infer.py 29.5 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
G
Guanghua Yu 已提交
17
import glob
Q
qingqing01 已提交
18 19 20 21
from functools import reduce

import cv2
import numpy as np
C
cnn 已提交
22
import math
Q
qingqing01 已提交
23 24 25 26
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

27
from benchmark_utils import PaddleInferBenchmark
28
from picodet_postprocess import PicoDetPostProcess
W
wangguanzhong 已提交
29
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride, LetterBoxResize, WarpAffine
G
Guanghua Yu 已提交
30
from visualize import visualize_box_mask
31
from utils import argsparser, Timer, get_current_memory_mb
G
Guanghua Yu 已提交
32

Q
qingqing01 已提交
33 34 35 36 37
# Global dictionary
SUPPORT_MODELS = {
    'YOLO',
    'RCNN',
    'SSD',
38
    'Face',
F
Feng Ni 已提交
39
    'FCOS',
G
Guanghua Yu 已提交
40
    'SOLOv2',
F
Feng Ni 已提交
41
    'TTFNet',
C
cnn 已提交
42
    'S2ANet',
G
George Ni 已提交
43 44 45
    'JDE',
    'FairMOT',
    'DeepSORT',
G
Guanghua Yu 已提交
46 47
    'GFL',
    'PicoDet',
W
wangguanzhong 已提交
48
    'CenterNet',
S
shangliang Xu 已提交
49
    'TOOD',
Q
qingqing01 已提交
50 51 52 53 54 55
}


class Detector(object):
    """
    Args:
56
        pred_config (object): config of model, defined by `Config(model_dir)`
Q
qingqing01 已提交
57
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
58
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
Q
qingqing01 已提交
59
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
60
        batch_size (int): size of pre batch in inference
61 62 63
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
64 65 66 67
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
Q
qingqing01 已提交
68 69 70 71 72
    """

    def __init__(self,
                 pred_config,
                 model_dir,
G
Guanghua Yu 已提交
73
                 device='CPU',
Q
qingqing01 已提交
74
                 run_mode='fluid',
75
                 batch_size=1,
76 77 78
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
79 80 81
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
Q
qingqing01 已提交
82
        self.pred_config = pred_config
83
        self.predictor, self.config = load_predictor(
Q
qingqing01 已提交
84 85
            model_dir,
            run_mode=run_mode,
86
            batch_size=batch_size,
Q
qingqing01 已提交
87
            min_subgraph_size=self.pred_config.min_subgraph_size,
G
Guanghua Yu 已提交
88
            device=device,
89
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
90 91
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
92
            trt_opt_shape=trt_opt_shape,
93 94 95
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
G
Guanghua Yu 已提交
96 97
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
Q
qingqing01 已提交
98

C
cnn 已提交
99
    def preprocess(self, image_list):
Q
qingqing01 已提交
100 101 102 103 104
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
C
cnn 已提交
105 106 107 108

        input_im_lst = []
        input_im_info_lst = []
        for im_path in image_list:
109
            im, im_info = preprocess(im_path, preprocess_ops)
C
cnn 已提交
110 111 112
            input_im_lst.append(im)
            input_im_info_lst.append(im_info)
        inputs = create_inputs(input_im_lst, input_im_info_lst)
Q
qingqing01 已提交
113 114
        return inputs

C
cnn 已提交
115 116 117 118 119 120
    def postprocess(self,
                    np_boxes,
                    np_masks,
                    inputs,
                    np_boxes_num,
                    threshold=0.5):
Q
qingqing01 已提交
121 122 123
        # postprocess output of predictor
        results = {}
        results['boxes'] = np_boxes
C
cnn 已提交
124
        results['boxes_num'] = np_boxes_num
Q
qingqing01 已提交
125 126 127 128
        if np_masks is not None:
            results['masks'] = np_masks
        return results

