tensor.py 71.3 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16

17
import math
18 19 20
import numpy
import warnings

Y
Yu Yang 已提交
21
from ..layer_helper import LayerHelper
22
from ..param_attr import ParamAttr
23
from ..initializer import Initializer
24
from ..framework import _current_expected_place, convert_np_dtype_to_dtype_, _non_static_mode, _varbase_creator, device_guard, _in_legacy_dygraph, in_dygraph_mode, _get_paddle_place
X
xuwei06 已提交
25
from ..framework import Variable
26
from ..initializer import Constant
27
from ..core import VarDesc
28
from .. import core
29
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
30
from . import utils
31
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
32
from paddle.utils import deprecated
33

34
from .utils import check_shape
35
from paddle import _C_ops, _legacy_C_ops
Y
Yu Yang 已提交
36 37

__all__ = [
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    'create_tensor',
    'create_parameter',
    'create_global_var',
    'cast',
    'tensor_array_to_tensor',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'argmin',
    'argmax',
    'argsort',
    'ones',
    'zeros',
    'reverse',
    'has_inf',
    'has_nan',
    'isfinite',
    'range',
    'linspace',
    'zeros_like',
    'ones_like',
    'diag',
    'eye',
    'triu',
Y
Yu Yang 已提交
64 65 66
]


X
xuwei06 已提交
67
def create_tensor(dtype, name=None, persistable=False):
68
    """
W
wangchaochaohu 已提交
69
    Create a variable, which will hold a Tensor with data type dtype.
70 71

    Args:
W
wangchaochaohu 已提交
72 73 74 75
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
76
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
77
            default value is False.
78 79

    Returns:
W
wangchaochaohu 已提交
80
        Variable: The tensor to be created according to dtype.
81 82 83 84

    Examples:
        .. code-block:: python

85
          import paddle.fluid as fluid
86 87
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
88 89 90 91
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
92
    helper = LayerHelper("create_tensor", **locals())
93 94 95
    return helper.create_variable(name=helper.name,
                                  dtype=dtype,
                                  persistable=persistable)
Y
Yu Yang 已提交
96 97


98 99
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
100
                     name=None,
101 102 103 104
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
105
	:api_attr: Static Graph
S
swtkiwi 已提交
106

107
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
108 109 110 111 112
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

113 114 115 116 117 118 119
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
120 121 122
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
123
        default_initializer (Initializer, optional): Initializer for the parameter
124 125

    Returns:
126
        The created parameter.
Y
yuyang18 已提交
127 128

    Examples:
129 130
        .. code-block:: python

131 132 133
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
134
    """
135 136
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
T
tianshuo78520a 已提交
137 138 139
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_parameter')
140 141 142 143 144 145 146 147 148

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
149
    helper = LayerHelper("create_parameter", **locals())
150
    if attr is None:
X
xuwei06 已提交
151
        attr = ParamAttr(name=name)
152
    return helper.create_parameter(attr, shape, convert_dtype(dtype), is_bias,
153 154 155
                                   default_initializer)


156 157 158 159 160 161 162
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
163
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
164

165
    Parameters:
166
        shape (list[int]|tuple[int]): Shape of the variable
167
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
168
                      variable will be filled with it.
169 170
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
171
                           Default: False
172
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
173
                         Default: False
174 175
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
176 177

    Returns:
178
        Variable: The created Variable
F
fengjiayi 已提交
179 180 181 182

    Examples:
        .. code-block:: python

183 184 185
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
186
                                           persistable=True, force_cpu=True, name='new_var')
187
    """
188 189 190
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
T
tianshuo78520a 已提交
191 192 193
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_global_var')
194 195

    check_dtype(dtype, 'dtype', [
196 197 198 199 200 201 202 203 204 205
        'bool',
        'float16',
        'float32',
        'float64',
        'int8',
        'int16',
        'int32',
        'int64',
        'uint8',
        'uint16',
206 207
    ], 'create_global_var')

Q
Qiao Longfei 已提交
208
    helper = LayerHelper("global_var", **locals())
209 210 211 212 213 214 215 216
    var = helper.create_global_variable(dtype=dtype,
                                        shape=shape,
                                        persistable=persistable,
                                        name=name,
                                        stop_gradient=True)
    helper.set_variable_initializer(var,
                                    initializer=Constant(value=float(value),
                                                         force_cpu=force_cpu))
M
minqiyang 已提交
217

