tensor.py 64.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
import six
17
from six.moves import reduce
Y
Yu Yang 已提交
18
from ..layer_helper import LayerHelper
19
from ..param_attr import ParamAttr
20
from ..initializer import Initializer
21
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard
X
xuwei06 已提交
22
from ..framework import Variable
23
from ..initializer import Constant
24
from ..core import VarDesc
25
from .. import core
26
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
27
from . import utils
28
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
X
xuwei06 已提交
29
import numpy
30
import warnings
Y
Yu Yang 已提交
31 32

__all__ = [
L
li099 已提交
33 34 35
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
36
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
37
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye'
Y
Yu Yang 已提交
38 39 40
]


X
xuwei06 已提交
41
def create_tensor(dtype, name=None, persistable=False):
42
    """
W
wangchaochaohu 已提交
43
    Create a variable, which will hold a Tensor with data type dtype.
44 45

    Args:
W
wangchaochaohu 已提交
46 47 48 49
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
50
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
51
            default value is False.
52 53

    Returns:
W
wangchaochaohu 已提交
54
        Variable: The tensor to be created according to dtype.
55 56 57 58

    Examples:
        .. code-block:: python

59
          import paddle.fluid as fluid
60 61
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
62 63 64 65
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
66
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
67 68
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
69 70


71 72
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
73
                     name=None,
74 75 76 77
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
78
	:api_attr: Static Graph
S
swtkiwi 已提交
79

80
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
81 82 83 84 85
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

86 87 88 89 90 91 92
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
93 94 95
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
96
        default_initializer (Initializer, optional): Initializer for the parameter
97 98

    Returns:
99
        The created parameter.
Y
yuyang18 已提交
100 101

    Examples:
102 103
        .. code-block:: python

104
            import paddle.fluid as fluid
105 106
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
107
    """
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_parameter')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_parameter')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
127
    helper = LayerHelper("create_parameter", **locals())
128
    if attr is None:
X
xuwei06 已提交
129
        attr = ParamAttr(name=name)
130 131
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
132 133 134
                                   default_initializer)


135 136 137 138 139 140 141
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
142
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
143

144 145 146
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
147
                      variable will be filled with it.
148 149
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
150
                           Default: False
151
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
152
                         Default: False
153 154
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
155 156

    Returns:
157
        Variable: The created Variable
F
fengjiayi 已提交
158 159 160 161

    Examples:
        .. code-block:: python

162
            import paddle.fluid as fluid
163 164
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
165
                                           persistable=True, force_cpu=True, name='new_var')
166
    """
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_global_var')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_global_var')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_global_var')

Q
Qiao Longfei 已提交
184 185
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
186 187 188 189 190
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
191 192 193
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
194

Q
Qiao Longfei 已提交
195 196 197
    return var


198
def cast(x, dtype):
Y
Yu Yang 已提交
199
    """
200 201 202
	:alias_main: paddle.cast
	:alias: paddle.cast,paddle.tensor.cast,paddle.tensor.manipulation.cast
	:old_api: paddle.fluid.layers.cast
S
swtkiwi 已提交
203

204 205 206
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
207 208

    Args:
209 210 211
        x(Variable): An input N-D Tensor with data type bool, float16,
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
212
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
213 214

    Returns:
215
        Variable: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
216 217 218

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
219

220
            import paddle.fluid as fluid
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
            import numpy as np

            place = fluid.core.CPUPlace()

            x_lod = fluid.data(name="x", shape=[2,2], lod_level=0)
            cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8")
            cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            x_i_lod = fluid.core.LoDTensor()
            x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            x_i_lod.set_recursive_sequence_lengths([[0,2]])
            res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False)
            res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False)
            print(np.array(res1[0]), np.array(res1[0]).dtype)
            # [[  1 254]
            #  [  0   4]] uint8
            print(np.array(res2[0]), np.array(res2[0]).dtype)
            # [[ 1 -2]
            #  [ 0  4]] int32
Y
Yu Yang 已提交
243
    """
244 245
    check_variable_and_dtype(
        x, 'x',
246 247
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
248 249 250 251 252 253
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
        'uint8'
    ], 'cast')

    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
254
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
255 256 257 258 259 260 261 262 263
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


