infer.py 25.5 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
G
Guanghua Yu 已提交
17
import glob
Q
qingqing01 已提交
18 19 20 21
from functools import reduce

import cv2
import numpy as np
C
cnn 已提交
22
import math
Q
qingqing01 已提交
23 24 25 26
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

27
from benchmark_utils import PaddleInferBenchmark
G
George Ni 已提交
28
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride, LetterBoxResize
G
Guanghua Yu 已提交
29
from visualize import visualize_box_mask
30
from utils import argsparser, Timer, get_current_memory_mb
G
Guanghua Yu 已提交
31

Q
qingqing01 已提交
32 33 34 35 36
# Global dictionary
SUPPORT_MODELS = {
    'YOLO',
    'RCNN',
    'SSD',
37
    'Face',
F
Feng Ni 已提交
38
    'FCOS',
G
Guanghua Yu 已提交
39
    'SOLOv2',
F
Feng Ni 已提交
40
    'TTFNet',
C
cnn 已提交
41
    'S2ANet',
G
George Ni 已提交
42 43 44
    'JDE',
    'FairMOT',
    'DeepSORT',
Q
qingqing01 已提交
45 46 47 48 49 50
}


class Detector(object):
    """
    Args:
51
        pred_config (object): config of model, defined by `Config(model_dir)`
Q
qingqing01 已提交
52
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
53
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
Q
qingqing01 已提交
54
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
55
        batch_size (int): size of pre batch in inference
56 57 58
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
59 60 61 62
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
Q
qingqing01 已提交
63 64 65 66 67
    """

    def __init__(self,
                 pred_config,
                 model_dir,
G
Guanghua Yu 已提交
68
                 device='CPU',
Q
qingqing01 已提交
69
                 run_mode='fluid',
70
                 batch_size=1,
71 72 73
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
74 75 76
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
Q
qingqing01 已提交
77
        self.pred_config = pred_config
78
        self.predictor, self.config = load_predictor(
Q
qingqing01 已提交
79 80
            model_dir,
            run_mode=run_mode,
81
            batch_size=batch_size,
Q
qingqing01 已提交
82
            min_subgraph_size=self.pred_config.min_subgraph_size,
G
Guanghua Yu 已提交
83
            device=device,
84
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
85 86
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
87
            trt_opt_shape=trt_opt_shape,
88 89 90
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
G
Guanghua Yu 已提交
91 92
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
Q
qingqing01 已提交
93

C
cnn 已提交
94
    def preprocess(self, image_list):
Q
qingqing01 已提交
95 96 97 98 99
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
C
cnn 已提交
100 101 102 103

        input_im_lst = []
        input_im_info_lst = []
        for im_path in image_list:
104
            im, im_info = preprocess(im_path, preprocess_ops)
C
cnn 已提交
105 106 107
            input_im_lst.append(im)
            input_im_info_lst.append(im_info)
        inputs = create_inputs(input_im_lst, input_im_info_lst)
Q
qingqing01 已提交
108 109
        return inputs

C
cnn 已提交
110 111 112 113 114 115
    def postprocess(self,
                    np_boxes,
                    np_masks,
                    inputs,
                    np_boxes_num,
                    threshold=0.5):
Q
qingqing01 已提交
116 117 118
        # postprocess output of predictor
        results = {}
        results['boxes'] = np_boxes
C
cnn 已提交
119
        results['boxes_num'] = np_boxes_num
Q
qingqing01 已提交
120 121 122 123
        if np_masks is not None:
            results['masks'] = np_masks
        return results

C
cnn 已提交
124
    def predict(self, image_list, threshold=0.5, warmup=0, repeats=1):
Q
qingqing01 已提交
125 126
        '''
        Args:
127
            image_list (list): list of image
Q
qingqing01 已提交
128 129 130 131 132
            threshold (float): threshold of predicted box' score
        Returns:
            results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                            matix element:[class, score, x_min, y_min, x_max, y_max]
                            MaskRCNN's results include 'masks': np.ndarray:
G
Guanghua Yu 已提交
133
                            shape: [N, im_h, im_w]
Q
qingqing01 已提交
134
        '''
135
        self.det_times.preprocess_time_s.start()
C
cnn 已提交
136
        inputs = self.preprocess(image_list)
137
        self.det_times.preprocess_time_s.end()
Q
qingqing01 已提交
138 139 140 141 142 143 144 145 146 147
        np_boxes, np_masks = None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
G
Guanghua Yu 已提交
148
            if self.pred_config.mask:
Q
qingqing01 已提交
149 150 151
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()

