infer.py 34.7 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
G
Guanghua Yu 已提交
17
import glob
18 19
import json
from pathlib import Path
Q
qingqing01 已提交
20 21 22 23
from functools import reduce

import cv2
import numpy as np
C
cnn 已提交
24
import math
Q
qingqing01 已提交
25 26 27 28
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

W
wangguanzhong 已提交
29 30 31 32 33
import sys
# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
sys.path.insert(0, parent_path)

34
from benchmark_utils import PaddleInferBenchmark
35
from picodet_postprocess import PicoDetPostProcess
F
Feng Ni 已提交
36
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride, LetterBoxResize, WarpAffine, Pad, decode_image
W
wangguanzhong 已提交
37
from keypoint_preprocess import EvalAffine, TopDownEvalAffine, expand_crop
G
Guanghua Yu 已提交
38
from visualize import visualize_box_mask
39
from utils import argsparser, Timer, get_current_memory_mb
G
Guanghua Yu 已提交
40

Q
qingqing01 已提交
41 42
# Global dictionary
SUPPORT_MODELS = {
J
JYChen 已提交
43 44 45
    'YOLO', 'RCNN', 'SSD', 'Face', 'FCOS', 'SOLOv2', 'TTFNet', 'S2ANet', 'JDE',
    'FairMOT', 'DeepSORT', 'GFL', 'PicoDet', 'CenterNet', 'TOOD', 'RetinaNet',
    'StrongBaseline', 'STGCN', 'YOLOX', 'PPHGNet'
Q
qingqing01 已提交
46 47 48
}


W
wangguanzhong 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
def bench_log(detector, img_list, model_info, batch_size=1, name=None):
    mems = {
        'cpu_rss_mb': detector.cpu_mem / len(img_list),
        'gpu_rss_mb': detector.gpu_mem / len(img_list),
        'gpu_util': detector.gpu_util * 100 / len(img_list)
    }
    perf_info = detector.det_times.report(average=True)
    data_info = {
        'batch_size': batch_size,
        'shape': "dynamic_shape",
        'data_num': perf_info['img_num']
    }
    log = PaddleInferBenchmark(detector.config, model_info, data_info,
                               perf_info, mems)
    log(name)


Q
qingqing01 已提交
66 67 68
class Detector(object):
    """
    Args:
69
        pred_config (object): config of model, defined by `Config(model_dir)`
Q
qingqing01 已提交
70
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
71
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
72
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
73
        batch_size (int): size of pre batch in inference
74 75 76
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
77 78 79 80
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
81
        enable_mkldnn_bfloat16 (bool): whether to turn on mkldnn bfloat16
W
wangguanzhong 已提交
82 83
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
J
JYChen 已提交
84 85
        delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT. 
                                    Used by action model.
Q
qingqing01 已提交
86 87
    """

J
JYChen 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    def __init__(self,
                 model_dir,
                 device='CPU',
                 run_mode='paddle',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
                 enable_mkldnn_bfloat16=False,
                 output_dir='output',
                 threshold=0.5,
                 delete_shuffle_pass=False):
W
wangguanzhong 已提交
103
        self.pred_config = self.set_config(model_dir)
104
        self.predictor, self.config = load_predictor(
Q
qingqing01 已提交
105 106
            model_dir,
            run_mode=run_mode,
107
            batch_size=batch_size,
Q
qingqing01 已提交
108
            min_subgraph_size=self.pred_config.min_subgraph_size,
G
Guanghua Yu 已提交
109
            device=device,
110
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
111 112
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
113
            trt_opt_shape=trt_opt_shape,
114 115
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
116
            enable_mkldnn=enable_mkldnn,
J
JYChen 已提交
117 118
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
            delete_shuffle_pass=delete_shuffle_pass)
G
Guanghua Yu 已提交
119 120
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
W
wangguanzhong 已提交
121 122 123 124 125 126
        self.batch_size = batch_size
        self.output_dir = output_dir
        self.threshold = threshold

    def set_config(self, model_dir):
        return PredictConfig(model_dir)
Q
qingqing01 已提交
127