264
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
265
    """
266
    This OP concatenates the input along the axis.
267 268

    Args:
269 270
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
271 272
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
273
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
274
            as ``axis+R``. Default is 0.
275 276 277
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
278
    Raises:
279 280
        TypeError: ``input`` must be one of list, tuple or Tensor.
        TypeError: The data type of ``input`` must be one of bool, float16, float32, float64, int32 and int64. 
281
        TypeError: The ``axis`` must be int or Tensor. The dtype of ``axis`` must be int32 or int64 when it's a Tensor.
282
        TypeError: All the Tensors in ``input`` must have the same data type.
283 284

    Returns:
285
        Tensor: A Tensor with the same data type as ``input``.
286 287 288

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
289

290
            import paddle.fluid as fluid
291 292
            import numpy as np

293 294 295 296 297 298
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
299 300 301 302
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
303 304
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
305 306
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
307 308 309 310 311 312 313 314
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
315
    """
316 317

    if in_dygraph_mode():
S
songyouwei 已提交
318 319 320
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis[0]
321
        return core.ops.concat(input, 'axis', axis)
322

323 324 325 326 327 328 329 330 331 332 333
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
334
        input = [input]
335
    check_type(axis, 'axis', (int, Variable), 'concat')
336

337 338 339 340 341
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

342
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
343
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
344 345 346

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
347
                "number of the elements must be 1, but received %s." % len(input)
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
367 368 369
    return out


G
Guo Sheng 已提交
370
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
L
li099 已提交
371
    """
G
Guo Sheng 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
422 423

    Args:
G
Guo Sheng 已提交
424 425 426 427 428 429 430
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
431 432

    Returns:
G
Guo Sheng 已提交
433 434 435
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
436 437 438 439

    Examples:
        .. code-block:: python

440
            import paddle.fluid as fluid
441
            import numpy as np
G
Guo Sheng 已提交
442 443 444 445 446 447 448
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
449
    """
450 451 452 453 454 455 456 457 458 459 460
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

461 462 463 464 465
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
466
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
467 468 469
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
470
        type='tensor_array_to_tensor',
L
li099 已提交
471 472 473
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
474 475
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
476 477 478
    return out, out_index


479
def sums(input, out=None):
F
fengjiayi 已提交
480
    """
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
502 503

    Args:
504 505 506 507
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
508 509

    Returns:
510 511
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
512 513

    Examples:
F
fengjiayi 已提交
514
        .. code-block:: python
K
kavyasrinet 已提交
515

516 517 518 519 520 521 522 523 524
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
525

526 527
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
528
    """
529 530 531 532 533 534 535 536 537
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
538 539
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
540 541
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
542 543 544 545
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
546 547 548 549 550
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
551 552 553
    return out


F
fengjiayi 已提交
554
def assign(input, output=None):
555
    """
556 557 558
	:alias_main: paddle.nn.functional.assign
	:alias: paddle.nn.functional.assign,paddle.nn.functional.common.assign
	:old_api: paddle.fluid.layers.assign
S
swtkiwi 已提交
559

560
    The OP copies the :attr:`input` to the :attr:`output`.
561

562 563
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
564
            float16, float32, float64, int32 and int64.
565 566
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
567 568

    Returns:
569
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
570 571 572

    Examples:
        .. code-block:: python
573

574
          import paddle.fluid as fluid
575 576 577 578 579 580
          import numpy as np
          data = fluid.layers.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result1 = fluid.layers.create_tensor(dtype='float64')
          fluid.layers.assign(data, result1) # result1 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result2 = fluid.layers.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = fluid.layers.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
581
    """
Y
Yu Yang 已提交
582
    helper = LayerHelper('assign', **locals())
583
    check_type(input, 'input', (Variable, numpy.ndarray), 'assign')
X
xuwei06 已提交
584
    if isinstance(input, Variable):
585 586 587 588
        check_dtype(
            input.dtype, 'input',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
            'assign', '(When the type of input in assign is Variable.)')
589 590 591
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
592
        helper.append_op(
R
robot 已提交
593
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
594 595
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
596 597 598 599
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
600
            value_name = "fp32_values"
601
            values = [float(v) for v in input.flat]
602
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
603
            value_name = "int32_values"
604
            values = [int(v) for v in input.flat]
605 606 607
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
608
        else:
609 610
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
611
                "the data type of 'input' must be bool, float32, int32 or int64, but "
612
                "received %s." % convert_dtype(dtype))
613 614 615
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
616 617 618
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
619 620 621 622 623 624
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
625
                value_name: values
X
xuwei06 已提交
626 627
            })