152
        self.det_times.inference_time_s.start()
Q
qingqing01 已提交
153 154 155 156 157
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
C
cnn 已提交
158 159
            boxes_num = self.predictor.get_output_handle(output_names[1])
            np_boxes_num = boxes_num.copy_to_cpu()
G
Guanghua Yu 已提交
160
            if self.pred_config.mask:
Q
qingqing01 已提交
161 162
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()
163
        self.det_times.inference_time_s.end(repeats=repeats)
Q
qingqing01 已提交
164

165
        self.det_times.postprocess_time_s.start()
Q
qingqing01 已提交
166
        results = []
G
Guanghua Yu 已提交
167 168
        if reduce(lambda x, y: x * y, np_boxes.shape) < 6:
            print('[WARNNING] No object detected.')
169
            results = {'boxes': np.array([[]]), 'boxes_num': [0]}
G
Guanghua Yu 已提交
170 171
        else:
            results = self.postprocess(
C
cnn 已提交
172
                np_boxes, np_masks, inputs, np_boxes_num, threshold=threshold)
173
        self.det_times.postprocess_time_s.end()
C
cnn 已提交
174
        self.det_times.img_num += len(image_list)
Q
qingqing01 已提交
175 176
        return results

W
wangguanzhong 已提交
177 178 179
    def get_timer(self):
        return self.det_times

Q
qingqing01 已提交
180

G
Guanghua Yu 已提交
181 182 183 184 185
class DetectorSOLOv2(Detector):
    """
    Args:
        config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
186
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
G
Guanghua Yu 已提交
187
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
188
        batch_size (int): size of pre batch in inference
189 190 191
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
192 193 194 195
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN 
G
Guanghua Yu 已提交
196 197 198 199 200
    """

    def __init__(self,
                 pred_config,
                 model_dir,
G
Guanghua Yu 已提交
201
                 device='CPU',
G
Guanghua Yu 已提交
202
                 run_mode='fluid',
203
                 batch_size=1,
204 205 206
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
207 208 209
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
G
Guanghua Yu 已提交
210
        self.pred_config = pred_config
211
        self.predictor, self.config = load_predictor(
G
Guanghua Yu 已提交
212 213
            model_dir,
            run_mode=run_mode,
214
            batch_size=batch_size,
G
Guanghua Yu 已提交
215
            min_subgraph_size=self.pred_config.min_subgraph_size,
G
Guanghua Yu 已提交
216
            device=device,
217
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
218 219
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
220
            trt_opt_shape=trt_opt_shape,
221 222 223
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
G
Guanghua Yu 已提交
224
        self.det_times = Timer()
225
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
G
Guanghua Yu 已提交
226 227

    def predict(self, image, threshold=0.5, warmup=0, repeats=1):
G
Guanghua Yu 已提交
228 229 230 231 232
        '''
        Args:
            image (str/np.ndarray): path of image/ np.ndarray read by cv2
            threshold (float): threshold of predicted box' score
        Returns:
G
Guanghua Yu 已提交
233 234 235
            results (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
                            'cate_label': label of segm, shape:[N]
                            'cate_score': confidence score of segm, shape:[N]
G
Guanghua Yu 已提交
236
        '''
237
        self.det_times.preprocess_time_s.start()
G
Guanghua Yu 已提交
238
        inputs = self.preprocess(image)
239
        self.det_times.preprocess_time_s.end()
G
Guanghua Yu 已提交
240 241 242 243 244 245 246 247
        np_label, np_score, np_segms = None, None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
W
wangguanzhong 已提交
248 249
            np_boxes_num = self.predictor.get_output_handle(output_names[
                0]).copy_to_cpu()
G
Guanghua Yu 已提交
250 251
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
252
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
253
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
254 255
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
256
        self.det_times.inference_time_s.start()
G
Guanghua Yu 已提交
257 258 259
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
W
wangguanzhong 已提交
260 261
            np_boxes_num = self.predictor.get_output_handle(output_names[
                0]).copy_to_cpu()
G
Guanghua Yu 已提交
262 263
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
264
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
265
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
266 267
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
268
        self.det_times.inference_time_s.end(repeats=repeats)
G
Guanghua Yu 已提交
269
        self.det_times.img_num += 1
G
Guanghua Yu 已提交
270