C
cnn 已提交
128
    def preprocess(self, image_list):
Q
qingqing01 已提交
129 130 131 132 133
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
C
cnn 已提交
134 135 136 137

        input_im_lst = []
        input_im_info_lst = []
        for im_path in image_list:
138
            im, im_info = preprocess(im_path, preprocess_ops)
C
cnn 已提交
139 140 141
            input_im_lst.append(im)
            input_im_info_lst.append(im_info)
        inputs = create_inputs(input_im_lst, input_im_info_lst)
W
wangguanzhong 已提交
142 143 144
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
145 146 147 148
            if input_names[i] == 'x':
                input_tensor.copy_from_cpu(inputs['image'])
            else:
                input_tensor.copy_from_cpu(inputs[input_names[i]])
W
wangguanzhong 已提交
149

Q
qingqing01 已提交
150 151
        return inputs

W
wangguanzhong 已提交
152
    def postprocess(self, inputs, result):
Q
qingqing01 已提交
153
        # postprocess output of predictor
W
wangguanzhong 已提交
154 155 156 157 158 159
        np_boxes_num = result['boxes_num']
        if np_boxes_num[0] <= 0:
            print('[WARNNING] No object detected.')
            result = {'boxes': np.zeros([0, 6]), 'boxes_num': [0]}
        result = {k: v for k, v in result.items() if v is not None}
        return result
Q
qingqing01 已提交
160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    def filter_box(self, result, threshold):
        np_boxes_num = result['boxes_num']
        boxes = result['boxes']
        start_idx = 0
        filter_boxes = []
        filter_num = []
        for i in range(len(np_boxes_num)):
            boxes_num = np_boxes_num[i]
            boxes_i = boxes[start_idx:start_idx + boxes_num, :]
            idx = boxes_i[:, 1] > threshold
            filter_boxes_i = boxes_i[idx, :]
            filter_boxes.append(filter_boxes_i)
            filter_num.append(filter_boxes_i.shape[0])
            start_idx += boxes_num
        boxes = np.concatenate(filter_boxes)
        filter_num = np.array(filter_num)
        filter_res = {'boxes': boxes, 'boxes_num': filter_num}
        return filter_res

W
wangguanzhong 已提交
180
    def predict(self, repeats=1):
Q
qingqing01 已提交
181 182
        '''
        Args:
W
wangguanzhong 已提交
183
            repeats (int): repeats number for prediction
Q
qingqing01 已提交
184
        Returns:
W
wangguanzhong 已提交
185
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
Q
qingqing01 已提交
186
                            matix element:[class, score, x_min, y_min, x_max, y_max]
W
wangguanzhong 已提交
187
                            MaskRCNN's result include 'masks': np.ndarray:
G
Guanghua Yu 已提交
188
                            shape: [N, im_h, im_w]
Q
qingqing01 已提交
189
        '''
W
wangguanzhong 已提交
190
        # model prediction
W
wangguanzhong 已提交
191
        np_boxes, np_masks = None, None
Q
qingqing01 已提交
192 193 194 195 196
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
C
cnn 已提交
197 198
            boxes_num = self.predictor.get_output_handle(output_names[1])
            np_boxes_num = boxes_num.copy_to_cpu()
G
Guanghua Yu 已提交
199
            if self.pred_config.mask:
Q
qingqing01 已提交
200 201
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()
W
wangguanzhong 已提交
202 203 204 205 206 207 208 209 210 211 212 213
        result = dict(boxes=np_boxes, masks=np_masks, boxes_num=np_boxes_num)
        return result

    def merge_batch_result(self, batch_result):
        if len(batch_result) == 1:
            return batch_result[0]
        res_key = batch_result[0].keys()
        results = {k: [] for k in res_key}
        for res in batch_result:
            for k, v in res.items():
                results[k].append(v)
        for k, v in results.items():
214
            if k not in ['masks', 'segm']:
W
wangguanzhong 已提交
215
                results[k] = np.concatenate(v)
W
wangguanzhong 已提交
216
        return results
Q
qingqing01 已提交
217