Y
Yu Yang 已提交
628 629 630
    return output


631
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
632
    """
633
	:alias_main: paddle.fill_constant
634
	:alias: paddle.tensor.fill_constant, paddle.tensor.creation.fill_constant
S
swtkiwi 已提交
635

W
wangchaochaohu 已提交
636
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
637
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
638

T
tianshuo78520a 已提交
639
    The attribute `stop_gradient` of the created Tensor is set to True.
640 641

    Args:
642 643 644 645
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output Tensor which can
W
wangchaochaohu 已提交
646
            be float16, float32, float64, int32, int64.
647 648 649 650 651 652
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
653 654
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
655 656

    Returns:
657
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
658

659
    Raises:
W
wangchaochaohu 已提交
660
        TypeError: The dtype must be one of bool, float16, float32, float64, int32 and int64
661 662 663
            and the data type of ``out`` must be the same as the ``dtype``. 
        TypeError: The shape must be one of list, tuple and Tensor, the data type of ``shape``
            must be int32 or int64 when ``shape`` is a Tensor
664 665 666 667

    Examples:
        .. code-block:: python

668
          import paddle.fluid as fluid
669
          # attr shape is a list which doesn't contain  Tensor.
670 671
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
672
          # data1=[[5], [5]] data2=[[5], [5]]
673

674
          # attr shape is a list which contains Tensor.
675
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
676
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
677

678
          # attr shape is a Tensor.
679
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
680
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
681
          
682
          # attr value is a Tensor.
W
wangchaochaohu 已提交
683 684
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
685
    """
686

W
wangchaochaohu 已提交
687
    attrs = {'force_cpu': force_cpu}
688
    dtype = convert_dtype(dtype)
689
    if not isinstance(value, Variable):
690
        if dtype in ['int64', 'int32']:
W
wangchaochaohu 已提交
691 692 693
            attrs['str_value'] = str(int(value))
        else:
            attrs['str_value'] = str(float(value))
694 695

    if in_dygraph_mode():
696
        shape = utils._convert_shape_to_list(shape)
697 698
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
699 700

        if isinstance(value, Variable):
701
            if dtype in ['int64', 'int32']:
W
wangchaochaohu 已提交
702 703 704 705
                attrs['str_value'] = str(int(value.numpy()))
            else:
                attrs['str_value'] = str(float(value.numpy()))

706 707
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
708 709
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
710 711 712
        out.stop_gradient = True
        return out

713 714 715
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
716 717
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
718 719
        inputs['ValueTensor'] = value

720
    check_dtype(dtype, 'dtype',
721 722 723
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_constant')
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
724

725
    if isinstance(shape, Variable):
726 727
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'fill_constant')

728 729 730 731 732
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
733 734
    utils._get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
735

Y
Yu Yang 已提交
736
    if out is None:
X
Xin Pan 已提交
737
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
738
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
739 740
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
741
        inputs=inputs,
Y
Yu Yang 已提交
742
        outputs={'Out': [out]},
L
liym27 已提交
743
        attrs=attrs,
M
minqiyang 已提交
744
        stop_gradient=True)
Y
Yu Yang 已提交
745 746 747 748
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
749
@templatedoc()
Y
Yu Yang 已提交
750 751 752 753 754
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
755 756
                                  output_dim_idx=0,
                                  force_cpu=False):
757
    """
T
tianshuo78520a 已提交
758
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
759 760 761 762
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
763 764

    Args:
W
wangchaochaohu 已提交
765 766 767 768 769 770 771 772 773 774 775
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
776
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
777 778

    Returns:
W
wangchaochaohu 已提交
779
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
780 781 782 783 784

    Examples:

        .. code-block:: python

785
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
786
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
787
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
788
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
789

790
    """
Y
Yu Yang 已提交
791
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
792
    out = helper.create_variable_for_type_inference(dtype=dtype)
793 794 795 796 797 798
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
799
        'force_cpu': force_cpu
800 801 802 803 804
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
805 806 807 808
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
809
        attrs=attrs)
Y
Yu Yang 已提交
810 811 812 813
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
814 815
def argmin(x, axis=0):
    """
816 817 818
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
819