Q
Qiao Longfei 已提交
218 219 220
    return var


221
def cast(x, dtype):
Y
Yu Yang 已提交
222
    """
S
swtkiwi 已提交
223

224
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
225 226
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
227 228

    Args:
229
        x(Tensor): An input N-D Tensor with data type bool, float16,
230
            float32, float64, int32, int64, uint8.
231
        dtype(np.dtype|str): Data type of the output:
232
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
233 234

    Returns:
235
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
236 237 238

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
239

240
            import paddle
241

242 243
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
244
    """
H
hong 已提交
245 246 247
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
248
        return _C_ops.cast(x, dtype)
H
hong 已提交
249

J
Jiabin Yang 已提交
250
    if _non_static_mode():
251 252
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
253
        out = _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
254
        return out
255

256
    check_variable_and_dtype(x, 'x', [
257 258
        'bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64',
        'uint8', 'uint16'
259
    ], 'cast')
260
    check_dtype(dtype, 'dtype', [
261 262
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8', 'uint16'
263 264 265
    ], 'cast')

    helper = LayerHelper('cast', **locals())
266 267
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
268 269 270 271 272 273 274
    helper.append_op(type='cast',
                     inputs={'X': [x]},
                     outputs={'Out': [out]},
                     attrs={
                         'in_dtype': x.dtype,
                         'out_dtype': out.dtype
                     })
Y
Yu Yang 已提交
275 276 277
    return out


278
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
279
    """
280
    This OP concatenates the input along the axis.
281 282

    Args:
283 284
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
285 286
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
287
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
288
            as ``axis+R``. Default is 0.
289 290 291
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
292 293

    Returns:
294
        Tensor: A Tensor with the same data type as ``input``.
295 296 297

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
298

299
            import paddle.fluid as fluid
300 301
            import numpy as np

302 303 304 305 306 307
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
308 309 310 311
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
312 313
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
314 315
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
316 317 318 319 320 321 322 323
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
324
    """
325

326 327 328 329 330 331
    if in_dygraph_mode():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
332
        out = _C_ops.concat(input, axis)
333
        return out
334 335

    if _in_legacy_dygraph():
S
songyouwei 已提交
336 337
        if isinstance(axis, Variable):
            axis = axis.numpy()
338
            axis = axis.item(0)
339 340
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
341
        out = _varbase_creator()
342
        _legacy_C_ops.concat(input, out, 'axis', axis)
343
        return out
344

345 346 347 348 349 350 351 352 353
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
354 355
                    "All the Tensors in the input must have the same data type."
                )
356
    else:
357
        input = [input]
358
    check_type(axis, 'axis', (int, Variable), 'concat')
359

360 361 362
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
363 364
            "The data type of axis must be int32 or int64 when axis is a Tensor"
        )
365

366
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
367
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
368 369

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
370 371 372 373
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

374
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
375
                "number of the elements must be 1, but received %s." % len(input)
376
        out_index = helper.create_variable_for_type_inference(dtype="int32")
377 378 379 380 381 382 383 384 385 386
        helper.append_op(type='tensor_array_to_tensor',
                         inputs={'X': input[0]},
                         outputs={
                             'Out': [out],
                             'OutIndex': [out_index]
                         },
                         attrs={
                             'axis': axis,
                             'use_stack': False
                         })
387 388 389 390 391
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
392
        attrs['axis'] = axis
393

394 395 396 397
        helper.append_op(type='concat',
                         inputs=inputs,
                         outputs={'Out': [out]},
                         attrs=attrs)
Y
Yu Yang 已提交
398 399 400
    return out


G
Guo Sheng 已提交
401
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
402
    r"""
G
Guo Sheng 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
453 454

    Args:
G
Guo Sheng 已提交
455 456 457 458 459 460 461
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
462 463

    Returns:
G
Guo Sheng 已提交
464 465 466
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
467 468 469 470

    Examples:
        .. code-block:: python

471
            import paddle.fluid as fluid
472
            import numpy as np
G
Guo Sheng 已提交
473 474 475 476 477 478 479
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
480
    """
J
Jiabin Yang 已提交
481
    if _non_static_mode():
482 483 484 485 486 487 488 489 490 491
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

492 493 494 495 496
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
497
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
498 499
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
500 501 502 503 504 505 506 507 508 509
    helper.append_op(type='tensor_array_to_tensor',
                     inputs={'X': input},
                     outputs={
                         'Out': [out],
                         'OutIndex': [out_index]
                     },
                     attrs={
                         'axis': axis,
                         'use_stack': use_stack
                     })
L
li099 已提交
510 511 512
    return out, out_index