W
wangguanzhong 已提交
271 272 273 274 275
        return dict(
            segm=np_segms,
            label=np_label,
            score=np_score,
            boxes_num=np_boxes_num)
G
Guanghua Yu 已提交
276 277


C
cnn 已提交
278
def create_inputs(imgs, im_info):
Q
qingqing01 已提交
279 280
    """generate input for different model type
    Args:
W
wangguanzhong 已提交
281 282
        imgs (list(numpy)): list of images (np.ndarray)
        im_info (list(dict)): list of image info
Q
qingqing01 已提交
283 284 285 286 287
    Returns:
        inputs (dict): input of model
    """
    inputs = {}

C
cnn 已提交
288 289
    im_shape = []
    scale_factor = []
290 291 292 293 294 295 296 297
    if len(imgs) == 1:
        inputs['image'] = np.array((imgs[0], )).astype('float32')
        inputs['im_shape'] = np.array(
            (im_info[0]['im_shape'], )).astype('float32')
        inputs['scale_factor'] = np.array(
            (im_info[0]['scale_factor'], )).astype('float32')
        return inputs

C
cnn 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
    for e in im_info:
        im_shape.append(np.array((e['im_shape'], )).astype('float32'))
        scale_factor.append(np.array((e['scale_factor'], )).astype('float32'))

    origin_scale_factor = np.concatenate(scale_factor, axis=0)

    imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
    max_shape_h = max([e[0] for e in imgs_shape])
    max_shape_w = max([e[1] for e in imgs_shape])
    padding_imgs = []
    padding_imgs_shape = []
    padding_imgs_scale = []
    for img in imgs:
        im_c, im_h, im_w = img.shape[:]
        padding_im = np.zeros(
            (im_c, max_shape_h, max_shape_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = img
        padding_imgs.append(padding_im)
        padding_imgs_shape.append(
            np.array([max_shape_h, max_shape_w]).astype('float32'))
        rescale = [
            float(max_shape_h) / float(im_h), float(max_shape_w) / float(im_w)
        ]
        padding_imgs_scale.append(np.array(rescale).astype('float32'))
    inputs['image'] = np.stack(padding_imgs, axis=0)
    inputs['im_shape'] = np.stack(padding_imgs_shape, axis=0)
    inputs['scale_factor'] = origin_scale_factor
Q
qingqing01 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
    return inputs


class PredictConfig():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
G
Guanghua Yu 已提交
344
        self.mask = False
345
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
G
Guanghua Yu 已提交
346 347
        if 'mask' in yml_conf:
            self.mask = yml_conf['mask']
Q
qingqing01 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def load_predictor(model_dir,
                   run_mode='fluid',
                   batch_size=1,
G
Guanghua Yu 已提交
373
                   device='CPU',
374 375 376 377
                   min_subgraph_size=3,
                   use_dynamic_shape=False,
                   trt_min_shape=1,
                   trt_max_shape=1280,
G
Guanghua Yu 已提交
378
                   trt_opt_shape=640,
379 380 381
                   trt_calib_mode=False,
                   cpu_threads=1,
                   enable_mkldnn=False):
Q
qingqing01 已提交
382 383 384
    """set AnalysisConfig, generate AnalysisPredictor
    Args:
        model_dir (str): root path of __model__ and __params__
G
Guanghua Yu 已提交
385
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
386
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16/trt_int8)
387 388 389 390
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
391 392
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
Q
qingqing01 已提交
393 394 395
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
G
Guanghua Yu 已提交
396
        ValueError: predict by TensorRT need device == 'GPU'.
Q
qingqing01 已提交
397
    """
G
Guanghua Yu 已提交
398
    if device != 'GPU' and run_mode != 'fluid':
Q
qingqing01 已提交
399
        raise ValueError(
G
Guanghua Yu 已提交
400 401
            "Predict by TensorRT mode: {}, expect device=='GPU', but device == {}"
            .format(run_mode, device))
Q
qingqing01 已提交
402 403 404
    config = Config(
        os.path.join(model_dir, 'model.pdmodel'),
        os.path.join(model_dir, 'model.pdiparams'))
G
Guanghua Yu 已提交
405
    if device == 'GPU':
Q
qingqing01 已提交
406 407 408
        # initial GPU memory(M), device ID
        config.enable_use_gpu(200, 0)
        # optimize graph and fuse op
409
        config.switch_ir_optim(True)
G
Guanghua Yu 已提交
410 411
    elif device == 'XPU':
        config.enable_xpu(10 * 1024 * 1024)
Q
qingqing01 已提交
412 413
    else:
        config.disable_gpu()
414 415
        config.set_cpu_math_library_num_threads(cpu_threads)
        if enable_mkldnn:
G
Guanghua Yu 已提交
416 417 418 419 420 421 422 423 424
            try:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
            except Exception as e:
                print(
                    "The current environment does not support `mkldnn`, so disable mkldnn."
                )
                pass
Q
qingqing01 已提交
425