S
sneaxiy 已提交
820 821
    **argmin**

822 823
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
824 825

    Args:
826 827 828 829 830
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
831

S
sneaxiy 已提交
832
    Returns:
833
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
834

S
sneaxiy 已提交
835 836
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
837

838
            import paddle.fluid as fluid
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
866
    """
867 868 869
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
870
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
871
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
872 873 874 875 876
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
877
    out.stop_gradient = True
S
sneaxiy 已提交
878 879 880 881 882 883 884
    return out


def argmax(x, axis=0):
    """
    **argmax**

885 886
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
887 888

    Args:
889 890 891 892 893
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
894

S
sneaxiy 已提交
895
    Returns:
896
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
897

S
sneaxiy 已提交
898 899
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
900

901
            import paddle.fluid as fluid
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
929
    """
930 931 932
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
933
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
934
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
935 936 937 938 939
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
940
    out.stop_gradient = True
S
sneaxiy 已提交
941 942 943
    return out


944
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
945
    """
946 947 948
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
949

950 951 952
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
953 954

    Args:
955 956 957 958 959
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
960 961 962
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
963 964 965
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
966 967

    Returns:
968 969 970
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
971 972 973 974

    Examples:
        .. code-block:: python

975
            import paddle.fluid as fluid
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1017
    """
1018 1019 1020
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1021
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1022 1023 1024 1025
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1026 1027 1028 1029
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1030
                 'Indices': ids},
1031 1032
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1033 1034 1035
    return out, ids


Y
Yang Yu 已提交
1036
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1037
    """
1038 1039
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1040

1041
    Parameters:
1042 1043
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output Tensor, it supports
1044
            bool, float16, float32, float64, int32 and int64.
1045 1046
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1047
            Default: False.
1048 1049

    Returns:
1050 1051
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
    Raises:
1052
        TypeError: The ``dtype`` must be one of bool, float16, float32, float64, int32, int64.
1053 1054
        TypeError: The ``shape`` must be one of list, tuple and Tensor. The data type of ``shape`` must
            be int32 or int64 when it's a Tensor.
1055 1056 1057 1058

    Examples:
        .. code-block:: python

1059
          import paddle.fluid as fluid
1060 1061 1062 1063 1064
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1065 1066 1067 1068
    """
    return fill_constant(value=1.0, **locals())


1069
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1070
    """
1071 1072
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1073

1074
    Parameters:
1075 1076
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output Tensor, it supports
1077
            bool, float16, float32, float64, int32 and int64.
1078 1079
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1080
            Default: False.
1081 1082
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1083 1084

    Returns:
1085
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1086

1087
    Raises:
1088
        TypeError: The ``dtype`` must be one of bool, float16, float32, float64, int32, int64.
1089 1090
        TypeError: The ``shape`` must be one of list, tuple and Tensor. The data type of ``shape`` must
            be int32 or int64 when it's a Tensor.
1091 1092 1093
    Examples:
        .. code-block:: python

1094
          import paddle.fluid as fluid
1095
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1096 1097 1098 1099
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1100 1101
    """
    return fill_constant(value=0.0, **locals())
1102 1103


F
fengjiayi 已提交
1104 1105
def reverse(x, axis):
    """
1106 1107 1108
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1109

1110
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1111

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1136
    Parameters:
1137 1138
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1139 1140
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1141 1142
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1143 1144

    Returns:
1145
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1146 1147 1148 1149

    Examples:
        .. code-block:: python

1150
          import paddle.fluid as fluid
1151 1152 1153 1154
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1165
    """
1166 1167 1168
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1169 1170 1171
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1172
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1173 1174
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1175
        inputs={'X': x},
F
fengjiayi 已提交
1176 1177 1178 1179 1180
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1181 1182 1183 1184 1185 1186 1187
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1188 1189 1190
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1206 1207
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1208
        file_path(str): The file path where variables will be saved.
1209
        overwrite(bool): Whether or not cover the given file when it has already
1210 1211
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1212 1213 1214 1215 1216 1217 1218 1219

