tensor.py 63.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
import six
17
from six.moves import reduce
Y
Yu Yang 已提交
18
from ..layer_helper import LayerHelper
19
from ..param_attr import ParamAttr
20
from ..initializer import Initializer
21
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard
X
xuwei06 已提交
22
from ..framework import Variable
23
from ..initializer import Constant
24
from ..core import VarDesc
25
from .. import core
26
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
27
from . import utils
28
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
29
from paddle.utils import deprecated
X
xuwei06 已提交
30
import numpy
31
import warnings
32
from .utils import check_shape
Y
Yu Yang 已提交
33 34

__all__ = [
L
li099 已提交
35 36 37
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
38
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
39
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye'
Y
Yu Yang 已提交
40 41 42
]


X
xuwei06 已提交
43
def create_tensor(dtype, name=None, persistable=False):
44
    """
W
wangchaochaohu 已提交
45
    Create a variable, which will hold a Tensor with data type dtype.
46 47

    Args:
W
wangchaochaohu 已提交
48 49 50 51
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
52
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
53
            default value is False.
54 55

    Returns:
W
wangchaochaohu 已提交
56
        Variable: The tensor to be created according to dtype.
57 58 59 60

    Examples:
        .. code-block:: python

61
          import paddle.fluid as fluid
62 63
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
64 65 66 67
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
68
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
69 70
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
71 72


73 74
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
75
                     name=None,
76 77 78 79
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
80
	:api_attr: Static Graph
S
swtkiwi 已提交
81

82
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
83 84 85 86 87
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

88 89 90 91 92 93 94
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
95 96 97
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
98
        default_initializer (Initializer, optional): Initializer for the parameter
99 100

    Returns:
101
        The created parameter.
Y
yuyang18 已提交
102 103

    Examples:
104 105
        .. code-block:: python

106
            import paddle.fluid as fluid
107 108
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
109
    """
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_parameter')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_parameter')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
129
    helper = LayerHelper("create_parameter", **locals())
130
    if attr is None:
X
xuwei06 已提交
131
        attr = ParamAttr(name=name)
132 133
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
134 135 136
                                   default_initializer)


137 138 139 140 141 142 143
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
144
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
145

146 147 148
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
149
                      variable will be filled with it.
150 151
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
152
                           Default: False
153
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
154
                         Default: False
155 156
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
157 158

    Returns:
159
        Variable: The created Variable
F
fengjiayi 已提交
160 161 162 163

    Examples:
        .. code-block:: python

164
            import paddle.fluid as fluid
165 166
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
167
                                           persistable=True, force_cpu=True, name='new_var')
168
    """
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_global_var')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_global_var')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_global_var')

Q
Qiao Longfei 已提交
186 187
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
188 189 190 191 192
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
193 194 195
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
196

Q
Qiao Longfei 已提交
197 198 199
    return var


200
def cast(x, dtype):
Y
Yu Yang 已提交
201
    """
202 203 204
	:alias_main: paddle.cast
	:alias: paddle.cast,paddle.tensor.cast,paddle.tensor.manipulation.cast
	:old_api: paddle.fluid.layers.cast
S
swtkiwi 已提交
205

206 207 208
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
209 210

    Args:
211 212 213
        x(Variable): An input N-D Tensor with data type bool, float16,
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
214
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
215 216

    Returns:
217
        Variable: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
218 219 220

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
221

222
            import paddle.fluid as fluid
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
            import numpy as np

            place = fluid.core.CPUPlace()

            x_lod = fluid.data(name="x", shape=[2,2], lod_level=0)
            cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8")
            cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            x_i_lod = fluid.core.LoDTensor()
            x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            x_i_lod.set_recursive_sequence_lengths([[0,2]])
            res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False)
            res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False)
            print(np.array(res1[0]), np.array(res1[0]).dtype)
            # [[  1 254]
            #  [  0   4]] uint8
            print(np.array(res2[0]), np.array(res2[0]).dtype)
            # [[ 1 -2]
            #  [ 0  4]] int32
Y
Yu Yang 已提交
245
    """
246 247
    check_variable_and_dtype(
        x, 'x',
248 249
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
250 251 252 253 254 255
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
        'uint8'
    ], 'cast')