513
def sums(input, out=None):
514
    r"""
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
536 537

    Args:
538 539 540 541
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
542 543

    Returns:
544 545
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
546 547

    Examples:
F
fengjiayi 已提交
548
        .. code-block:: python
K
kavyasrinet 已提交
549

550 551 552 553 554 555 556 557 558
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
559

560 561
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
562
    """
563 564 565 566
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
567
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
568 569
    else:
        check_variable_and_dtype(input, "input", \
570
                ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
571

Y
Yu Yang 已提交
572 573
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
574 575
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
576
    else:
577 578 579 580 581 582 583 584
        check_variable_and_dtype(out, "out",
                                 ['float32', 'float64', 'int32', 'int64'],
                                 'sums')

    helper.append_op(type='sum',
                     inputs={'X': input},
                     outputs={'Out': out},
                     attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
585 586 587
    return out


F
fengjiayi 已提交
588
def assign(input, output=None):
589
    """
S
swtkiwi 已提交
590

591
    The OP copies the :attr:`input` to the :attr:`output`.
592

593
    Parameters:
594 595 596 597
        input (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
598
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
599
            be created as :attr:`output`. Default: None.
600 601

    Returns:
602
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
603 604 605

    Examples:
        .. code-block:: python
606

607
          import paddle
608
          import numpy as np
609
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
610 611 612 613
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
614 615 616
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
617
    """
Y
Yu Yang 已提交
618
    helper = LayerHelper('assign', **locals())
619 620 621
    check_type(input, 'input',
               (Variable, numpy.ndarray, list, tuple, float, int, bool),
               'assign')
622 623
    is_inplace = True if output is not None else False

624 625 626 627
    if numpy.isscalar(input) and not isinstance(input, str):
        input = numpy.array([input])
    elif isinstance(input, (list, tuple)):
        input = numpy.array(input)
628 629
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
J
Jiabin Yang 已提交
630
    # but _non_static_mode()==False under @to_static, which means
631 632 633
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
    if isinstance(input, (Variable, core.VarBase)):
634
        if _non_static_mode():
C
chentianyu03 已提交
635
            if in_dygraph_mode() and output is None:
636
                output = _C_ops.assign(input)
637 638
            elif in_dygraph_mode() and output is not None:
                _C_ops.assign_out_(input, output)
C
chentianyu03 已提交
639 640 641 642 643 644
            else:
                if output is None:
                    if _in_legacy_dygraph():
                        output = core.VarBase()
                    else:
                        output = core.eager.Tensor()
645
                _legacy_C_ops.assign(input, output)
646 647 648 649 650 651 652 653
        else:
            check_dtype(input.dtype, 'input', [
                'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
                'uint8', 'bool'
            ], 'assign', '(When the type of input in assign is Variable.)')
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
654 655 656
            helper.append_op(type='assign',
                             inputs={'X': [input]},
                             outputs={'Out': [output]})
X
xuwei06 已提交
657
    elif isinstance(input, numpy.ndarray):
658 659 660 661 662
        # Not support [var, var, ...] currently.
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
            raise TypeError(
                "Required type(input) numpy.ndarray, but found `list(Variable)` in input."
            )
X
xuwei06 已提交
663
        dtype = convert_np_dtype_to_dtype_(input.dtype)
664 665 666 667 668 669 670 671
        if dtype == VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = VarDesc.VarType.FP32
672 673
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
W
wanghuancoder 已提交
674
            values = [int(v) for v in input.flat]
675
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
676
            value_name = "fp32_values"
677
            values = [float(v) for v in input.flat]
678
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
679
            value_name = "int32_values"
680
            values = [int(v) for v in input.flat]
681 682 683
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
684
        else:
685 686
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
687
                "the data type of 'input' must be bool, float32, int32 or int64, but "
688
                "received %s." % convert_dtype(dtype))
689 690 691
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
692 693 694
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
695 696
            _C_ops.assign_value_(output, list(input.shape), dtype, values,
                                 _current_expected_place())
697 698 699
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
700 701
            _legacy_C_ops.assign_value(output, 'shape', list(input.shape),
                                       'dtype', dtype, value_name, values)
702
        else:
703 704 705
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
706 707 708 709 710 711 712
            helper.append_op(type='assign_value',
                             outputs={'Out': [output]},
                             attrs={
                                 'dtype': dtype,
                                 'shape': list(input.shape),
                                 value_name: values
                             })
X
xuwei06 已提交
713

