tensor.py 64.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
import six
17
from six.moves import reduce
Y
Yu Yang 已提交
18
from ..layer_helper import LayerHelper
19
from ..param_attr import ParamAttr
20
from ..initializer import Initializer
21
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator
X
xuwei06 已提交
22
from ..framework import Variable
23
from ..initializer import Constant
24
from ..core import VarDesc
25
from .. import core
26
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
27
from . import utils
28
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
X
xuwei06 已提交
29
import numpy
30
import warnings
Y
Yu Yang 已提交
31 32

__all__ = [
L
li099 已提交
33 34 35
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
36
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
37
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye'
Y
Yu Yang 已提交
38 39 40
]


X
xuwei06 已提交
41
def create_tensor(dtype, name=None, persistable=False):
42
    """
W
wangchaochaohu 已提交
43
    Create a variable, which will hold a Tensor with data type dtype.
44 45

    Args:
W
wangchaochaohu 已提交
46 47 48 49
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
50
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
51
            default value is False.
52 53

    Returns:
W
wangchaochaohu 已提交
54
        Variable: The tensor to be created according to dtype.
55 56 57 58

    Examples:
        .. code-block:: python

59
          import paddle.fluid as fluid
60 61
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
62 63 64 65
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
66
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
67 68
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
69 70


71 72
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
73
                     name=None,
74 75 76 77
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
78
	:api_attr: Static Graph
S
swtkiwi 已提交
79

80
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
81 82 83 84 85
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

86 87 88 89 90 91 92
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
93 94 95
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
96
        default_initializer (Initializer, optional): Initializer for the parameter
97 98

    Returns:
99
        The created parameter.
Y
yuyang18 已提交
100 101

    Examples:
102 103
        .. code-block:: python

104
            import paddle.fluid as fluid
105 106
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
107
    """
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_parameter')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_parameter')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
127
    helper = LayerHelper("create_parameter", **locals())
128
    if attr is None:
X
xuwei06 已提交
129
        attr = ParamAttr(name=name)
130 131
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
132 133 134
                                   default_initializer)


135 136 137 138 139 140 141
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
142
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
143

144 145 146
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
147
                      variable will be filled with it.
148 149
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
150
                           Default: False
151
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
152
                         Default: False
153 154
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
155 156

    Returns:
157
        Variable: The created Variable
F
fengjiayi 已提交
158 159 160 161

    Examples:
        .. code-block:: python

162
            import paddle.fluid as fluid
163 164
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
165
                                           persistable=True, force_cpu=True, name='new_var')
166
    """
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_global_var')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_global_var')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_global_var')

Q
Qiao Longfei 已提交
184 185
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
186 187 188 189 190
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
191 192 193
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
194

Q
Qiao Longfei 已提交
195 196 197
    return var


198
def cast(x, dtype):
Y
Yu Yang 已提交
199
    """
200 201 202
	:alias_main: paddle.cast
	:alias: paddle.cast,paddle.tensor.cast,paddle.tensor.manipulation.cast
	:old_api: paddle.fluid.layers.cast
S
swtkiwi 已提交
203

204 205 206
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
207 208

    Args:
209 210 211
        x(Variable): An input N-D Tensor with data type bool, float16,
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
212
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
213 214

    Returns:
215
        Variable: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
216 217 218

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
219

220
            import paddle.fluid as fluid
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
            import numpy as np

            place = fluid.core.CPUPlace()

            x_lod = fluid.data(name="x", shape=[2,2], lod_level=0)
            cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8")
            cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            x_i_lod = fluid.core.LoDTensor()
            x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            x_i_lod.set_recursive_sequence_lengths([[0,2]])
            res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False)
            res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False)
            print(np.array(res1[0]), np.array(res1[0]).dtype)
            # [[  1 254]
            #  [  0   4]] uint8
            print(np.array(res2[0]), np.array(res2[0]).dtype)
            # [[ 1 -2]
            #  [ 0  4]] int32
Y
Yu Yang 已提交
243
    """
244 245
    check_variable_and_dtype(
        x, 'x',
246 247
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
248 249 250 251 252 253
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
        'uint8'
    ], 'cast')

    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
254
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
255 256 257 258 259 260 261 262 263
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


264
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
265
    """
266
    This OP concatenates the input along the axis.
267 268