    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
256
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
257 258 259 260 261 262 263 264 265
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


266
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
267
    """
268
    This OP concatenates the input along the axis.
269 270

    Args:
271 272
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
273 274
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
275
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
276
            as ``axis+R``. Default is 0.
277 278 279
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
280 281

    Returns:
282
        Tensor: A Tensor with the same data type as ``input``.
283 284 285

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
286

287
            import paddle.fluid as fluid
288 289
            import numpy as np

290 291 292 293 294 295
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
296 297 298 299
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
300 301
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
302 303
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
304 305 306 307 308 309 310 311
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
312
    """
313 314

    if in_dygraph_mode():
S
songyouwei 已提交
315 316
        if isinstance(axis, Variable):
            axis = axis.numpy()
317
            axis = axis.item(0)
318
        return core.ops.concat(input, 'axis', axis)
319

320 321 322 323 324 325 326 327 328 329 330
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
331
        input = [input]
332
    check_type(axis, 'axis', (int, Variable), 'concat')
333

334 335 336 337 338
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

339
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
340
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
341 342 343

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
344
                "number of the elements must be 1, but received %s." % len(input)
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
364 365 366
    return out


G
Guo Sheng 已提交
367
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
L
li099 已提交
368
    """
G
Guo Sheng 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
419 420

    Args:
G
Guo Sheng 已提交
421 422 423 424 425 426 427
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
428 429

    Returns:
G
Guo Sheng 已提交
430 431 432
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
433 434 435 436

    Examples:
        .. code-block:: python

437
            import paddle.fluid as fluid
438
            import numpy as np
G
Guo Sheng 已提交
439 440 441 442 443 444 445
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
446
    """
447 448 449 450 451 452 453 454 455 456 457
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

458 459 460 461 462
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
463
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
464 465 466
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
467
        type='tensor_array_to_tensor',
L
li099 已提交
468 469 470
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
471 472
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
473 474 475
    return out, out_index


476
def sums(input, out=None):
F
fengjiayi 已提交
477
    """
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
499 500

    Args:
501 502 503 504
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
505 506

    Returns:
507 508
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
509 510

    Examples:
F
fengjiayi 已提交
511
        .. code-block:: python
K
kavyasrinet 已提交
512

513 514 515 516 517 518 519 520 521
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
522

523 524
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
525
    """
526 527 528 529 530 531 532 533 534
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
535 536
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
537 538
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
539 540 541 542
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
543 544 545 546 547
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
548 549 550
    return out


F
fengjiayi 已提交
551
def assign(input, output=None):
552
    """
553 554 555
	:alias_main: paddle.nn.functional.assign
	:alias: paddle.nn.functional.assign,paddle.nn.functional.common.assign
	:old_api: paddle.fluid.layers.assign
S
swtkiwi 已提交
556

557
    The OP copies the :attr:`input` to the :attr:`output`.
558

559 560
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
561
            float16, float32, float64, int32 and int64.
562 563
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
564 565

    Returns:
566
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
567 568 569

    Examples:
        .. code-block:: python
570

571
          import paddle.fluid as fluid
572 573 574 575 576 577
          import numpy as np
          data = fluid.layers.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result1 = fluid.layers.create_tensor(dtype='float64')
          fluid.layers.assign(data, result1) # result1 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result2 = fluid.layers.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = fluid.layers.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
578
    """
Y
Yu Yang 已提交
579
    helper = LayerHelper('assign', **locals())
580
    check_type(input, 'input', (Variable, numpy.ndarray), 'assign')
X
xuwei06 已提交
581
    if isinstance(input, Variable):
582 583 584 585
        check_dtype(
            input.dtype, 'input',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
            'assign', '(When the type of input in assign is Variable.)')
586 587 588
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
589
        helper.append_op(
R
robot 已提交
590
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
591 592
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
593 594 595 596
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
597
            value_name = "fp32_values"
598
            values = [float(v) for v in input.flat]
599
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
600
            value_name = "int32_values"
601
            values = [int(v) for v in input.flat]
602 603 604
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
605
        else:
606 607
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
608
                "the data type of 'input' must be bool, float32, int32 or int64, but "
609
                "received %s." % convert_dtype(dtype))
610 611 612
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
613 614 615
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
616 617 618 619 620 621
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
622
                value_name: values
X
xuwei06 已提交
623 624
            })