G
Guanghua Yu 已提交
426 427 428 429 430
    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }
Q
qingqing01 已提交
431 432 433 434 435 436 437
    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
            workspace_size=1 << 10,
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
G
Guanghua Yu 已提交
438
            use_calib_mode=trt_calib_mode)
439 440

        if use_dynamic_shape:
441 442 443 444 445 446 447 448 449
            min_input_shape = {
                'image': [batch_size, 3, trt_min_shape, trt_min_shape]
            }
            max_input_shape = {
                'image': [batch_size, 3, trt_max_shape, trt_max_shape]
            }
            opt_input_shape = {
                'image': [batch_size, 3, trt_opt_shape, trt_opt_shape]
            }
450 451 452
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
            print('trt set dynamic shape done!')
Q
qingqing01 已提交
453 454 455 456 457 458 459 460

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
    predictor = create_predictor(config)
461
    return predictor, config
Q
qingqing01 已提交
462 463


G
Guanghua Yu 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
        "--infer_img or --infer_dir should be set"
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


C
cnn 已提交
495
def visualize(image_list, results, labels, output_dir='output/', threshold=0.5):
Q
qingqing01 已提交
496
    # visualize the predict result
C
cnn 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509
    start_idx = 0
    for idx, image_file in enumerate(image_list):
        im_bboxes_num = results['boxes_num'][idx]
        im_results = {}
        if 'boxes' in results:
            im_results['boxes'] = results['boxes'][start_idx:start_idx +
                                                   im_bboxes_num, :]
        if 'masks' in results:
            im_results['masks'] = results['masks'][start_idx:start_idx +
                                                   im_bboxes_num, :]
        if 'segm' in results:
            im_results['segm'] = results['segm'][start_idx:start_idx +
                                                 im_bboxes_num, :]
W
wangguanzhong 已提交
510 511 512 513 514 515 516
        if 'label' in results:
            im_results['label'] = results['label'][start_idx:start_idx +
                                                   im_bboxes_num]
        if 'score' in results:
            im_results['score'] = results['score'][start_idx:start_idx +
                                                   im_bboxes_num]

C
cnn 已提交
517 518 519 520 521 522 523 524 525
        start_idx += im_bboxes_num
        im = visualize_box_mask(
            image_file, im_results, labels, threshold=threshold)
        img_name = os.path.split(image_file)[-1]
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        out_path = os.path.join(output_dir, img_name)
        im.save(out_path, quality=95)
        print("save result to: " + out_path)
Q
qingqing01 已提交
526 527 528 529 530 531 532 533 534


def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')


C
cnn 已提交
535 536 537 538 539 540
def predict_image(detector, image_list, batch_size=1):
    batch_loop_cnt = math.ceil(float(len(image_list)) / batch_size)
    for i in range(batch_loop_cnt):
        start_index = i * batch_size
        end_index = min((i + 1) * batch_size, len(image_list))
        batch_image_list = image_list[start_index:end_index]
G
Guanghua Yu 已提交
541
        if FLAGS.run_benchmark:
C
cnn 已提交
542 543
            detector.predict(
                batch_image_list, FLAGS.threshold, warmup=10, repeats=10)
G
Guanghua Yu 已提交
544 545 546 547
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
C
cnn 已提交
548
            print('Test iter {}'.format(i))
G
Guanghua Yu 已提交
549
        else:
C
cnn 已提交
550
            results = detector.predict(batch_image_list, FLAGS.threshold)
G
Guanghua Yu 已提交
551
            visualize(
C
cnn 已提交
552
                batch_image_list,
G
Guanghua Yu 已提交
553 554 555 556
                results,
                detector.pred_config.labels,
                output_dir=FLAGS.output_dir,
                threshold=FLAGS.threshold)
Q
qingqing01 已提交
557 558 559 560 561 562 563 564 565 566