J
Jiabin Yang 已提交
714
    if is_inplace and _non_static_mode():
715
        output._bump_inplace_version()
716

Y
Yu Yang 已提交
717 718 719
    return output


720
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
721
    """
S
swtkiwi 已提交
722

W
wangchaochaohu 已提交
723
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
724
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
725

T
tianshuo78520a 已提交
726
    The attribute `stop_gradient` of the created Tensor is set to True.
727 728

    Args:
729 730 731
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
732
        dtype(np.dtype|str): Data type of the output Tensor which can
733
            be float16, float32, float64, uint8, int16, int32, int64.
734 735 736 737 738 739
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
740 741
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
742 743

    Returns:
744
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
745

746 747 748
    Examples:
        .. code-block:: python

749
          import paddle.fluid as fluid
750
          # attr shape is a list which doesn't contain  Tensor.
751 752
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
753
          # data1=[[5], [5]] data2=[[5], [5]]
754

755
          # attr shape is a list which contains Tensor.
756
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
757
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
758

759
          # attr shape is a Tensor.
760
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
761
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
762
          
763
          # attr value is a Tensor.
W
wangchaochaohu 已提交
764 765
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
766
    """
767

W
wangchaochaohu 已提交
768
    attrs = {'force_cpu': force_cpu}
769
    dtype = convert_dtype(dtype)
770
    if not isinstance(value, Variable):
771
        if dtype in ['uint8', 'int16', 'int32', 'int64']:
W
wangchaochaohu 已提交
772
            attrs['str_value'] = str(int(value))
773
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
774 775
        else:
            attrs['str_value'] = str(float(value))
776
            attrs['value'] = float(value)
777

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
    if in_dygraph_mode():
        place = _current_expected_place()
        if force_cpu:
            place = core.CPUPlace()
        if isinstance(shape, (list, tuple)):
            for item in shape:
                if not isinstance(item, Variable):
                    shape = list(
                        map(
                            lambda x: x.numpy().flat[0]
                            if isinstance(x, Variable) else x, shape))
                    break

        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

        if out is None:
795
            out = _C_ops.full(shape, float(value), dtype, place)
796 797 798
            out.stop_gradient = True
            return out

799 800
        if out is not None:
            # final state mode is support out is not None.
801
            _C_ops.full_(out, shape, float(value), dtype, place)
802 803
            out.stop_gradient = True
            return out
804

805 806 807 808 809 810 811 812 813 814 815
    if _in_legacy_dygraph():
        shape = utils.convert_shape_to_list(shape)
        if out is None:
            out = _varbase_creator(dtype=dtype)

        if isinstance(value, Variable):
            if dtype in ['uint8', 'int16', 'int32', 'int64']:
                attrs['str_value'] = str(int(value.numpy().item(0)))
            else:
                attrs['str_value'] = str(float(value.numpy().item(0)))

816 817 818
        _legacy_C_ops.fill_constant(out, 'value', float(value), 'force_cpu',
                                    force_cpu, 'dtype', out.dtype, 'str_value',
                                    attrs['str_value'], 'shape', shape)
819 820 821
        out.stop_gradient = True
        return out

822 823 824
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
825 826
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
827 828
        inputs['ValueTensor'] = value

829
    check_shape(shape)
830 831
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'uint8', 'int16', 'int32',
832
        'int64', 'complex64', 'complex128'
833
    ], 'fill_constant')
834
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
835

836 837 838 839 840
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
841 842 843 844
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type='fill_constant')
L
liym27 已提交
845

Y
Yu Yang 已提交
846
    if out is None:
X
Xin Pan 已提交
847
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
848
    attrs['dtype'] = out.dtype
849 850 851 852 853
    helper.append_op(type='fill_constant',
                     inputs=inputs,
                     outputs={'Out': [out]},
                     attrs=attrs,
                     stop_gradient=True)
Y
Yu Yang 已提交
854 855 856 857
    out.stop_gradient = True
    return out


858
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
859
@templatedoc()
Y
Yu Yang 已提交
860 861 862 863 864
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
865 866
                                  output_dim_idx=0,
                                  force_cpu=False):
867
    """
T
tianshuo78520a 已提交
868
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
869 870 871 872
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
873 874

    Args:
W
wangchaochaohu 已提交
875 876 877 878 879 880 881 882 883 884 885
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
886
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
887 888

    Returns:
W
wangchaochaohu 已提交
889
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
890 891 892 893 894