Y
Yu Yang 已提交
625 626 627
    return output


628
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
629
    """
630
	:alias_main: paddle.fill_constant
631
	:alias: paddle.tensor.fill_constant, paddle.tensor.creation.fill_constant
S
swtkiwi 已提交
632

W
wangchaochaohu 已提交
633
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
634
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
635

T
tianshuo78520a 已提交
636
    The attribute `stop_gradient` of the created Tensor is set to True.
637 638

    Args:
639 640 641
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
642
        dtype(np.dtype|str): Data type of the output Tensor which can
W
wangchaochaohu 已提交
643
            be float16, float32, float64, int32, int64.
644 645 646 647 648 649
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
650 651
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
652 653

    Returns:
654
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
655

656 657 658
    Examples:
        .. code-block:: python

659
          import paddle.fluid as fluid
660
          # attr shape is a list which doesn't contain  Tensor.
661 662
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
663
          # data1=[[5], [5]] data2=[[5], [5]]
664

665
          # attr shape is a list which contains Tensor.
666
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
667
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
668

669
          # attr shape is a Tensor.
670
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
671
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
672
          
673
          # attr value is a Tensor.
W
wangchaochaohu 已提交
674 675
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
676
    """
677

W
wangchaochaohu 已提交
678
    attrs = {'force_cpu': force_cpu}
679
    dtype = convert_dtype(dtype)
680
    if not isinstance(value, Variable):
681
        if dtype in ['int64', 'int32']:
W
wangchaochaohu 已提交
682 683 684
            attrs['str_value'] = str(int(value))
        else:
            attrs['str_value'] = str(float(value))
685 686

    if in_dygraph_mode():
687
        shape = utils.convert_shape_to_list(shape)
688 689
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
690 691

        if isinstance(value, Variable):
692
            if dtype in ['int64', 'int32']:
693
                attrs['str_value'] = str(int(value.numpy().item(0)))
W
wangchaochaohu 已提交
694
            else:
695
                attrs['str_value'] = str(float(value.numpy().item(0)))
W
wangchaochaohu 已提交
696

697 698
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
699 700
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
701 702 703
        out.stop_gradient = True
        return out

704 705 706
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
707 708
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
709 710
        inputs['ValueTensor'] = value

711
    check_shape(shape)
712
    check_dtype(dtype, 'dtype',
713 714 715
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_constant')
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
716

717 718 719 720 721
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
722
    utils.get_shape_tensor_inputs(
723
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
724

Y
Yu Yang 已提交
725
    if out is None:
X
Xin Pan 已提交
726
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
727
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
728 729
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
730
        inputs=inputs,
Y
Yu Yang 已提交
731
        outputs={'Out': [out]},
L
liym27 已提交
732
        attrs=attrs,
M
minqiyang 已提交
733
        stop_gradient=True)
Y
Yu Yang 已提交
734 735 736 737
    out.stop_gradient = True
    return out


738
@deprecated(since='1.8.0', update_to="paddle.fill_constant")
Y
yuyang18 已提交
739
@templatedoc()
Y
Yu Yang 已提交
740 741 742 743 744
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
745 746
                                  output_dim_idx=0,
                                  force_cpu=False):
747
    """
T
tianshuo78520a 已提交
748
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
749 750 751 752
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
753 754

    Args:
W
wangchaochaohu 已提交
755 756 757 758 759 760 761 762 763 764 765
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
766
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
767 768

    Returns:
W
wangchaochaohu 已提交
769
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
770 771 772 773 774

