未验证 提交 3d222388 编写于 作者: G Guanghua Yu 提交者: GitHub

fix_deploy_python_infer (#2231)

上级 4cd12915
......@@ -23,7 +23,7 @@ from PIL import Image
import cv2
import numpy as np
import paddle
from preprocess import preprocess, ResizeOp, NormalizeImageOp, PermuteOp, PadStride
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride
from visualize import visualize_box_mask
from paddle.inference import Config
from paddle.inference import create_predictor
......@@ -196,22 +196,22 @@ class DetectorSOLOv2(Detector):
self.predictor.run()
output_names = self.predictor.get_output_names()
np_label = self.predictor.get_output_handle(output_names[
0]).copy_to_cpu()
np_score = self.predictor.get_output_handle(output_names[
1]).copy_to_cpu()
np_segms = self.predictor.get_output_handle(output_names[
np_score = self.predictor.get_output_handle(output_names[
2]).copy_to_cpu()
np_segms = self.predictor.get_output_handle(output_names[
3]).copy_to_cpu()
t1 = time.time()
for i in range(repeats):
self.predictor.run()
output_names = self.predictor.get_output_names()
np_label = self.predictor.get_output_handle(output_names[
0]).copy_to_cpu()
np_score = self.predictor.get_output_handle(output_names[
1]).copy_to_cpu()
np_segms = self.predictor.get_output_handle(output_names[
np_score = self.predictor.get_output_handle(output_names[
2]).copy_to_cpu()
np_segms = self.predictor.get_output_handle(output_names[
3]).copy_to_cpu()
t2 = time.time()
ms = (t2 - t1) * 1000.0 / repeats
print("Inference: {} ms per batch image".format(ms))
......
......@@ -38,7 +38,7 @@ def decode_image(im_file, im_info):
return im, im_info
class ResizeOp(object):
class Resize(object):
"""resize image by target_size and max_size
Args:
target_size (int): the target size of image
......@@ -115,7 +115,7 @@ class ResizeOp(object):
return im_scale_y, im_scale_x
class NormalizeImageOp(object):
class NormalizeImage(object):
"""normalize image
Args:
mean (list): im - mean
......@@ -150,7 +150,7 @@ class NormalizeImageOp(object):
return im, im_info
class PermuteOp(object):
class Permute(object):
"""permute image
Args:
to_bgr (bool): whether convert RGB to BGR
......@@ -158,7 +158,7 @@ class PermuteOp(object):
"""
def __init__(self, ):
super(PermuteOp, self).__init__()
super(Permute, self).__init__()
def __call__(self, im, im_info):
"""
......
......@@ -173,7 +173,7 @@ def draw_segm(im,
clsid2color = {}
np_segms = np_segms.astype(np.uint8)
for i in range(np_segms.shape[0]):
mask, score, clsid = np_segms[i], np_score[i], np_label[i] + 1
mask, score, clsid = np_segms[i], np_score[i], np_label[i]
if score < threshold:
continue
......
......@@ -12,7 +12,7 @@
**环境需求:**
- PaddlePaddle 每日版本
- PaddlePaddle 2.0.1 或 PaddlePaddle release/2.0分支最新编译安装包
- OS 64位操作系统
- Python 3(3.5.1+/3.6/3.7),64位版本
- pip/pip3(9.0.1+),64位版本
......
......@@ -52,7 +52,7 @@ def _parse_reader(reader_cfg, dataset_cfg, metric, arch, image_shape):
for st in sample_transforms[1:]:
for key, value in st.items():
p = {'type': key}
if key == 'ResizeOp':
if key == 'Resize':
if value.get('keep_ratio',
False) and image_shape[1] is not None:
max_size = max(image_shape[1:])
......@@ -65,7 +65,7 @@ def _parse_reader(reader_cfg, dataset_cfg, metric, arch, image_shape):
methods = [list(bt.keys())[0] for bt in batch_transforms]
for bt in batch_transforms:
for key, value in bt.items():
if key == 'PadBatchOp':
if key == 'PadBatch':
preprocess_list.append({'type': 'PadStride'})
preprocess_list[-1].update({
'stride': value['pad_to_stride']
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册