W
wangguanzhong 已提交
129
    def predict(self, image_list, threshold=0.5, repeats=1, add_timer=True):
Q
qingqing01 已提交
130 131
        '''
        Args:
132
            image_list (list): list of image
Q
qingqing01 已提交
133
            threshold (float): threshold of predicted box' score
W
wangguanzhong 已提交
134 135
            repeats (int): repeat number for prediction
            add_timer (bool): whether add timer during prediction
Q
qingqing01 已提交
136 137 138 139
        Returns:
            results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                            matix element:[class, score, x_min, y_min, x_max, y_max]
                            MaskRCNN's results include 'masks': np.ndarray:
G
Guanghua Yu 已提交
140
                            shape: [N, im_h, im_w]
Q
qingqing01 已提交
141
        '''
W
wangguanzhong 已提交
142 143 144
        # preprocess
        if add_timer:
            self.det_times.preprocess_time_s.start()
C
cnn 已提交
145
        inputs = self.preprocess(image_list)
Q
qingqing01 已提交
146 147 148 149 150
        np_boxes, np_masks = None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
W
wangguanzhong 已提交
151 152 153
        if add_timer:
            self.det_times.preprocess_time_s.end()
            self.det_times.inference_time_s.start()
Q
qingqing01 已提交
154

W
wangguanzhong 已提交
155
        # model prediction
Q
qingqing01 已提交
156 157 158 159 160
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
C
cnn 已提交
161 162
            boxes_num = self.predictor.get_output_handle(output_names[1])
            np_boxes_num = boxes_num.copy_to_cpu()
G
Guanghua Yu 已提交
163
            if self.pred_config.mask:
Q
qingqing01 已提交
164 165 166
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()

W
wangguanzhong 已提交
167 168 169 170 171
        if add_timer:
            self.det_times.inference_time_s.end(repeats=repeats)
            self.det_times.postprocess_time_s.start()

        # postprocess
Q
qingqing01 已提交
172
        results = []
G
Guanghua Yu 已提交
173 174
        if reduce(lambda x, y: x * y, np_boxes.shape) < 6:
            print('[WARNNING] No object detected.')
175
            results = {'boxes': np.zeros([0, 6]), 'boxes_num': [0]}
G
Guanghua Yu 已提交
176 177
        else:
            results = self.postprocess(
C
cnn 已提交
178
                np_boxes, np_masks, inputs, np_boxes_num, threshold=threshold)
W
wangguanzhong 已提交
179 180 181
        if add_timer:
            self.det_times.postprocess_time_s.end()
            self.det_times.img_num += len(image_list)
Q
qingqing01 已提交
182 183
        return results

W
wangguanzhong 已提交
184 185 186
    def get_timer(self):
        return self.det_times

Q
qingqing01 已提交
187

G
Guanghua Yu 已提交
188 189 190 191 192
class DetectorSOLOv2(Detector):
    """
    Args:
        config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
193
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
G
Guanghua Yu 已提交
194
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
195
        batch_size (int): size of pre batch in inference
196 197 198
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
199 200 201 202
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN 
G
Guanghua Yu 已提交
203 204 205 206 207
    """

    def __init__(self,
                 pred_config,
                 model_dir,
G
Guanghua Yu 已提交
208
                 device='CPU',
G
Guanghua Yu 已提交
209
                 run_mode='fluid',
210
                 batch_size=1,
211 212 213
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
214 215 216
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
G
Guanghua Yu 已提交
217
        self.pred_config = pred_config
218
        self.predictor, self.config = load_predictor(
G
Guanghua Yu 已提交
219 220
            model_dir,
            run_mode=run_mode,
221
            batch_size=batch_size,
G
Guanghua Yu 已提交
222
            min_subgraph_size=self.pred_config.min_subgraph_size,
G
Guanghua Yu 已提交
223
            device=device,
224
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
225 226
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
227
            trt_opt_shape=trt_opt_shape,
228 229 230
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
G
Guanghua Yu 已提交
231
        self.det_times = Timer()
232
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
G
Guanghua Yu 已提交
233