    Examples:

        .. code-block:: python

775
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
776
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
777
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
778
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
779

780
    """
Y
Yu Yang 已提交
781
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
782
    out = helper.create_variable_for_type_inference(dtype=dtype)
783 784 785 786 787 788
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
789
        'force_cpu': force_cpu
790 791 792 793 794
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
795 796 797 798
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
799
        attrs=attrs)
Y
Yu Yang 已提交
800 801 802 803
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
804 805
def argmin(x, axis=0):
    """
806 807 808
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
809

S
sneaxiy 已提交
810 811
    **argmin**

812 813
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
814 815

    Args:
816 817 818 819 820
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
821

S
sneaxiy 已提交
822
    Returns:
823
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
824

S
sneaxiy 已提交
825 826
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
827

828
            import paddle.fluid as fluid
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
856
    """
857 858 859
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
860
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
861
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
862 863 864 865 866
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
867
    out.stop_gradient = True
S
sneaxiy 已提交
868 869 870 871 872 873 874
    return out


def argmax(x, axis=0):
    """
    **argmax**

875 876
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
877 878

    Args:
879 880 881 882 883
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
884

S
sneaxiy 已提交
885
    Returns:
886
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
887

S
sneaxiy 已提交
888 889
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
890

891
            import paddle.fluid as fluid
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
919
    """
920 921 922
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
923
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
924
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
925 926 927 928 929
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
930
    out.stop_gradient = True
S
sneaxiy 已提交
931 932 933
    return out


934
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
935
    """
936 937 938
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
939

940 941 942
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
943 944

    Args:
945 946 947 948 949
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
950 951 952
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
953 954 955
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
956 957

    Returns:
958 959 960
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
961 962 963 964

    Examples:
        .. code-block:: python

965
            import paddle.fluid as fluid
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1007
    """
1008 1009 1010
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1011
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1012 1013 1014 1015
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1016 1017 1018 1019
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1020
                 'Indices': ids},
1021 1022
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1023 1024 1025
    return out, ids


Y
Yang Yu 已提交
1026
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1027
    """
1028 1029
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1030

1031
    Parameters:
1032
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1033
        dtype (np.dtype|str): Data type of output Tensor, it supports
1034
            bool, float16, float32, float64, int32 and int64.
1035 1036
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1037
            Default: False.
1038 1039

    Returns:
1040
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1041 1042 1043 1044

    Examples:
        .. code-block:: python

1045
          import paddle.fluid as fluid
1046 1047 1048 1049 1050
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1051 1052 1053 1054
    """
    return fill_constant(value=1.0, **locals())


1055
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1056
    """
1057 1058
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1059

1060
    Parameters:
1061
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1062
        dtype (np.dtype|str): Data type of output Tensor, it supports
1063
            bool, float16, float32, float64, int32 and int64.
1064 1065
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1066
            Default: False.
1067 1068
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1069 1070

    Returns:
1071
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1072 1073 1074 1075

    Examples:
        .. code-block:: python

1076
          import paddle.fluid as fluid
1077
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1078 1079 1080 1081
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1082 1083
    """
    return fill_constant(value=0.0, **locals())
1084 1085


F
fengjiayi 已提交
1086 1087
def reverse(x, axis):
    """
1088 1089 1090
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1091

1092
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1093

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1118
    Parameters:
1119 1120
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1121 1122
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1123 1124
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1125 1126

    Returns:
1127
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1128 1129 1130 1131

    Examples:
        .. code-block:: python

1132
          import paddle.fluid as fluid
1133 1134 1135 1136
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1147
    """
1148 1149 1150
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1151 1152 1153
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1154
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1155 1156
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1157
        inputs={'X': x},
F
fengjiayi 已提交
1158 1159 1160 1161 1162
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1163 1164 1165 1166 1167 1168 1169
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1170 1171 1172
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1188 1189
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1190
        file_path(str): The file path where variables will be saved.
1191
        overwrite(bool): Whether or not cover the given file when it has already
1192 1193
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1194 1195 1196 1197 1198 1199 1200 1201