W
wangguanzhong 已提交
218 219
    def get_timer(self):
        return self.det_times
W
wangguanzhong 已提交
220

W
wangguanzhong 已提交
221 222 223 224
    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
225 226
                      visual=True,
                      save_file=None):
W
wangguanzhong 已提交
227
        batch_loop_cnt = math.ceil(float(len(image_list)) / self.batch_size)
Q
qingqing01 已提交
228
        results = []
W
wangguanzhong 已提交
229 230 231 232 233 234 235 236 237 238 239 240
        for i in range(batch_loop_cnt):
            start_index = i * self.batch_size
            end_index = min((i + 1) * self.batch_size, len(image_list))
            batch_image_list = image_list[start_index:end_index]
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
241
                result = self.predict(repeats=50)  # warmup
W
wangguanzhong 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
            else:
                # preprocess
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                # postprocess
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                if visual:
                    visualize(
                        batch_image_list,
                        result,
                        self.pred_config.labels,
                        output_dir=self.output_dir,
                        threshold=self.threshold)

            results.append(result)
            if visual:
                print('Test iter {}'.format(i))

286 287 288 289
        if save_file is not None:
            Path(self.output_dir).mkdir(exist_ok=True)
            self.format_coco_results(image_list, results, save_file=save_file)

W
wangguanzhong 已提交
290
        results = self.merge_batch_result(results)
Q
qingqing01 已提交
291 292
        return results

W
wangguanzhong 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
    def predict_video(self, video_file, camera_id):
        video_out_name = 'output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
        else:
            capture = cv2.VideoCapture(video_file)
            video_out_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
310
        fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
W
wangguanzhong 已提交
311 312 313 314 315 316 317 318
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        index = 1
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            print('detect frame: %d' % (index))
            index += 1
L
lazyn1997 已提交
319
            results = self.predict_image([frame[:, :, ::-1]], visual=False)
W
wangguanzhong 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332

            im = visualize_box_mask(
                frame,
                results,
                self.pred_config.labels,
                threshold=self.threshold)
            im = np.array(im)
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
        writer.release()
W
wangguanzhong 已提交
333

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
    @staticmethod
    def format_coco_results(image_list, results, save_file=None):
        coco_results = []
        image_id = 0

        for result in results:
            start_idx = 0
            for box_num in result['boxes_num']:
                idx_slice = slice(start_idx, start_idx + box_num)
                start_idx += box_num

                image_file = image_list[image_id]
                image_id += 1

                if 'boxes' in result:
                    boxes = result['boxes'][idx_slice, :]
                    per_result = [
                        {
                            'image_file': image_file,
                            'bbox':
                            [box[2], box[3], box[4] - box[2],
                             box[5] - box[3]],  # xyxy -> xywh
                            'score': box[1],
                            'category_id': int(box[0]),
                        } for k, box in enumerate(boxes.tolist())
                    ]

                elif 'segm' in result:
                    import pycocotools.mask as mask_util

                    scores = result['score'][idx_slice].tolist()
                    category_ids = result['label'][idx_slice].tolist()
                    segms = result['segm'][idx_slice, :]
                    rles = [
                        mask_util.encode(
                            np.array(
                                mask[:, :, np.newaxis],
                                dtype=np.uint8,
                                order='F'))[0] for mask in segms
                    ]
                    for rle in rles:
                        rle['counts'] = rle['counts'].decode('utf-8')

                    per_result = [{
                        'image_file': image_file,
                        'segmentation': rle,
                        'score': scores[k],
                        'category_id': category_ids[k],
                    } for k, rle in enumerate(rles)]

                else:
                    raise RuntimeError('')

                # per_result = [item for item in per_result if item['score'] > threshold]
                coco_results.extend(per_result)

        if save_file:
            with open(os.path.join(save_file), 'w') as f:
                json.dump(coco_results, f)

        return coco_results

Q
qingqing01 已提交
396

G
Guanghua Yu 已提交
397 398 399 400
class DetectorSOLOv2(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
401
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
402
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
403
        batch_size (int): size of pre batch in inference
404 405 406
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
407 408 409 410
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN 
411
        enable_mkldnn_bfloat16 (bool): Whether to turn on mkldnn bfloat16
W
wangguanzhong 已提交
412 413 414
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
       