    Args:
269 270
        input(list): List of input Tensors with data type float16, float32, float64, int32,
            int64. All the Tensors in ``input`` must have the same data type.
271 272
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
273
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
274
            as ``axis+R``. Default is 0.
275 276 277
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
278
    Raises:
279 280
        TypeError: The dtype of ``input`` must be one of float16, float32, float64, int32 and int64. 
        TypeError: The ``axis`` must be int or Tensor. The dtype of ``axis`` must be int32 or int64 when it's a Tensor.
281
        TypeError: All the Tensors in ``input`` must have the same data type.
282 283

    Returns:
284
        Tensor: A Tensor with the same data type as ``input``.
285 286 287

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
288

289
            import paddle.fluid as fluid
290 291 292 293 294 295 296 297 298 299 300 301
            import numpy as np

            in1 = np.array([[1,2,3],
                            [4,5,6]])
            in2 = np.array([[11,12,13],
                            [14,15,16]])
            in3 = np.array([[21,22],
                            [23,24]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
302 303
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
304 305 306 307 308 309 310 311 312 313
                out1 = fluid.layers.concat(input=[x1,x2,x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1,x2], axis=0)
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
314
    """
315 316

    if in_dygraph_mode():
S
songyouwei 已提交
317 318 319
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis[0]
320
        return core.ops.concat(input, 'axis', axis)
321

322 323 324 325 326
    if not isinstance(input, list):
        warnings.warn(
            "The type of input in concat should be list, but received %s." %
            (type(input)))
        input = [input]
327
    for id, x in enumerate(input):
328 329
        check_variable_and_dtype(
            x, 'input[' + str(id) + ']',
330
            ['float16', 'float32', 'float64', 'int32', 'int64'], 'concat')
331 332 333
        if x.dtype != input[0].dtype:
            raise TypeError(
                "All the Tensors in the input must have the same data type.")
334
    check_type(axis, 'axis', (int, Variable), 'concat')
335

336 337 338 339 340
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

341
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
342
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
                            "number of the elements must be 1, but received %s." % len(x)
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
366 367 368
    return out


G
Guo Sheng 已提交
369
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
L
li099 已提交
370
    """
G
Guo Sheng 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
421 422

    Args:
G
Guo Sheng 已提交
423 424 425 426 427 428 429
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
430 431

    Returns:
G
Guo Sheng 已提交
432 433 434
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
435 436 437 438

    Examples:
        .. code-block:: python

439
            import paddle.fluid as fluid
440
            import numpy as np
G
Guo Sheng 已提交
441 442 443 444 445 446 447
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
448
    """
449 450 451 452 453 454 455 456 457 458 459
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

460 461 462 463 464
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
465
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
466 467 468
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
469
        type='tensor_array_to_tensor',
L
li099 已提交
470 471 472
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
473 474
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
475 476 477
    return out, out_index


478
def sums(input, out=None):
F
fengjiayi 已提交
479
    """
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
501 502

    Args:
503 504 505 506
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
507 508

    Returns:
509 510
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
511 512

    Examples:
F
fengjiayi 已提交
513
        .. code-block:: python
K
kavyasrinet 已提交
514

515 516 517 518 519 520 521 522 523
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
524

525 526
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
527
    """
528 529 530 531 532 533 534 535 536
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
537 538
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
539 540
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
541 542 543 544
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
545 546 547 548 549
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
550 551 552
    return out


F
fengjiayi 已提交
553
def assign(input, output=None):
554
    """
555 556 557
	:alias_main: paddle.nn.functional.assign
	:alias: paddle.nn.functional.assign,paddle.nn.functional.common.assign
	:old_api: paddle.fluid.layers.assign
S
swtkiwi 已提交
558

559
    The OP copies the :attr:`input` to the :attr:`output`.
560

561 562
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
563
            float16, float32, float64, int32 and int64.
564 565
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
566 567