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1220
            import paddle.fluid as fluid
1221 1222 1223 1224 1225 1226 1227
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1240
    Loads a list of variable from a single file.
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1252 1253 1254 1255


def has_inf(x):
    """
1256 1257 1258
	:alias_main: paddle.has_inf
	:alias: paddle.has_inf,paddle.tensor.has_inf,paddle.tensor.search.has_inf
	:old_api: paddle.fluid.layers.has_inf
S
swtkiwi 已提交
1259

1260 1261 1262
    Test if any of x contains an infinity number

    Args:
L
liu zhengxi 已提交
1263
       x (Variable): The Tensor/LoDTensor to be checked.
1264 1265

    Returns:
L
liu zhengxi 已提交
1266
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1267 1268 1269 1270 1271 1272 1273 1274
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

1275
    """
1276
    check_type(x, 'x', (Variable), 'has_inf')
1277
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1278
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1279 1280 1281 1282 1283 1284
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
1285 1286 1287
	:alias_main: paddle.has_nan
	:alias: paddle.has_nan,paddle.tensor.has_nan,paddle.tensor.search.has_nan
	:old_api: paddle.fluid.layers.has_nan
S
swtkiwi 已提交
1288

1289 1290 1291
    Test if any of x contains a NAN

    Args:
L
liu zhengxi 已提交
1292
       x (Variable): The Tensor/LoDTensor to be checked.
1293 1294

    Returns:
L
liu zhengxi 已提交
1295
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1296 1297 1298 1299 1300 1301 1302 1303
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

1304
    """
1305
    check_type(x, 'x', (Variable), 'has_nan')
1306
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1307
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1308 1309 1310 1311 1312 1313
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
1314 1315 1316
	:alias_main: paddle.isfinite
	:alias: paddle.isfinite,paddle.tensor.isfinite,paddle.tensor.logic.isfinite
	:old_api: paddle.fluid.layers.isfinite
S
swtkiwi 已提交
1317

1318 1319 1320 1321 1322 1323 1324 1325
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
1326 1327 1328 1329 1330

    Examples:

        .. code-block:: python

1331
            import paddle.fluid as fluid
1332 1333 1334
            var = fluid.layers.data(name="data",
                                    shape=(4, 6),
                                    dtype="float32")
石晓伟 已提交
1335
            out = fluid.layers.isfinite(var)
1336
    """
1337 1338
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1339
    helper = LayerHelper("isfinite", **locals())
1340

1341
    out = helper.create_variable_for_type_inference(dtype='bool')
1342 1343
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1344 1345


1346
def range(start, end, step, dtype, name=None):
W
whs 已提交
1347
    """
1348
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1349

1350 1351
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1352

1353 1354
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1355

L
Liufang Sang 已提交
1356
    Parameters:
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1380 1381 1382 1383 1384

    examples:

        .. code-block:: python

1385
            import paddle.fluid as fluid
W
whs 已提交
1386

1387 1388
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1389

1390 1391 1392 1393 1394 1395 1396
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1397

W
whs 已提交
1398
    if not isinstance(start, Variable):
1399 1400
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start)
1401 1402
    elif start.dtype != dtype:
        start = cast(start, dtype)
1403

W
whs 已提交
1404
    if not isinstance(end, Variable):
1405 1406
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end)
1407 1408
    elif end.dtype != dtype:
        end = cast(end, dtype)
1409

W
whs 已提交
1410
    if not isinstance(step, Variable):
1411 1412
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step)
1413 1414
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1415

1416 1417
    if in_dygraph_mode():
        return core.ops.range(start, end, step)
W
whs 已提交
1418

1419 1420 1421 1422
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
1423 1424 1425 1426 1427
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1428
        outputs={'Out': out})
1429
    out.stop_gradient = True
W
whs 已提交
1430
    return out
Z
zhoukunsheng 已提交
1431 1432


1433
def linspace(start, stop, num, dtype=None, name=None):
Z
zhoukunsheng 已提交
1434
    """
1435
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1436 1437