def predict_video(detector, camera_id):
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
    fps = 30
C
cnn 已提交
567 568
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print('frame_count', frame_count)
Q
qingqing01 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
    # yapf: disable
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    # yapf: enable
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    index = 1
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        print('detect frame:%d' % (index))
        index += 1
C
cnn 已提交
585
        results = detector.predict([frame], FLAGS.threshold)
Q
qingqing01 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
        im = visualize_box_mask(
            frame,
            results,
            detector.pred_config.labels,
            threshold=FLAGS.threshold)
        im = np.array(im)
        writer.write(im)
        if camera_id != -1:
            cv2.imshow('Mask Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
    writer.release()


def main():
    pred_config = PredictConfig(FLAGS.model_dir)
    detector = Detector(
        pred_config,
        FLAGS.model_dir,
G
Guanghua Yu 已提交
605
        device=FLAGS.device,
606
        run_mode=FLAGS.run_mode,
607
        batch_size=FLAGS.batch_size,
608 609
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
G
Guanghua Yu 已提交
610
        trt_opt_shape=FLAGS.trt_opt_shape,
611 612 613
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)
G
Guanghua Yu 已提交
614 615 616 617
    if pred_config.arch == 'SOLOv2':
        detector = DetectorSOLOv2(
            pred_config,
            FLAGS.model_dir,
G
Guanghua Yu 已提交
618
            device=FLAGS.device,
619
            run_mode=FLAGS.run_mode,
620
            batch_size=FLAGS.batch_size,
621 622
            trt_min_shape=FLAGS.trt_min_shape,
            trt_max_shape=FLAGS.trt_max_shape,
G
Guanghua Yu 已提交
623
            trt_opt_shape=FLAGS.trt_opt_shape,
624 625 626
            trt_calib_mode=FLAGS.trt_calib_mode,
            cpu_threads=FLAGS.cpu_threads,
            enable_mkldnn=FLAGS.enable_mkldnn)
G
Guanghua Yu 已提交
627

Q
qingqing01 已提交
628
    # predict from video file or camera video stream
G
Guanghua Yu 已提交
629
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
Q
qingqing01 已提交
630
        predict_video(detector, FLAGS.camera_id)
G
Guanghua Yu 已提交
631 632
    else:
        # predict from image
C
cnn 已提交
633 634
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
G
Guanghua Yu 已提交
635
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
C
cnn 已提交
636
        predict_image(detector, img_list, FLAGS.batch_size)
G
Guanghua Yu 已提交
637 638 639 640
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mems = {
641 642
                'cpu_rss_mb': detector.cpu_mem / len(img_list),
                'gpu_rss_mb': detector.gpu_mem / len(img_list),
G
Guanghua Yu 已提交
643 644
                'gpu_util': detector.gpu_util * 100 / len(img_list)
            }
645 646 647 648 649

            perf_info = detector.det_times.report(average=True)
            model_dir = FLAGS.model_dir
            mode = FLAGS.run_mode
            model_info = {
650 651
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
652 653
            }
            data_info = {
654
                'batch_size': FLAGS.batch_size,
655 656 657
                'shape': "dynamic_shape",
                'data_num': perf_info['img_num']
            }
658 659
            det_log = PaddleInferBenchmark(detector.config, model_info,
                                           data_info, perf_info, mems)
660
            det_log('Det')
Q
qingqing01 已提交
661 662 663 664


if __name__ == '__main__':
    paddle.enable_static()
G
Guanghua Yu 已提交
665
    parser = argsparser()
Q
qingqing01 已提交
666 667
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
G
Guanghua Yu 已提交
668 669 670 671
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
Q
qingqing01 已提交
672 673

    main()