W
wangguanzhong 已提交
234
    def predict(self, image, threshold=0.5, repeats=1, add_timer=True):
G
Guanghua Yu 已提交
235 236 237 238
        '''
        Args:
            image (str/np.ndarray): path of image/ np.ndarray read by cv2
            threshold (float): threshold of predicted box' score
W
wangguanzhong 已提交
239 240
            repeats (int): repeat number for prediction
            add_timer (bool): whether add timer during prediction
G
Guanghua Yu 已提交
241
        Returns:
G
Guanghua Yu 已提交
242 243 244
            results (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
                            'cate_label': label of segm, shape:[N]
                            'cate_score': confidence score of segm, shape:[N]
G
Guanghua Yu 已提交
245
        '''
W
wangguanzhong 已提交
246 247 248
        # preprocess
        if add_timer:
            self.det_times.preprocess_time_s.start()
G
Guanghua Yu 已提交
249 250 251 252 253 254
        inputs = self.preprocess(image)
        np_label, np_score, np_segms = None, None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
W
wangguanzhong 已提交
255 256 257
        if add_timer:
            self.det_times.preprocess_time_s.end()
            self.det_times.inference_time_s.start()
G
Guanghua Yu 已提交
258 259 260
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
W
wangguanzhong 已提交
261 262
            np_boxes_num = self.predictor.get_output_handle(output_names[
                0]).copy_to_cpu()
G
Guanghua Yu 已提交
263 264
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
265
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
266
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
267 268
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
W
wangguanzhong 已提交
269 270 271
        if add_timer:
            self.det_times.inference_time_s.end(repeats=repeats)
            self.det_times.img_num += 1
G
Guanghua Yu 已提交
272

W
wangguanzhong 已提交
273 274 275 276 277
        return dict(
            segm=np_segms,
            label=np_label,
            score=np_score,
            boxes_num=np_boxes_num)
G
Guanghua Yu 已提交
278 279


280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
class DetectorPicoDet(Detector):
    """
    Args:
        config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN 
    """

    def __init__(self,
                 pred_config,
                 model_dir,
                 device='CPU',
                 run_mode='fluid',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
        self.pred_config = pred_config
        self.predictor, self.config = load_predictor(
            model_dir,
            run_mode=run_mode,
            batch_size=batch_size,
            min_subgraph_size=self.pred_config.min_subgraph_size,
            device=device,
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0

W
wangguanzhong 已提交
326
    def predict(self, image, threshold=0.5, repeats=1, add_timer=True):
327 328 329 330
        '''
        Args:
            image (str/np.ndarray): path of image/ np.ndarray read by cv2
            threshold (float): threshold of predicted box' score
W
wangguanzhong 已提交
331 332
            repeats (int): repeat number for prediction
            add_timer (bool): whether add timer during prediction
333 334 335 336
        Returns:
            results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                            matix element:[class, score, x_min, y_min, x_max, y_max]
        '''
W
wangguanzhong 已提交
337 338 339
        # preprocess
        if add_timer:
            self.det_times.preprocess_time_s.start()
340 341 342 343 344
        inputs = self.preprocess(image)
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
W
wangguanzhong 已提交
345

346
        np_score_list, np_boxes_list = [], []
W
wangguanzhong 已提交
347 348 349
        if add_timer:
            self.det_times.preprocess_time_s.end()
            self.det_times.inference_time_s.start()
350

W
wangguanzhong 已提交
351
        # model_prediction
352 353 354 355 356 357 358 359 360 361 362 363 364
        for i in range(repeats):
            self.predictor.run()
            np_score_list.clear()
            np_boxes_list.clear()
            output_names = self.predictor.get_output_names()
            num_outs = int(len(output_names) / 2)
            for out_idx in range(num_outs):
                np_score_list.append(
                    self.predictor.get_output_handle(output_names[out_idx])
                    .copy_to_cpu())
                np_boxes_list.append(
                    self.predictor.get_output_handle(output_names[
                        out_idx + num_outs]).copy_to_cpu())
W
wangguanzhong 已提交
365 366 367 368 369 370
        if add_timer:
            self.det_times.inference_time_s.end(repeats=repeats)
            self.det_times.img_num += 1
            self.det_times.postprocess_time_s.start()

        # postprocess
371 372 373 374 375 376 377
        self.postprocess = PicoDetPostProcess(
            inputs['image'].shape[2:],
            inputs['im_shape'],
            inputs['scale_factor'],
            strides=self.pred_config.fpn_stride,
            nms_threshold=self.pred_config.nms['nms_threshold'])
        np_boxes, np_boxes_num = self.postprocess(np_score_list, np_boxes_list)
W
wangguanzhong 已提交
378 379
        if add_timer:
            self.det_times.postprocess_time_s.end()
380 381 382
        return dict(boxes=np_boxes, boxes_num=np_boxes_num)