    Returns:
568
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
569 570 571

    Examples:
        .. code-block:: python
572

573
          import paddle.fluid as fluid
574 575 576 577 578 579
          import numpy as np
          data = fluid.layers.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result1 = fluid.layers.create_tensor(dtype='float64')
          fluid.layers.assign(data, result1) # result1 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result2 = fluid.layers.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = fluid.layers.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
580
    """
Y
Yu Yang 已提交
581
    helper = LayerHelper('assign', **locals())
582
    check_type(input, 'input', (Variable, numpy.ndarray), 'assign')
X
xuwei06 已提交
583
    if isinstance(input, Variable):
584 585 586 587
        check_dtype(
            input.dtype, 'input',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
            'assign', '(When the type of input in assign is Variable.)')
588 589 590
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
591
        helper.append_op(
R
robot 已提交
592
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
593 594
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
595 596 597 598
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
599
            value_name = "fp32_values"
600
            values = [float(v) for v in input.flat]
601
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
602
            value_name = "int32_values"
603
            values = [int(v) for v in input.flat]
604 605 606
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
607
        else:
608 609
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
610
                "the data type of 'input' must be bool, float32, int32 or int64, but "
611
                "received %s." % convert_dtype(dtype))
612 613 614
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
615 616 617
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
618 619 620 621 622 623
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
624
                value_name: values
X
xuwei06 已提交
625 626
            })

Y
Yu Yang 已提交
627 628 629
    return output


630
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
631
    """
632
	:alias_main: paddle.fill_constant
633
	:alias: paddle.tensor.fill_constant, paddle.tensor.creation.fill_constant
S
swtkiwi 已提交
634

W
wangchaochaohu 已提交
635
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
636
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
637

T
tianshuo78520a 已提交
638
    The attribute `stop_gradient` of the created Tensor is set to True.
639 640

    Args:
641 642 643 644
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output Tensor which can
W
wangchaochaohu 已提交
645
            be float16, float32, float64, int32, int64.
646 647 648 649 650 651
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
652 653
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
654 655

    Returns:
656
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
657

658
    Raises:
W
wangchaochaohu 已提交
659
        TypeError: The dtype must be one of bool, float16, float32, float64, int32 and int64
660 661 662
            and the data type of ``out`` must be the same as the ``dtype``. 
        TypeError: The shape must be one of list, tuple and Tensor, the data type of ``shape``
            must be int32 or int64 when ``shape`` is a Tensor
663 664 665 666

    Examples:
        .. code-block:: python

667
          import paddle.fluid as fluid
668
          # attr shape is a list which doesn't contain  Tensor.
669 670
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
671
          # data1=[[5], [5]] data2=[[5], [5]]
672

673
          # attr shape is a list which contains Tensor.
674
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
675
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
676

677
          # attr shape is a Tensor.
678
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
679
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
680
          
681
          # attr value is a Tensor.
W
wangchaochaohu 已提交
682 683
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
684
    """
685

W
wangchaochaohu 已提交
686
    attrs = {'force_cpu': force_cpu}
687
    if not isinstance(value, Variable):
W
wangchaochaohu 已提交
688 689 690 691
        if convert_dtype(dtype) in ['int64', 'int32']:
            attrs['str_value'] = str(int(value))
        else:
            attrs['str_value'] = str(float(value))
692 693

    if in_dygraph_mode():
694
        shape = utils._convert_shape_to_list(shape)
695 696
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
697 698 699 700 701 702 703

        if isinstance(value, Variable):
            if convert_dtype(dtype) in ['int64', 'int32']:
                attrs['str_value'] = str(int(value.numpy()))
            else:
                attrs['str_value'] = str(float(value.numpy()))

704 705
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
706 707
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
708 709 710
        out.stop_gradient = True
        return out

711 712 713 714 715
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
        inputs['ValueTensor'] = value

716
    check_dtype(dtype, 'dtype',
717 718 719
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_constant')
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
720

721
    if isinstance(shape, Variable):
722 723
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'fill_constant')

724 725 726 727 728
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
729 730
    utils._get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
731

Y
Yu Yang 已提交
732
    if out is None:
X
Xin Pan 已提交
733
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
734
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
735 736
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
737
        inputs=inputs,
Y
Yu Yang 已提交
738
        outputs={'Out': [out]},
L
liym27 已提交
739
        attrs=attrs,
M
minqiyang 已提交
740
        stop_gradient=True)
Y
Yu Yang 已提交
741 742 743 744
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
745
@templatedoc()
Y
Yu Yang 已提交
746 747 748 749 750
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
751 752
                                  output_dim_idx=0,
                                  force_cpu=False):
753
    """
T
tianshuo78520a 已提交
754
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
755 756 757 758
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
759 760

    Args:
W
wangchaochaohu 已提交
761 762 763 764 765 766 767 768 769 770 771
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
772
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
773 774

    Returns:
W
wangchaochaohu 已提交
775
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
776 777 778 779 780