G
Guanghua Yu 已提交
415 416
    """

W
wangguanzhong 已提交
417 418
    def __init__(
            self,
G
Guanghua Yu 已提交
419
            model_dir,
W
wangguanzhong 已提交
420 421 422 423 424 425 426 427 428
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
429
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
430 431 432 433 434
            output_dir='./',
            threshold=0.5, ):
        super(DetectorSOLOv2, self).__init__(
            model_dir=model_dir,
            device=device,
G
Guanghua Yu 已提交
435
            run_mode=run_mode,
436
            batch_size=batch_size,
437 438
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
439
            trt_opt_shape=trt_opt_shape,
440 441
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
442
            enable_mkldnn=enable_mkldnn,
443
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
444 445
            output_dir=output_dir,
            threshold=threshold, )
G
Guanghua Yu 已提交
446

W
wangguanzhong 已提交
447
    def predict(self, repeats=1):
G
Guanghua Yu 已提交
448 449
        '''
        Args:
W
wangguanzhong 已提交
450
            repeats (int): repeat number for prediction
G
Guanghua Yu 已提交
451
        Returns:
W
wangguanzhong 已提交
452
            result (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
G
Guanghua Yu 已提交
453 454
                            'cate_label': label of segm, shape:[N]
                            'cate_score': confidence score of segm, shape:[N]
G
Guanghua Yu 已提交
455 456 457 458 459
        '''
        np_label, np_score, np_segms = None, None, None
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
W
wangguanzhong 已提交
460 461
            np_boxes_num = self.predictor.get_output_handle(output_names[
                0]).copy_to_cpu()
G
Guanghua Yu 已提交
462 463
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
464
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
465
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
466 467
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
G
Guanghua Yu 已提交
468

W
wangguanzhong 已提交
469
        result = dict(
W
wangguanzhong 已提交
470 471 472 473
            segm=np_segms,
            label=np_label,
            score=np_score,
            boxes_num=np_boxes_num)
W
wangguanzhong 已提交
474
        return result
G
Guanghua Yu 已提交
475 476


477 478 479 480 481
class DetectorPicoDet(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
482
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
483 484 485 486 487 488 489
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
490 491
        enable_mkldnn (bool): whether to turn on MKLDNN
        enable_mkldnn_bfloat16 (bool): whether to turn on MKLDNN_BFLOAT16
492 493
    """

W
wangguanzhong 已提交
494 495
    def __init__(
            self,
496
            model_dir,
W
wangguanzhong 已提交
497 498 499 500 501 502 503 504 505
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
506
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
507 508 509 510 511
            output_dir='./',
            threshold=0.5, ):
        super(DetectorPicoDet, self).__init__(
            model_dir=model_dir,
            device=device,
512 513 514 515 516 517 518
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
519
            enable_mkldnn=enable_mkldnn,
520
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
            output_dir=output_dir,
            threshold=threshold, )

    def postprocess(self, inputs, result):
        # postprocess output of predictor
        np_score_list = result['boxes']
        np_boxes_list = result['boxes_num']
        postprocessor = PicoDetPostProcess(
            inputs['image'].shape[2:],
            inputs['im_shape'],
            inputs['scale_factor'],
            strides=self.pred_config.fpn_stride,
            nms_threshold=self.pred_config.nms['nms_threshold'])
        np_boxes, np_boxes_num = postprocessor(np_score_list, np_boxes_list)
        result = dict(boxes=np_boxes, boxes_num=np_boxes_num)
        return result
537