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1202
            import paddle.fluid as fluid
1203 1204 1205 1206 1207 1208 1209
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1222
    Loads a list of variable from a single file.
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1234 1235 1236 1237


def has_inf(x):
    """
1238 1239 1240
	:alias_main: paddle.has_inf
	:alias: paddle.has_inf,paddle.tensor.has_inf,paddle.tensor.search.has_inf
	:old_api: paddle.fluid.layers.has_inf
S
swtkiwi 已提交
1241

1242 1243 1244
    Test if any of x contains an infinity number

    Args:
L
liu zhengxi 已提交
1245
       x (Variable): The Tensor/LoDTensor to be checked.
1246 1247

    Returns:
L
liu zhengxi 已提交
1248
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1249 1250 1251 1252 1253 1254 1255 1256
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

1257
    """
1258
    check_type(x, 'x', (Variable), 'has_inf')
1259
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1260
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1261 1262 1263 1264 1265 1266
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
1267 1268 1269
	:alias_main: paddle.has_nan
	:alias: paddle.has_nan,paddle.tensor.has_nan,paddle.tensor.search.has_nan
	:old_api: paddle.fluid.layers.has_nan
S
swtkiwi 已提交
1270

1271 1272 1273
    Test if any of x contains a NAN

    Args:
L
liu zhengxi 已提交
1274
       x (Variable): The Tensor/LoDTensor to be checked.
1275 1276

    Returns:
L
liu zhengxi 已提交
1277
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1278 1279 1280 1281 1282 1283 1284 1285
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

1286
    """
1287
    check_type(x, 'x', (Variable), 'has_nan')
1288
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1289
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1290 1291 1292 1293 1294 1295
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
1296 1297 1298
	:alias_main: paddle.isfinite
	:alias: paddle.isfinite,paddle.tensor.isfinite,paddle.tensor.logic.isfinite
	:old_api: paddle.fluid.layers.isfinite
S
swtkiwi 已提交
1299

1300 1301 1302 1303 1304 1305 1306 1307
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
1308 1309 1310 1311 1312

    Examples:

        .. code-block:: python

1313
            import paddle.fluid as fluid
1314 1315 1316
            var = fluid.layers.data(name="data",
                                    shape=(4, 6),
                                    dtype="float32")
石晓伟 已提交
1317
            out = fluid.layers.isfinite(var)
1318
    """
1319 1320
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1321
    helper = LayerHelper("isfinite", **locals())
1322

1323
    out = helper.create_variable_for_type_inference(dtype='bool')
1324 1325
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1326 1327


1328
def range(start, end, step, dtype, name=None):
W
whs 已提交
1329
    """
1330
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1331

1332 1333
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1334

1335 1336
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1337

L
Liufang Sang 已提交
1338
    Parameters:
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1362 1363 1364 1365 1366

    examples:

        .. code-block:: python

1367
            import paddle.fluid as fluid
W
whs 已提交
1368

1369 1370
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1371

1372 1373 1374 1375 1376 1377 1378
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1379

W
whs 已提交
1380
    if not isinstance(start, Variable):
1381 1382
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start)
1383 1384
    elif start.dtype != dtype:
        start = cast(start, dtype)
1385

W
whs 已提交
1386
    if not isinstance(end, Variable):
1387 1388
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end)
1389 1390
    elif end.dtype != dtype:
        end = cast(end, dtype)
1391

W
whs 已提交
1392
    if not isinstance(step, Variable):
1393 1394
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step)
1395 1396
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1397

1398 1399
    if in_dygraph_mode():
        return core.ops.range(start, end, step)
W
whs 已提交
1400

1401 1402 1403 1404
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
1405 1406 1407 1408 1409
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1410
        outputs={'Out': out})
1411
    out.stop_gradient = True
W
whs 已提交
1412
    return out
Z
zhoukunsheng 已提交
1413 1414


1415
def linspace(start, stop, num, dtype=None, name=None):
Z
zhoukunsheng 已提交
1416
    """
1417
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1418 1419

