core.ops.reshape(out, 'shape', re_shape)
1674
            return core.ops.expand(out, None, 'expand_times', expand_times)
1675

1676 1677
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1678
        for batch_val in (batch_shape):
1679 1680
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1681 1682 1683 1684 1685 1686

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1687 1688 1689
    return out


Z
zhoukunsheng 已提交
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1702
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1713 1714
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1715 1716 1717 1718

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1719 1720 1721 1722
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1723 1724 1725 1726 1727 1728
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
Y
yaoxuefeng 已提交
1729 1730 1731 1732 1733 1734


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)