W
wangguanzhong 已提交
538
    def predict(self, repeats=1):
539 540
        '''
        Args:
W
wangguanzhong 已提交
541
            repeats (int): repeat number for prediction
542
        Returns:
W
wangguanzhong 已提交
543
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
                            matix element:[class, score, x_min, y_min, x_max, y_max]
        '''
        np_score_list, np_boxes_list = [], []
        for i in range(repeats):
            self.predictor.run()
            np_score_list.clear()
            np_boxes_list.clear()
            output_names = self.predictor.get_output_names()
            num_outs = int(len(output_names) / 2)
            for out_idx in range(num_outs):
                np_score_list.append(
                    self.predictor.get_output_handle(output_names[out_idx])
                    .copy_to_cpu())
                np_boxes_list.append(
                    self.predictor.get_output_handle(output_names[
                        out_idx + num_outs]).copy_to_cpu())
W
wangguanzhong 已提交
560 561
        result = dict(boxes=np_score_list, boxes_num=np_boxes_list)
        return result
562 563


C
cnn 已提交
564
def create_inputs(imgs, im_info):
Q
qingqing01 已提交
565 566
    """generate input for different model type
    Args:
W
wangguanzhong 已提交
567 568
        imgs (list(numpy)): list of images (np.ndarray)
        im_info (list(dict)): list of image info
Q
qingqing01 已提交
569 570 571 572 573
    Returns:
        inputs (dict): input of model
    """
    inputs = {}

C
cnn 已提交
574 575
    im_shape = []
    scale_factor = []
576 577 578 579 580 581 582 583
    if len(imgs) == 1:
        inputs['image'] = np.array((imgs[0], )).astype('float32')
        inputs['im_shape'] = np.array(
            (im_info[0]['im_shape'], )).astype('float32')
        inputs['scale_factor'] = np.array(
            (im_info[0]['scale_factor'], )).astype('float32')
        return inputs

C
cnn 已提交
584 585 586 587
    for e in im_info:
        im_shape.append(np.array((e['im_shape'], )).astype('float32'))
        scale_factor.append(np.array((e['scale_factor'], )).astype('float32'))

C
cnn 已提交
588 589
    inputs['im_shape'] = np.concatenate(im_shape, axis=0)
    inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
C
cnn 已提交
590 591 592 593 594 595 596 597 598 599 600 601

    imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
    max_shape_h = max([e[0] for e in imgs_shape])
    max_shape_w = max([e[1] for e in imgs_shape])
    padding_imgs = []
    for img in imgs:
        im_c, im_h, im_w = img.shape[:]
        padding_im = np.zeros(
            (im_c, max_shape_h, max_shape_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = img
        padding_imgs.append(padding_im)
    inputs['image'] = np.stack(padding_imgs, axis=0)
Q
qingqing01 已提交
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
    return inputs