C
cnn 已提交
383
def create_inputs(imgs, im_info):
Q
qingqing01 已提交
384 385
    """generate input for different model type
    Args:
W
wangguanzhong 已提交
386 387
        imgs (list(numpy)): list of images (np.ndarray)
        im_info (list(dict)): list of image info
Q
qingqing01 已提交
388 389 390 391 392
    Returns:
        inputs (dict): input of model
    """
    inputs = {}

C
cnn 已提交
393 394
    im_shape = []
    scale_factor = []
395 396 397 398 399 400 401 402
    if len(imgs) == 1:
        inputs['image'] = np.array((imgs[0], )).astype('float32')
        inputs['im_shape'] = np.array(
            (im_info[0]['im_shape'], )).astype('float32')
        inputs['scale_factor'] = np.array(
            (im_info[0]['scale_factor'], )).astype('float32')
        return inputs

C
cnn 已提交
403 404 405 406
    for e in im_info:
        im_shape.append(np.array((e['im_shape'], )).astype('float32'))
        scale_factor.append(np.array((e['scale_factor'], )).astype('float32'))

C
cnn 已提交
407 408
    inputs['im_shape'] = np.concatenate(im_shape, axis=0)
    inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
C
cnn 已提交
409 410 411 412 413 414 415 416 417 418 419 420

    imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
    max_shape_h = max([e[0] for e in imgs_shape])
    max_shape_w = max([e[1] for e in imgs_shape])
    padding_imgs = []
    for img in imgs:
        im_c, im_h, im_w = img.shape[:]
        padding_im = np.zeros(
            (im_c, max_shape_h, max_shape_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = img
        padding_imgs.append(padding_im)
    inputs['image'] = np.stack(padding_imgs, axis=0)
Q
qingqing01 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
    return inputs


class PredictConfig():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
G
Guanghua Yu 已提交
440
        self.mask = False
441
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
G
Guanghua Yu 已提交
442 443
        if 'mask' in yml_conf:
            self.mask = yml_conf['mask']
444 445 446
        self.tracker = None
        if 'tracker' in yml_conf:
            self.tracker = yml_conf['tracker']
447 448 449 450
        if 'NMS' in yml_conf:
            self.nms = yml_conf['NMS']
        if 'fpn_stride' in yml_conf:
            self.fpn_stride = yml_conf['fpn_stride']
Q
qingqing01 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def load_predictor(model_dir,
                   run_mode='fluid',
                   batch_size=1,
G
Guanghua Yu 已提交
476
                   device='CPU',
477 478 479 480
                   min_subgraph_size=3,
                   use_dynamic_shape=False,
                   trt_min_shape=1,
                   trt_max_shape=1280,
G
Guanghua Yu 已提交
481
                   trt_opt_shape=640,
482 483 484
                   trt_calib_mode=False,
                   cpu_threads=1,
                   enable_mkldnn=False):
Q
qingqing01 已提交
485 486 487
    """set AnalysisConfig, generate AnalysisPredictor
    Args:
        model_dir (str): root path of __model__ and __params__
G
Guanghua Yu 已提交
488
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
489
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16/trt_int8)
490 491 492 493
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
494 495
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
Q
qingqing01 已提交
496 497 498
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
G
Guanghua Yu 已提交
499
        ValueError: predict by TensorRT need device == 'GPU'.
Q
qingqing01 已提交
500
    """
G
Guanghua Yu 已提交
501
    if device != 'GPU' and run_mode != 'fluid':
Q
qingqing01 已提交
502
        raise ValueError(
G
Guanghua Yu 已提交
503 504
            "Predict by TensorRT mode: {}, expect device=='GPU', but device == {}"
            .format(run_mode, device))
Q
qingqing01 已提交
505 506 507
    config = Config(
        os.path.join(model_dir, 'model.pdmodel'),
        os.path.join(model_dir, 'model.pdiparams'))
G
Guanghua Yu 已提交
508
    if device == 'GPU':
Q
qingqing01 已提交
509 510 511
        # initial GPU memory(M), device ID
        config.enable_use_gpu(200, 0)
        # optimize graph and fuse op
512
        config.switch_ir_optim(True)
G
Guanghua Yu 已提交
513
    elif device == 'XPU':
514
        config.enable_lite_engine()
G
Guanghua Yu 已提交
515
        config.enable_xpu(10 * 1024 * 1024)
Q
qingqing01 已提交
516 517
    else:
        config.disable_gpu()
518 519
        config.set_cpu_math_library_num_threads(cpu_threads)
        if enable_mkldnn:
G
Guanghua Yu 已提交
520 521 522 523 524 525 526 527 528
            try:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
            except Exception as e:
                print(
                    "The current environment does not support `mkldnn`, so disable mkldnn."
                )
                pass
Q
qingqing01 已提交
529