    Args:
1438 1439 1440 1441 1442 1443 1444 1445
        start(float|Tensor): The input :attr:`start` is start variable of range. It is a float scalar, \
            or a Tensor of shape [1] with input data type float32, float64.
        stop(float|Tensor): The input :attr:`stop` is start variable of range. It is a float scalar, \
            or a Tensor of shape [1] with input data type float32, float64.
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a Tensor of shape [1] with data type int32.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output tensor, it could be 'float32' and 'float64'.
            Default: if None, the data type is float32.
1446 1447
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1448 1449

    Returns:
1450
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1451 1452
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1453

1454
    Raises:
1455 1456 1457
        TypeError: The ``dtype`` must be one of float32 and float64.
        TypeError: The data type of ``start`` and ``stop``  must be one of float32 and float64.
        TypeError: The data type of ``num`` must be one of int32 and int64.
1458 1459


Z
zhoukunsheng 已提交
1460
    Examples:
Z
zhoukunsheng 已提交
1461 1462
        .. code-block:: python

1463
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
1464 1465
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1466 1467

    """
1468 1469
    if dtype is None:
        dtype = 'float32'
Z
zhoukunsheng 已提交
1470 1471 1472 1473 1474 1475
    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)
1476 1477 1478 1479 1480 1481 1482 1483 1484
    if in_dygraph_mode():
        return core.ops.linspace(start, stop, num)

    helper = LayerHelper("linspace", **locals())

    check_dtype(start.dtype, 'start', ['float32', 'float64'], 'linspace')
    check_dtype(stop.dtype, 'stop', ['float32', 'float64'], 'linspace')
    check_dtype(num.dtype, 'num', ['int32', 'int64'], 'linspace')
    check_dtype(dtype, 'dtype', ['float32', 'float64'], 'linspace')
Z
zhoukunsheng 已提交
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
1495 1496


Z
zhoukunsheng 已提交
1497 1498
def zeros_like(x, out=None):
    """
1499
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1500 1501 1502
    with `x`.

    Args:
1503 1504 1505 1506 1507 1508
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1509 1510

    Returns:
1511 1512 1513
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1514 1515 1516 1517

    Examples:
        .. code-block:: python

1518
          import paddle.fluid as fluid
1519
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1520 1521
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1522 1523
    """

1524 1525
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1526 1527 1528
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1529 1530 1531
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1532
            'zeros_like')
1533

Z
zhoukunsheng 已提交
1534 1535 1536 1537
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1538 1539 1540 1541


def diag(diagonal):
    """
1542 1543 1544
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1545

1546
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1547 1548

    Args:
1549 1550
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1551 1552

    Returns:
1553 1554
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1555 1556 1557 1558 1559 1560 1561

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1562 1563 1564

          import paddle.fluid as fluid
          import numpy as np
1565 1566 1567
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1568 1569

    """
1570 1571 1572
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1585 1586


1587 1588 1589 1590 1591
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1592
    """
1593
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1594 1595 1596

    Args:
        num_rows(int): the number of rows in each batch tensor.
1597 1598
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1599 1600
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
1601 1602 1603 1604 1605
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of the returned tensor.
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1606 1607

    Returns:
1608
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1609 1610 1611
    Raises:
        TypeError: The `dtype` must be one of float16, float32, float64, int32 and int64.
        TypeError: The `num_columns` must be non-negative int.
1612 1613 1614 1615 1616

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1617 1618
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1619
          #  [0, 1, 0]
1620 1621
          #  [0, 0, 1]]

1622
          data = fluid.layers.eye(2, 3, dtype='int32')
1623
          # [[1, 0, 0]
1624
          #  [0, 1, 0]]
1625 1626

          data = fluid.layers.eye(2, batch_shape=[3])
1627 1628 1629 1630 1631
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1632 1633
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1634 1635 1636 1637 1638
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660

    if in_dygraph_mode():
        out = core.ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                           num_columns)

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1661 1662

    if batch_shape is not None:
1663 1664 1665 1666 1667 1668 1669
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
        if in_dygraph_mode():
            out = core.ops.reshape(out, 'shape', re_shape)
            return core.ops.expand(out, 'expand_times', expand_times)

1670 1671
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1672
        for batch_val in (batch_shape):
1673 1674
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1675 1676 1677 1678 1679 1680

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1681 1682 1683
    return out


Z
zhoukunsheng 已提交
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1696
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1707 1708
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1709 1710 1711 1712

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1713 1714 1715 1716
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1717 1718 1719 1720 1721 1722
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out