class PredictConfig():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
G
Guanghua Yu 已提交
621
        self.mask = False
622
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
G
Guanghua Yu 已提交
623 624
        if 'mask' in yml_conf:
            self.mask = yml_conf['mask']
625 626 627
        self.tracker = None
        if 'tracker' in yml_conf:
            self.tracker = yml_conf['tracker']
628 629 630 631
        if 'NMS' in yml_conf:
            self.nms = yml_conf['NMS']
        if 'fpn_stride' in yml_conf:
            self.fpn_stride = yml_conf['fpn_stride']
632 633 634 635
        if self.arch == 'RCNN' and yml_conf.get('export_onnx', False):
            print(
                'The RCNN export model is used for ONNX and it only supports batch_size = 1'
            )
Q
qingqing01 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def load_predictor(model_dir,
659
                   run_mode='paddle',
Q
qingqing01 已提交
660
                   batch_size=1,
G
Guanghua Yu 已提交
661
                   device='CPU',
662 663 664 665
                   min_subgraph_size=3,
                   use_dynamic_shape=False,
                   trt_min_shape=1,
                   trt_max_shape=1280,
G
Guanghua Yu 已提交
666
                   trt_opt_shape=640,
667 668
                   trt_calib_mode=False,
                   cpu_threads=1,
669
                   enable_mkldnn=False,
J
JYChen 已提交
670 671
                   enable_mkldnn_bfloat16=False,
                   delete_shuffle_pass=False):
Q
qingqing01 已提交
672 673 674
    """set AnalysisConfig, generate AnalysisPredictor
    Args:
        model_dir (str): root path of __model__ and __params__
G
Guanghua Yu 已提交
675
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
676
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16/trt_int8)
677 678 679 680
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
681 682
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
J
JYChen 已提交
683 684
        delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT. 
                                    Used by action model.
Q
qingqing01 已提交
685 686 687
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
G
Guanghua Yu 已提交
688
        ValueError: predict by TensorRT need device == 'GPU'.
Q
qingqing01 已提交
689
    """
690
    if device != 'GPU' and run_mode != 'paddle':
Q
qingqing01 已提交
691
        raise ValueError(
G
Guanghua Yu 已提交
692 693
            "Predict by TensorRT mode: {}, expect device=='GPU', but device == {}"
            .format(run_mode, device))
694 695 696 697 698 699 700 701 702
    infer_model = os.path.join(model_dir, 'model.pdmodel')
    infer_params = os.path.join(model_dir, 'model.pdiparams')
    if not os.path.exists(infer_model):
        infer_model = os.path.join(model_dir, 'inference.pdmodel')
        infer_params = os.path.join(model_dir, 'inference.pdiparams')
        if not os.path.exists(infer_model):
            raise ValueError(
                "Cannot find any inference model in dir: {},".format(model_dir))
    config = Config(infer_model, infer_params)
G
Guanghua Yu 已提交
703
    if device == 'GPU':
Q
qingqing01 已提交
704 705 706
        # initial GPU memory(M), device ID
        config.enable_use_gpu(200, 0)
        # optimize graph and fuse op
707
        config.switch_ir_optim(True)
G
Guanghua Yu 已提交
708
    elif device == 'XPU':
709
        config.enable_lite_engine()
G
Guanghua Yu 已提交
710
        config.enable_xpu(10 * 1024 * 1024)
Q
qingqing01 已提交
711 712
    else:
        config.disable_gpu()
713 714
        config.set_cpu_math_library_num_threads(cpu_threads)
        if enable_mkldnn:
G
Guanghua Yu 已提交
715 716 717 718
            try:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
719 720
                if enable_mkldnn_bfloat16:
                    config.enable_mkldnn_bfloat16()
G
Guanghua Yu 已提交
721 722 723 724 725
            except Exception as e:
                print(
                    "The current environment does not support `mkldnn`, so disable mkldnn."
                )
                pass
Q
qingqing01 已提交
726

G
Guanghua Yu 已提交
727 728 729 730 731
    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }
Q
qingqing01 已提交
732 733
    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
W
wangxinxin08 已提交
734
            workspace_size=(1 << 25) * batch_size,
Q
qingqing01 已提交
735 736 737 738
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
G
Guanghua Yu 已提交
739
            use_calib_mode=trt_calib_mode)
740 741

        if use_dynamic_shape:
742 743 744 745 746 747 748 749 750
            min_input_shape = {
                'image': [batch_size, 3, trt_min_shape, trt_min_shape]
            }
            max_input_shape = {
                'image': [batch_size, 3, trt_max_shape, trt_max_shape]
            }
            opt_input_shape = {
                'image': [batch_size, 3, trt_opt_shape, trt_opt_shape]
            }
751 752 753
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
            print('trt set dynamic shape done!')
Q
qingqing01 已提交
754 755 756 757 758 759 760

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
J
JYChen 已提交
761 762
    if delete_shuffle_pass:
        config.delete_pass("shuffle_channel_detect_pass")
Q
qingqing01 已提交
763
    predictor = create_predictor(config)
764
    return predictor, config
Q
qingqing01 已提交
765 766


G
Guanghua Yu 已提交
767 768 769 770 771
def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
J
JYChen 已提交
772
        "--image_file or --image_dir should be set"
G
Guanghua Yu 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