G
Guanghua Yu 已提交
530 531 532 533 534
    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }
Q
qingqing01 已提交
535 536
    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
537
            workspace_size=1 << 25,
Q
qingqing01 已提交
538 539 540 541
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
G
Guanghua Yu 已提交
542
            use_calib_mode=trt_calib_mode)
543 544

        if use_dynamic_shape:
545 546 547 548 549 550 551 552 553
            min_input_shape = {
                'image': [batch_size, 3, trt_min_shape, trt_min_shape]
            }
            max_input_shape = {
                'image': [batch_size, 3, trt_max_shape, trt_max_shape]
            }
            opt_input_shape = {
                'image': [batch_size, 3, trt_opt_shape, trt_opt_shape]
            }
554 555 556
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
            print('trt set dynamic shape done!')
Q
qingqing01 已提交
557 558 559 560 561 562 563 564

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
    predictor = create_predictor(config)
565
    return predictor, config
Q
qingqing01 已提交
566 567


G
Guanghua Yu 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
        "--infer_img or --infer_dir should be set"
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


C
cnn 已提交
599
def visualize(image_list, results, labels, output_dir='output/', threshold=0.5):
Q
qingqing01 已提交
600
    # visualize the predict result
C
cnn 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613
    start_idx = 0
    for idx, image_file in enumerate(image_list):
        im_bboxes_num = results['boxes_num'][idx]
        im_results = {}
        if 'boxes' in results:
            im_results['boxes'] = results['boxes'][start_idx:start_idx +
                                                   im_bboxes_num, :]
        if 'masks' in results:
            im_results['masks'] = results['masks'][start_idx:start_idx +
                                                   im_bboxes_num, :]
        if 'segm' in results:
            im_results['segm'] = results['segm'][start_idx:start_idx +
                                                 im_bboxes_num, :]
W
wangguanzhong 已提交
614 615 616 617 618 619 620
        if 'label' in results:
            im_results['label'] = results['label'][start_idx:start_idx +
                                                   im_bboxes_num]
        if 'score' in results:
            im_results['score'] = results['score'][start_idx:start_idx +
                                                   im_bboxes_num]

C
cnn 已提交
621 622 623 624 625 626 627 628 629
        start_idx += im_bboxes_num
        im = visualize_box_mask(
            image_file, im_results, labels, threshold=threshold)
        img_name = os.path.split(image_file)[-1]
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        out_path = os.path.join(output_dir, img_name)
        im.save(out_path, quality=95)
        print("save result to: " + out_path)
Q
qingqing01 已提交
630 631 632 633 634 635 636 637 638


def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')


C
cnn 已提交
639 640 641 642 643 644
def predict_image(detector, image_list, batch_size=1):
    batch_loop_cnt = math.ceil(float(len(image_list)) / batch_size)
    for i in range(batch_loop_cnt):
        start_index = i * batch_size
        end_index = min((i + 1) * batch_size, len(image_list))
        batch_image_list = image_list[start_index:end_index]
G
Guanghua Yu 已提交
645
        if FLAGS.run_benchmark:
W
wangguanzhong 已提交
646
            # warmup
C
cnn 已提交
647
            detector.predict(
W
wangguanzhong 已提交
648 649 650 651 652
                batch_image_list, FLAGS.threshold, repeats=10, add_timer=False)
            # run benchmark
            detector.predict(
                batch_image_list, FLAGS.threshold, repeats=10, add_timer=True)