    Args:
1420 1421 1422 1423
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1424
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1425
            or a Tensor of shape [1] with data type int32 or int64.
W
wangchaochaohu 已提交
1426
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1427
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1428 1429
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1430 1431

    Returns:
1432
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1433 1434
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1435

Z
zhoukunsheng 已提交
1436
    Examples:
Z
zhoukunsheng 已提交
1437 1438
        .. code-block:: python

1439
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
1440 1441
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1442 1443

    """
1444 1445
    if dtype is None:
        dtype = 'float32'
1446 1447 1448
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1449 1450
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1451 1452
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1453
    if not isinstance(start, Variable):
1454
        tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1455
    if not isinstance(stop, Variable):
1456
        tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1457
    if not isinstance(num, Variable):
1458
        tensor_num = fill_constant([1], 'int32', num)
1459
    if in_dygraph_mode():
1460 1461
        return core.ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                                 dtype)
1462 1463 1464

    helper = LayerHelper("linspace", **locals())

1465 1466 1467 1468
    if isinstance(start, Variable):
        check_dtype(start.dtype, 'start', (convert_dtype(dtype)), 'linspace')
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1469

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
    if isinstance(stop, Variable):
        check_dtype(stop.dtype, 'stop', (convert_dtype(dtype)), 'linspace')
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1480 1481 1482

    helper.append_op(
        type='linspace',
1483 1484 1485 1486
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1487 1488
        outputs={'Out': [out]})
    return out
1489 1490


Z
zhoukunsheng 已提交
1491 1492
def zeros_like(x, out=None):
    """
1493
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1494 1495 1496
    with `x`.

    Args:
1497 1498 1499 1500 1501 1502
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1503 1504

    Returns:
1505 1506 1507
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1508 1509 1510 1511

    Examples:
        .. code-block:: python

1512
          import paddle.fluid as fluid
1513
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1514 1515
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1516 1517
    """

1518 1519
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1520 1521 1522
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1523 1524 1525
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1526
            'zeros_like')
1527

Z
zhoukunsheng 已提交
1528 1529 1530 1531
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1532 1533


1534
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1535 1536
def diag(diagonal):
    """
1537 1538 1539
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1540

1541
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1542 1543

    Args:
1544 1545
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1546 1547

    Returns:
1548 1549
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1550 1551 1552 1553 1554 1555 1556

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1557 1558 1559

          import paddle.fluid as fluid
          import numpy as np
1560 1561 1562
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1563 1564

    """
1565 1566 1567
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1580 1581


1582 1583 1584 1585 1586
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1587
    """
1588
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1589 1590 1591

    Args:
        num_rows(int): the number of rows in each batch tensor.
1592 1593
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1594 1595
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1596
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1597 1598 1599 1600
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1601 1602

    Returns:
1603
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1604 1605 1606 1607 1608

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1609 1610
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1611
          #  [0, 1, 0]
1612 1613
          #  [0, 0, 1]]

1614
          data = fluid.layers.eye(2, 3, dtype='int32')
1615
          # [[1, 0, 0]
1616
          #  [0, 1, 0]]
1617 1618

          data = fluid.layers.eye(2, batch_shape=[3])
1619 1620 1621 1622 1623
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1624 1625
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1626 1627 1628 1629 1630
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652

    if in_dygraph_mode():
        out = core.ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                           num_columns)

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1653 1654

    if batch_shape is not None:
1655 1656 1657 1658 1659 1660 1661
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
        if in_dygraph_mode():
            out = core.ops.reshape(out, 'shape', re_shape)
            return core.ops.expand(out, 'expand_times', expand_times)

1662 1663
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1664
        for batch_val in (batch_shape):
1665 1666
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1667 1668 1669 1670 1671 1672

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1673 1674 1675
    return out


Z
zhoukunsheng 已提交
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1688
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1699 1700
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1701 1702 1703 1704

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1705 1706 1707 1708
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1709 1710 1711 1712 1713 1714
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out