W
wangguanzhong 已提交
798
def visualize(image_list, result, labels, output_dir='output/', threshold=0.5):
Q
qingqing01 已提交
799
    # visualize the predict result
C
cnn 已提交
800 801
    start_idx = 0
    for idx, image_file in enumerate(image_list):
W
wangguanzhong 已提交
802
        im_bboxes_num = result['boxes_num'][idx]
C
cnn 已提交
803
        im_results = {}
W
wangguanzhong 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
        if 'boxes' in result:
            im_results['boxes'] = result['boxes'][start_idx:start_idx +
                                                  im_bboxes_num, :]
        if 'masks' in result:
            im_results['masks'] = result['masks'][start_idx:start_idx +
                                                  im_bboxes_num, :]
        if 'segm' in result:
            im_results['segm'] = result['segm'][start_idx:start_idx +
                                                im_bboxes_num, :]
        if 'label' in result:
            im_results['label'] = result['label'][start_idx:start_idx +
                                                  im_bboxes_num]
        if 'score' in result:
            im_results['score'] = result['score'][start_idx:start_idx +
                                                  im_bboxes_num]
W
wangguanzhong 已提交
819

C
cnn 已提交
820 821 822 823 824 825 826 827 828
        start_idx += im_bboxes_num
        im = visualize_box_mask(
            image_file, im_results, labels, threshold=threshold)
        img_name = os.path.split(image_file)[-1]
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        out_path = os.path.join(output_dir, img_name)
        im.save(out_path, quality=95)
        print("save result to: " + out_path)
Q
qingqing01 已提交
829 830 831 832 833 834 835 836 837 838


def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')


def main():
W
wangguanzhong 已提交
839 840 841 842
    deploy_file = os.path.join(FLAGS.model_dir, 'infer_cfg.yml')
    with open(deploy_file) as f:
        yml_conf = yaml.safe_load(f)
    arch = yml_conf['arch']
843
    detector_func = 'Detector'
W
wangguanzhong 已提交
844
    if arch == 'SOLOv2':
845
        detector_func = 'DetectorSOLOv2'
W
wangguanzhong 已提交
846
    elif arch == 'PicoDet':
847 848
        detector_func = 'DetectorPicoDet'

849 850 851 852 853 854 855 856 857 858 859 860 861 862
    detector = eval(detector_func)(
        FLAGS.model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        batch_size=FLAGS.batch_size,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn,
        enable_mkldnn_bfloat16=FLAGS.enable_mkldnn_bfloat16,
        threshold=FLAGS.threshold,
        output_dir=FLAGS.output_dir)
G
Guanghua Yu 已提交
863

Q
qingqing01 已提交
864
    # predict from video file or camera video stream
G
Guanghua Yu 已提交
865
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
W
wangguanzhong 已提交
866
        detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
G
Guanghua Yu 已提交
867 868
    else:
        # predict from image
C
cnn 已提交
869 870
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
G
Guanghua Yu 已提交
871
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
872 873 874 875
        save_file = os.path.join(FLAGS.output_dir,
                                 'results.json') if FLAGS.save_results else None
        detector.predict_image(
            img_list, FLAGS.run_benchmark, repeats=100, save_file=save_file)
G
Guanghua Yu 已提交
876 877 878
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
879
            mode = FLAGS.run_mode
W
wangguanzhong 已提交
880
            model_dir = FLAGS.model_dir
881
            model_info = {
882 883
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
884
            }
W
wangguanzhong 已提交
885
            bench_log(detector, img_list, model_info, name='DET')
Q
qingqing01 已提交
886 887 888 889


if __name__ == '__main__':
    paddle.enable_static()
G
Guanghua Yu 已提交
890
    parser = argsparser()
Q
qingqing01 已提交
891 892
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
G
Guanghua Yu 已提交
893 894 895 896
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
Q
qingqing01 已提交
897

898 899 900
    assert not (
        FLAGS.enable_mkldnn == False and FLAGS.enable_mkldnn_bfloat16 == True
    ), 'To enable mkldnn bfloat, please turn on both enable_mkldnn and enable_mkldnn_bfloat16'
901

Q
qingqing01 已提交
902
    main()