    Examples:

        .. code-block:: python

781
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
782
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
783
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
784
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
785

786
    """
Y
Yu Yang 已提交
787
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
788
    out = helper.create_variable_for_type_inference(dtype=dtype)
789 790 791 792 793 794
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
795
        'force_cpu': force_cpu
796 797 798 799 800
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
801 802 803 804
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
805
        attrs=attrs)
Y
Yu Yang 已提交
806 807 808 809
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
810 811
def argmin(x, axis=0):
    """
812 813 814
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
815

S
sneaxiy 已提交
816 817
    **argmin**

818 819
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
820 821

    Args:
822 823 824 825 826
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
827

S
sneaxiy 已提交
828
    Returns:
829
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
830

S
sneaxiy 已提交
831 832
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
833

834
            import paddle.fluid as fluid
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
862
    """
863 864 865
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
866
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
867
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
868 869 870 871 872
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
873
    out.stop_gradient = True
S
sneaxiy 已提交
874 875 876 877 878 879 880
    return out


def argmax(x, axis=0):
    """
    **argmax**

881 882
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
883 884

    Args:
885 886 887 888 889
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
890

S
sneaxiy 已提交
891
    Returns:
892
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
893

S
sneaxiy 已提交
894 895
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
896

897
            import paddle.fluid as fluid
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
925
    """
926 927 928
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
929
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
930
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
931 932 933 934 935
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
936
    out.stop_gradient = True
S
sneaxiy 已提交
937 938 939
    return out


940
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
941
    """
942 943 944
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
945

946 947 948
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
949 950

    Args:
951 952 953 954 955
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
956 957 958
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
959 960 961
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
962 963

    Returns:
964 965 966
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
967 968 969 970

    Examples:
        .. code-block:: python

971
            import paddle.fluid as fluid
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1013
    """
1014 1015 1016
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1017
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1018 1019 1020 1021
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1022 1023 1024 1025
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1026
                 'Indices': ids},
1027 1028
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1029 1030 1031
    return out, ids


Y
Yang Yu 已提交
1032
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1033
    """
1034 1035
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1036

1037
    Parameters:
1038 1039
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output Tensor, it supports
1040
            bool, float16, float32, float64, int32 and int64.
1041 1042
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1043
            Default: False.
1044 1045

    Returns:
1046 1047 1048 1049 1050 1051
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
    Raises:
        TypeError: The ``dtype`` must be one of bool, float16, float32, float64, int32, int64 and None
            and the data type of out Tensor must be the same as the dtype. 
        TypeError: The ``shape`` must be one of list, tuple and Tensor. The data type of ``shape`` must
            be int32 or int64 when it's a Tensor.
1052 1053 1054 1055

    Examples:
        .. code-block:: python

1056
          import paddle.fluid as fluid
1057 1058 1059 1060 1061
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1062 1063 1064 1065
    """
    return fill_constant(value=1.0, **locals())


1066
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1067
    """
1068 1069
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1070

1071
    Parameters:
1072 1073
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output Tensor, it supports
1074
            bool, float16, float32, float64, int32 and int64.
1075 1076
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1077
            Default: False.
1078 1079
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1080 1081

    Returns:
1082
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1083

1084 1085 1086 1087 1088
    Raises:
        TypeError: The ``dtype`` must be one of bool, float16, float32, float64, int32, int64 and None
            and the data type of out Tensor must be the same as the dtype. 
        TypeError: The ``shape`` must be one of list, tuple and Tensor. The data type of ``shape`` must
            be int32 or int64 when it's a Tensor.
1089 1090 1091
    Examples:
        .. code-block:: python

1092
          import paddle.fluid as fluid
1093
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1094 1095 1096 1097
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1098 1099
    """
    return fill_constant(value=0.0, **locals())
1100 1101


F
fengjiayi 已提交
1102 1103
def reverse(x, axis):
    """
1104 1105 1106
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1107

1108
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1109

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1134
    Parameters:
1135 1136
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1137 1138
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1139 1140
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1141 1142

    Returns:
1143
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1144 1145 1146 1147