    Examples:

        .. code-block:: python

895
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
896
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
897
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
898
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
899

900
    """
901 902 903 904 905 906 907
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

        place = _current_expected_place()
        if force_cpu:
            place = core.CPUPlace()
908 909
        out = _C_ops.full_batch_size_like(input, shape, dtype, value,
                                          input_dim_idx, output_dim_idx, place)
910 911 912
        out.stop_gradient = True
        return out

Y
Yu Yang 已提交
913
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
914
    out = helper.create_variable_for_type_inference(dtype=dtype)
915 916 917 918 919 920
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
921
        'force_cpu': force_cpu
922 923 924 925 926
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
927 928 929 930
    helper.append_op(type='fill_constant_batch_size_like',
                     inputs={'Input': input},
                     outputs={'Out': [out]},
                     attrs=attrs)
Y
Yu Yang 已提交
931 932 933 934
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
935 936
def argmin(x, axis=0):
    """
937 938 939
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
940

S
sneaxiy 已提交
941 942
    **argmin**

943 944
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
945 946

    Args:
947 948 949 950 951
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
952

S
sneaxiy 已提交
953
    Returns:
954
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
955

S
sneaxiy 已提交
956 957
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
958

959
            import paddle.fluid as fluid
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
987
    """
988 989 990
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
991
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
992
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
993 994 995 996
    helper.append_op(type='arg_min',
                     inputs={'X': x},
                     outputs={'Out': [out]},
                     attrs={'axis': axis})
997
    out.stop_gradient = True
S
sneaxiy 已提交
998 999 1000 1001 1002 1003 1004
    return out


def argmax(x, axis=0):
    """
    **argmax**

1005 1006
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
1007 1008

    Args:
1009 1010 1011 1012 1013
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
1014

S
sneaxiy 已提交
1015
    Returns:
1016
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
1017

S
sneaxiy 已提交
1018 1019
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1020

1021
            import paddle.fluid as fluid
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
1049
    """
1050 1051 1052
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
1053
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
1054
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
1055 1056 1057 1058
    helper.append_op(type='arg_max',
                     inputs={'X': x},
                     outputs={'Out': [out]},
                     attrs={'axis': axis})
1059
    out.stop_gradient = True
S
sneaxiy 已提交
1060 1061 1062
    return out


1063
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
1064
    """
1065 1066 1067
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
1068

1069 1070 1071
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
1072 1073

    Args:
1074 1075 1076 1077 1078
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
1079 1080 1081
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
1082 1083 1084
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
1085 1086

    Returns:
1087 1088 1089
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
1090 1091 1092 1093

    Examples:
        .. code-block:: python

1094
            import paddle.fluid as fluid
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1136
    """
1137 1138 1139
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1140
    helper = LayerHelper("argsort", **locals())
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
    out = helper.create_variable_for_type_inference(dtype=input.dtype,
                                                    stop_gradient=True)
    ids = helper.create_variable_for_type_inference(VarDesc.VarType.INT64,
                                                    stop_gradient=True)
    helper.append_op(type='argsort',
                     inputs={'X': input},
                     outputs={
                         'Out': out,
                         'Indices': ids
                     },
                     attrs={
                         'axis': axis,
                         'descending': descending
                     })
Y
Yibing Liu 已提交
1155 1156 1157
    return out, ids


Y
Yang Yu 已提交
1158
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1159
    """
1160 1161
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1162

1163
    Parameters:
1164
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1165
        dtype (np.dtype|str): Data type of output Tensor, it supports
1166
            bool, float16, float32, float64, int32 and int64.
1167 1168
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1169
            Default: False.
1170 1171

    Returns:
1172
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1173 1174 1175 1176

    Examples:
        .. code-block:: python

1177
          import paddle.fluid as fluid
1178 1179 1180 1181 1182
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1183 1184 1185 1186
    """
    return fill_constant(value=1.0, **locals())


1187
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1188
    """
1189 1190
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1191

1192
    Parameters:
1193
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1194
        dtype (np.dtype|str): Data type of output Tensor, it supports
1195
            bool, float16, float32, float64, int32 and int64.
1196 1197
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1198
            Default: False.
1199 1200
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1201 1202

    Returns:
1203
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1204 1205 1206 1207

    Examples:
        .. code-block:: python

1208
          import paddle.fluid as fluid
1209
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1210 1211 1212 1213
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1214 1215
    """
    return fill_constant(value=0.0, **locals())
1216 1217