G
Guanghua Yu 已提交
653 654 655 656
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
C
cnn 已提交
657
            print('Test iter {}'.format(i))
G
Guanghua Yu 已提交
658
        else:
C
cnn 已提交
659
            results = detector.predict(batch_image_list, FLAGS.threshold)
G
Guanghua Yu 已提交
660
            visualize(
C
cnn 已提交
661
                batch_image_list,
G
Guanghua Yu 已提交
662 663 664 665
                results,
                detector.pred_config.labels,
                output_dir=FLAGS.output_dir,
                threshold=FLAGS.threshold)
Q
qingqing01 已提交
666 667 668


def predict_video(detector, camera_id):
669
    video_out_name = 'output.mp4'
Q
qingqing01 已提交
670 671 672 673
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
674 675
        video_out_name = os.path.split(FLAGS.video_file)[-1]
    # Get Video info : resolution, fps, frame count
Q
qingqing01 已提交
676 677
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
678 679 680 681
    fps = int(capture.get(cv2.CAP_PROP_FPS))
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print("fps: %d, frame_count: %d" % (fps, frame_count))

Q
qingqing01 已提交
682 683
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
684
    out_path = os.path.join(FLAGS.output_dir, video_out_name)
W
wangguanzhong 已提交
685
    fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
Q
qingqing01 已提交
686 687 688 689 690 691
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    index = 1
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
692
        print('detect frame: %d' % (index))
Q
qingqing01 已提交
693
        index += 1
C
cnn 已提交
694
        results = detector.predict([frame], FLAGS.threshold)
Q
qingqing01 已提交
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
        im = visualize_box_mask(
            frame,
            results,
            detector.pred_config.labels,
            threshold=FLAGS.threshold)
        im = np.array(im)
        writer.write(im)
        if camera_id != -1:
            cv2.imshow('Mask Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
    writer.release()


def main():
    pred_config = PredictConfig(FLAGS.model_dir)
711
    detector_func = 'Detector'
G
Guanghua Yu 已提交
712
    if pred_config.arch == 'SOLOv2':
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
        detector_func = 'DetectorSOLOv2'
    elif pred_config.arch == 'PicoDet':
        detector_func = 'DetectorPicoDet'

    detector = eval(detector_func)(pred_config,
                                   FLAGS.model_dir,
                                   device=FLAGS.device,
                                   run_mode=FLAGS.run_mode,
                                   batch_size=FLAGS.batch_size,
                                   trt_min_shape=FLAGS.trt_min_shape,
                                   trt_max_shape=FLAGS.trt_max_shape,
                                   trt_opt_shape=FLAGS.trt_opt_shape,
                                   trt_calib_mode=FLAGS.trt_calib_mode,
                                   cpu_threads=FLAGS.cpu_threads,
                                   enable_mkldnn=FLAGS.enable_mkldnn)
G
Guanghua Yu 已提交
728

Q
qingqing01 已提交
729
    # predict from video file or camera video stream
G
Guanghua Yu 已提交
730
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
Q
qingqing01 已提交
731
        predict_video(detector, FLAGS.camera_id)
G
Guanghua Yu 已提交
732 733
    else:
        # predict from image
C
cnn 已提交
734 735
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
G
Guanghua Yu 已提交
736
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
C
cnn 已提交
737
        predict_image(detector, img_list, FLAGS.batch_size)
G
Guanghua Yu 已提交
738 739 740 741
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mems = {
742 743
                'cpu_rss_mb': detector.cpu_mem / len(img_list),
                'gpu_rss_mb': detector.gpu_mem / len(img_list),
G
Guanghua Yu 已提交
744 745
                'gpu_util': detector.gpu_util * 100 / len(img_list)
            }
746 747 748 749 750

            perf_info = detector.det_times.report(average=True)
            model_dir = FLAGS.model_dir
            mode = FLAGS.run_mode
            model_info = {
751 752
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
753 754
            }
            data_info = {
755
                'batch_size': FLAGS.batch_size,
756 757 758
                'shape': "dynamic_shape",
                'data_num': perf_info['img_num']
            }
759 760
            det_log = PaddleInferBenchmark(detector.config, model_info,
                                           data_info, perf_info, mems)
761
            det_log('Det')
Q
qingqing01 已提交
762 763 764 765


if __name__ == '__main__':
    paddle.enable_static()
G
Guanghua Yu 已提交
766
    parser = argsparser()
Q
qingqing01 已提交
767 768
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
G
Guanghua Yu 已提交
769 770 771 772
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
Q
qingqing01 已提交
773 774

    main()