    Examples:
        .. code-block:: python

1148
          import paddle.fluid as fluid
1149 1150 1151 1152
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1163
    """
1164 1165 1166
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1167 1168 1169
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1170
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1171 1172
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1173
        inputs={'X': x},
F
fengjiayi 已提交
1174 1175 1176 1177 1178
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1179 1180 1181 1182 1183 1184 1185
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1186 1187 1188
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1204 1205
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1206
        file_path(str): The file path where variables will be saved.
1207
        overwrite(bool): Whether or not cover the given file when it has already
1208 1209
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1210 1211 1212 1213 1214 1215 1216 1217

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1218
            import paddle.fluid as fluid
1219 1220 1221 1222 1223 1224 1225
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1238
    Loads a list of variable from a single file.
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1250 1251 1252 1253


def has_inf(x):
    """
1254 1255 1256
	:alias_main: paddle.has_inf
	:alias: paddle.has_inf,paddle.tensor.has_inf,paddle.tensor.search.has_inf
	:old_api: paddle.fluid.layers.has_inf
S
swtkiwi 已提交
1257

1258 1259 1260
    Test if any of x contains an infinity number

    Args:
L
liu zhengxi 已提交
1261
       x (Variable): The Tensor/LoDTensor to be checked.
1262 1263

    Returns:
L
liu zhengxi 已提交
1264
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1265 1266 1267 1268 1269 1270 1271 1272
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

1273
    """
1274
    check_type(x, 'x', (Variable), 'has_inf')
1275
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1276
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1277 1278 1279 1280 1281 1282
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
1283 1284 1285
	:alias_main: paddle.has_nan
	:alias: paddle.has_nan,paddle.tensor.has_nan,paddle.tensor.search.has_nan
	:old_api: paddle.fluid.layers.has_nan
S
swtkiwi 已提交
1286

1287 1288 1289
    Test if any of x contains a NAN

    Args:
L
liu zhengxi 已提交
1290
       x (Variable): The Tensor/LoDTensor to be checked.
1291 1292

    Returns:
L
liu zhengxi 已提交
1293
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1294 1295 1296 1297 1298 1299 1300 1301
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

1302
    """
1303
    check_type(x, 'x', (Variable), 'has_nan')
1304
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1305
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1306 1307 1308 1309 1310 1311
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
1312 1313 1314
	:alias_main: paddle.isfinite
	:alias: paddle.isfinite,paddle.tensor.isfinite,paddle.tensor.logic.isfinite
	:old_api: paddle.fluid.layers.isfinite
S
swtkiwi 已提交
1315

1316 1317 1318 1319 1320 1321 1322 1323
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
1324 1325 1326 1327 1328

    Examples:

        .. code-block:: python

1329
            import paddle.fluid as fluid
1330 1331 1332
            var = fluid.layers.data(name="data",
                                    shape=(4, 6),
                                    dtype="float32")
石晓伟 已提交
1333
            out = fluid.layers.isfinite(var)
1334
    """
1335 1336
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1337
    helper = LayerHelper("isfinite", **locals())
1338

1339
    out = helper.create_variable_for_type_inference(dtype='bool')
1340 1341
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1342 1343


1344
def range(start, end, step, dtype, name=None):
W
whs 已提交
1345
    """
1346
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1347

1348 1349
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1350

1351 1352
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1353

L
Liufang Sang 已提交
1354
    Parameters:
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1378 1379 1380 1381 1382

    examples:

        .. code-block:: python

1383
            import paddle.fluid as fluid
W
whs 已提交
1384

1385 1386
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1387

1388 1389 1390 1391 1392 1393 1394
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1395

W
whs 已提交
1396 1397
    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
1398 1399
    elif start.dtype != dtype:
        start = cast(start, dtype)
1400

W
whs 已提交
1401 1402
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
1403 1404
    elif end.dtype != dtype:
        end = cast(end, dtype)
1405

W
whs 已提交
1406 1407
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)
1408 1409
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1410

1411 1412
    if in_dygraph_mode():
        return core.ops.range(start, end, step)
W
whs 已提交
1413

1414 1415 1416 1417
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
1418 1419 1420 1421 1422
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1423
        outputs={'Out': out})
1424
    out.stop_gradient = True
W
whs 已提交
1425
    return out
Z
zhoukunsheng 已提交
1426 1427


1428
def linspace(start, stop, num, dtype=None, name=None):
Z
zhoukunsheng 已提交
1429
    """
1430
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1431 1432