F
fengjiayi 已提交
1218 1219
def reverse(x, axis):
    """
1220 1221 1222
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1223

1224
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1225

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1250
    Parameters:
1251 1252
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1253 1254
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1255 1256
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1257 1258

    Returns:
1259
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1260 1261 1262 1263

    Examples:
        .. code-block:: python

1264
          import paddle.fluid as fluid
1265 1266 1267 1268
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1279
    """
1280 1281 1282
    check_variable_and_dtype(x, 'x',
                             ('float32', 'float64', 'int32', 'int64', 'uint8'),
                             'reverse')
1283
    check_type(axis, 'axis', (int, tuple, list, Variable), 'reverse')
F
fengjiayi 已提交
1284 1285
    if isinstance(axis, int):
        axis = [axis]
W
wanghuancoder 已提交
1286
    if in_dygraph_mode():
1287
        return _C_ops.reverse(x, axis)
F
fengjiayi 已提交
1288
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1289
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1290 1291 1292 1293
    helper.append_op(type='reverse',
                     inputs={'X': x},
                     outputs={'Out': [out]},
                     attrs={'axis': axis})
F
fengjiayi 已提交
1294 1295 1296
    return out


1297 1298 1299 1300 1301 1302 1303
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1304 1305 1306
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1307 1308
    """
    helper = LayerHelper("save", **locals())
1309 1310 1311 1312 1313 1314 1315
    helper.append_op(type="save",
                     inputs={"input": x},
                     outputs={},
                     args={
                         "file_path": file_path,
                         "overwrite": overwrite
                     })
1316 1317 1318 1319 1320 1321 1322


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1323 1324
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1325
        file_path(str): The file path where variables will be saved.
1326
        overwrite(bool): Whether or not cover the given file when it has already
1327 1328
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1329 1330 1331 1332 1333 1334 1335 1336

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1337
            import paddle.fluid as fluid
1338 1339 1340 1341 1342 1343 1344
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1345 1346
    """
    helper = LayerHelper("save_combine", **locals())
1347 1348 1349 1350 1351 1352 1353
    helper.append_op(type="save_combine",
                     inputs={"input": x},
                     outputs={},
                     args={
                         "file_path": file_path,
                         "overwrite": overwrite
                     })
1354 1355 1356 1357


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1358
    Loads a list of variable from a single file.
1359 1360 1361 1362 1363 1364

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
1365 1366 1367 1368
    helper.append_op(type="load_combine",
                     inputs={},
                     output={"Out": out},
                     args={"file_path": file_path})
1369 1370 1371 1372 1373 1374 1375


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1376
       x (Tensor): The Tensor to be checked.
1377 1378

    Returns:
S
Steffy-zxf 已提交
1379
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1380 1381 1382 1383
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1384 1385
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1386
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1387
          # [False]
1388

1389
    """
J
Jiabin Yang 已提交
1390
    if _non_static_mode():
1391
        return _legacy_C_ops.isinf(x)
S
Steffy-zxf 已提交
1392

1393
    check_type(x, 'x', (Variable), 'has_inf')
1394
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1395
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1396 1397 1398 1399 1400 1401 1402 1403 1404
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1405
       x (Tensor): The Tensor to be checked.
1406 1407

    Returns:
S
Steffy-zxf 已提交
1408
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1409 1410 1411 1412
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1413 1414
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1415
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1416
          # [False]
1417

1418
    """
J
Jiabin Yang 已提交
1419
    if _non_static_mode():
1420
        return _legacy_C_ops.isnan(x)
S
Steffy-zxf 已提交
1421

1422
    check_type(x, 'x', (Variable), 'has_nan')
1423
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1424
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1425 1426 1427 1428 1429 1430
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1431

1432 1433 1434 1435
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1436
        x(Tensor): The Tensor to be checked.
1437 1438

    Returns:
N
Noel 已提交
1439
        Tensor: The tensor storing the output, contains a bool value.
1440 1441 1442 1443 1444

    Examples:

        .. code-block:: python

N
Noel 已提交
1445 1446 1447 1448 1449 1450
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1451
    """
1452 1453
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1454
    helper = LayerHelper("isfinite", **locals())
1455

1456
    out = helper.create_variable_for_type_inference(dtype='bool')
1457 1458
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1459 1460


1461
def range(start, end, step, dtype, name=None):
W
whs 已提交
1462
    """
1463
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1464

1465 1466
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1467

1468 1469
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1470

L
Liufang Sang 已提交
1471
    Parameters:
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1495 1496 1497 1498 1499

    examples:

        .. code-block:: python

1500
            import paddle.fluid as fluid
W
whs 已提交
1501

1502 1503
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1504

1505 1506 1507 1508 1509
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
1510 1511 1512 1513 1514
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

1515 1516
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1517

W
whs 已提交
1518
    if not isinstance(start, Variable):
1519
        with device_guard("cpu"):
1520
            start = fill_constant([1], dtype, start, force_cpu=True)
1521 1522
    elif start.dtype != dtype:
        start = cast(start, dtype)
1523

W
whs 已提交
1524
    if not isinstance(end, Variable):
1525
        with device_guard("cpu"):
1526
            end = fill_constant([1], dtype, end, force_cpu=True)
1527 1528
    elif end.dtype != dtype:
        end = cast(end, dtype)
1529

W
whs 已提交
1530
    if not isinstance(step, Variable):
1531
        with device_guard("cpu"):
1532
            step = fill_constant([1], dtype, step, force_cpu=True)
1533 1534
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1535

Z
zyfncg 已提交
1536
    if in_dygraph_mode():
1537
        return _C_ops.arange(start, end, step, dtype, _current_expected_place())
Z
zyfncg 已提交
1538

Z
zyfncg 已提交
1539
    if _in_legacy_dygraph():
1540
        out = _legacy_C_ops.range(start, end, step)
J
Jiawei Wang 已提交
1541 1542
        out.stop_gradient = True
        return out
W
whs 已提交
1543

1544 1545 1546
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
1547
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
1548 1549 1550 1551 1552 1553 1554
    helper.append_op(type='range',
                     inputs={
                         'Start': start,
                         'End': end,
                         'Step': step
                     },
                     outputs={'Out': out})
1555
    out.stop_gradient = True
1556 1557
    if out_shape is not None:
        out.desc.set_shape(out_shape)
W
whs 已提交
1558
    return out
Z
zhoukunsheng 已提交
1559 1560


1561
def linspace(start, stop, num, dtype=None, name=None):
1562
    r"""
1563
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1564 1565

    Args:
1566 1567 1568 1569
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1570
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1571
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1572
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1573
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1574 1575
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1576 1577

    Returns:
1578
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1579 1580
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1581

Z
zhoukunsheng 已提交
1582
    Examples:
Z
zhoukunsheng 已提交
1583 1584
        .. code-block:: python

1585 1586 1587
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1588 1589

    """
1590 1591
    if dtype is None:
        dtype = 'float32'
1592 1593 1594
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1595 1596
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1597 1598
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1599
    if not isinstance(start, Variable):
1600 1601
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1602
    if not isinstance(stop, Variable):
1603 1604
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1605
    if not isinstance(num, Variable):
1606 1607
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1608
    if in_dygraph_mode():
1609
        return _C_ops.linspace(tensor_start, tensor_stop, tensor_num, dtype)
1610
    if _in_legacy_dygraph():
1611 1612
        return _legacy_C_ops.linspace(tensor_start, tensor_stop, tensor_num,
                                      'dtype', dtype)
1613 1614
    helper = LayerHelper("linspace", **locals())

1615 1616 1617
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1618
    if isinstance(start, Variable):
1619 1620
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1621 1622
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1623

1624
    if isinstance(stop, Variable):
1625 1626
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1627 1628 1629 1630 1631 1632
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1633 1634 1635 1636
    if ((stop_dtype == "float64" or start_dtype == "float64")
            and out_dtype in ["float32", "int32"]) or (
                (stop_dtype == "int64" or start_dtype == "int64")
                and out_dtype == "int32"):
1637 1638 1639 1640
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1641 1642

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1643

1644 1645 1646 1647 1648 1649 1650 1651
    helper.append_op(type='linspace',
                     inputs={
                         'Start': tensor_start,
                         'Stop': tensor_stop,
                         'Num': tensor_num
                     },
                     attrs={'dtype': dtype},
                     outputs={'Out': [out]})
1652 1653
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1654
    return out
1655 1656


Z
zhoukunsheng 已提交
1657 1658
def zeros_like(x, out=None):
    """
1659
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1660 1661 1662
    with `x`.

    Args:
1663 1664 1665 1666 1667 1668
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1669 1670

    Returns:
1671 1672 1673
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1674 1675 1676 1677

    Examples:
        .. code-block:: python

1678
          import paddle.fluid as fluid
1679
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1680 1681
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1682
    """
1683 1684
    check_variable_and_dtype(x, "x",
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
1685
                             'zeros_like')
Z
zhoukunsheng 已提交
1686 1687 1688
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1689 1690 1691
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1692
            'zeros_like')
1693
    helper.append_op(type='fill_any_like',
1694
                     inputs={'X': [x]},
1695 1696 1697 1698
                     attrs={
                         'value': 0,
                         "dtype": x.dtype
                     },
1699
                     outputs={'Out': [out]})
Z
zhoukunsheng 已提交
1700 1701
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1702 1703


1704
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1705
def diag(diagonal):
1706
    r"""
1707 1708 1709
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1710

1711
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1712 1713

    Args:
1714 1715
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1716 1717

    Returns:
1718 1719
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1720 1721 1722 1723 1724 1725 1726

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1727 1728 1729

          import paddle.fluid as fluid
          import numpy as np
1730 1731 1732
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1733 1734

    """
1735 1736 1737
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1738 1739 1740 1741 1742 1743 1744
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

1745 1746 1747
    helper.append_op(type='diag',
                     inputs={'Diagonal': [diagonal]},
                     outputs={'Out': [out]})
Z
zhoukunsheng 已提交
1748 1749 1750

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1751 1752


1753 1754 1755 1756 1757
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1758
    """
1759
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1760 1761 1762

    Args:
        num_rows(int): the number of rows in each batch tensor.
1763 1764
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1765 1766
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1767
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1768 1769 1770 1771
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1772 1773

    Returns:
1774
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1775 1776 1777 1778 1779

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1780 1781
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1782
          #  [0, 1, 0]
1783 1784
          #  [0, 0, 1]]

1785
          data = fluid.layers.eye(2, 3, dtype='int32')
1786
          # [[1, 0, 0]
1787
          #  [0, 1, 0]]
1788 1789

          data = fluid.layers.eye(2, batch_shape=[3])
1790 1791 1792 1793 1794
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1795 1796 1797 1798 1799 1800 1801
    def _check_attr(attr, message):
        if isinstance(attr, ((Variable, core.VarBase, core.eager.Tensor))):
            assert len(attr.shape) == 1 and attr.shape[0] in [1, -1]
        elif not isinstance(attr, int) or attr < 0:
            raise TypeError("{} should be a non-negative int.".format(message))

    _check_attr(num_rows, "num_rows")
1802 1803
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1804
    if num_columns is not None:
1805
        _check_attr(num_columns, "num_columns")
1806 1807
    else:
        num_columns = num_rows
1808

R
Ruibiao Chen 已提交
1809
    if in_dygraph_mode():
1810 1811
        out = _C_ops.eye(num_rows, num_columns, dtype,
                         _current_expected_place())
R
Ruibiao Chen 已提交
1812
    elif _in_legacy_dygraph():
1813 1814
        out = _legacy_C_ops.eye('dtype', dtype, 'num_rows', num_rows,
                                'num_columns', num_columns)
1815 1816 1817 1818 1819
    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        out = helper.create_variable_for_type_inference(dtype=dtype)
1820 1821 1822 1823 1824 1825 1826 1827 1828
        helper.append_op(type='eye',
                         inputs={},
                         outputs={'Out': [out]},
                         attrs={
                             'num_rows': num_rows,
                             'num_columns': num_columns,
                             'dtype': dtype
                         },
                         stop_gradient=True)
1829 1830

    if batch_shape is not None:
1831 1832 1833
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
J
Jiabin Yang 已提交
1834
        if _non_static_mode():
1835
            out, _ = _legacy_C_ops.reshape2(out, None, 'shape', re_shape)
1836
            return _legacy_C_ops.expand(out, None, 'expand_times', expand_times)
1837

1838 1839
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1840
        for batch_val in (batch_shape):
1841 1842
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1843 1844 1845 1846 1847 1848

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1849 1850 1851
    return out


Z
zhoukunsheng 已提交
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1864
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1875 1876 1877
    check_variable_and_dtype(x, "x",
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
                             'ones_like')
Z
zhoukunsheng 已提交
1878 1879 1880 1881

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1882 1883 1884 1885
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
1886 1887 1888 1889
    helper.append_op(type='fill_any_like',
                     inputs={'X': [x]},
                     attrs={'value': 1.0},
                     outputs={'Out': [out]})
Z
zhoukunsheng 已提交
1890
    return out
Y
yaoxuefeng 已提交
1891 1892 1893 1894 1895 1896


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)