    Args:
1433 1434 1435 1436 1437 1438 1439 1440
        start(float|Tensor): The input :attr:`start` is start variable of range. It is a float scalar, \
            or a Tensor of shape [1] with input data type float32, float64.
        stop(float|Tensor): The input :attr:`stop` is start variable of range. It is a float scalar, \
            or a Tensor of shape [1] with input data type float32, float64.
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a Tensor of shape [1] with data type int32.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output tensor, it could be 'float32' and 'float64'.
            Default: if None, the data type is float32.
1441 1442
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1443 1444

    Returns:
1445
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1446 1447
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1448

1449
    Raises:
1450 1451 1452
        TypeError: The ``dtype`` must be one of float32 and float64.
        TypeError: The data type of ``start`` and ``stop``  must be one of float32 and float64.
        TypeError: The data type of ``num`` must be one of int32 and int64.
1453 1454


Z
zhoukunsheng 已提交
1455
    Examples:
Z
zhoukunsheng 已提交
1456 1457
        .. code-block:: python

1458
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
1459 1460
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1461 1462

    """
1463 1464
    if dtype is None:
        dtype = 'float32'
Z
zhoukunsheng 已提交
1465 1466 1467 1468 1469 1470
    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)
1471 1472 1473 1474 1475 1476 1477 1478 1479
    if in_dygraph_mode():
        return core.ops.linspace(start, stop, num)

    helper = LayerHelper("linspace", **locals())

    check_dtype(start.dtype, 'start', ['float32', 'float64'], 'linspace')
    check_dtype(stop.dtype, 'stop', ['float32', 'float64'], 'linspace')
    check_dtype(num.dtype, 'num', ['int32', 'int64'], 'linspace')
    check_dtype(dtype, 'dtype', ['float32', 'float64'], 'linspace')
Z
zhoukunsheng 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
1490 1491


Z
zhoukunsheng 已提交
1492 1493
def zeros_like(x, out=None):
    """
1494
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1495 1496 1497
    with `x`.

    Args:
1498 1499 1500 1501 1502 1503
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1504 1505

    Returns:
1506 1507 1508
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1509 1510 1511 1512

    Examples:
        .. code-block:: python

1513
          import paddle.fluid as fluid
1514
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1515 1516
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1517 1518
    """

1519 1520
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1521 1522 1523
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1524 1525 1526
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1527
            'zeros_like')
1528

Z
zhoukunsheng 已提交
1529 1530 1531 1532
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1533 1534 1535 1536


def diag(diagonal):
    """
1537 1538 1539
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1540

1541
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1542 1543

    Args:
1544 1545
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1546 1547

    Returns:
1548 1549
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1550 1551 1552 1553 1554 1555 1556

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1557 1558 1559

          import paddle.fluid as fluid
          import numpy as np
1560 1561 1562
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1563 1564

    """
1565 1566 1567
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1580 1581


1582 1583 1584 1585 1586
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1587
    """
1588
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1589 1590 1591

    Args:
        num_rows(int): the number of rows in each batch tensor.
1592 1593
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1594 1595
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
1596 1597 1598 1599 1600
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of the returned tensor.
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1601 1602

    Returns:
1603
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1604 1605 1606
    Raises:
        TypeError: The `dtype` must be one of float16, float32, float64, int32 and int64.
        TypeError: The `num_columns` must be non-negative int.
1607 1608 1609 1610 1611

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1612 1613
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1614
          #  [0, 1, 0]
1615 1616
          #  [0, 0, 1]]

1617
          data = fluid.layers.eye(2, 3, dtype='int32')
1618
          # [[1, 0, 0]
1619
          #  [0, 1, 0]]
1620 1621

          data = fluid.layers.eye(2, batch_shape=[3])
1622 1623 1624 1625 1626
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1627 1628
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1629 1630 1631 1632 1633
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655

    if in_dygraph_mode():
        out = core.ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                           num_columns)

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1656 1657

    if batch_shape is not None:
1658 1659 1660 1661 1662 1663 1664
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
        if in_dygraph_mode():
            out = core.ops.reshape(out, 'shape', re_shape)
            return core.ops.expand(out, 'expand_times', expand_times)

1665 1666
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1667
        for batch_val in (batch_shape):
1668 1669
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1670 1671 1672 1673 1674 1675

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1676 1677 1678
    return out


Z
zhoukunsheng 已提交
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1691
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1702 1703
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1704 1705 1706 1707

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1708 1709 1710 1711
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1712 1713 1714 1715 1716 1717
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out