infer.py 25.0 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
G
Guanghua Yu 已提交
18
import glob
Q
qingqing01 已提交
19 20 21 22 23
from functools import reduce

from PIL import Image
import cv2
import numpy as np
C
cnn 已提交
24
import math
Q
qingqing01 已提交
25 26 27 28
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

29
from benchmark_utils import PaddleInferBenchmark
G
George Ni 已提交
30
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride, LetterBoxResize
G
Guanghua Yu 已提交
31
from visualize import visualize_box_mask
32
from utils import argsparser, Timer, get_current_memory_mb
G
Guanghua Yu 已提交
33

Q
qingqing01 已提交
34 35 36 37 38
# Global dictionary
SUPPORT_MODELS = {
    'YOLO',
    'RCNN',
    'SSD',
39
    'Face',
F
Feng Ni 已提交
40
    'FCOS',
G
Guanghua Yu 已提交
41
    'SOLOv2',
F
Feng Ni 已提交
42
    'TTFNet',
C
cnn 已提交
43
    'S2ANet',
G
George Ni 已提交
44 45 46
    'JDE',
    'FairMOT',
    'DeepSORT',
Q
qingqing01 已提交
47 48 49 50 51 52 53 54
}


class Detector(object):
    """
    Args:
        config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
55
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
Q
qingqing01 已提交
56
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
57
        batch_size (int): size of pre batch in inference
58 59 60 61
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
Q
qingqing01 已提交
62 63 64 65 66 67
        threshold (float): threshold to reserve the result for output.
    """

    def __init__(self,
                 pred_config,
                 model_dir,
G
Guanghua Yu 已提交
68
                 device='CPU',
Q
qingqing01 已提交
69
                 run_mode='fluid',
70
                 batch_size=1,
71 72 73
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
74 75 76
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
Q
qingqing01 已提交
77
        self.pred_config = pred_config
78
        self.predictor, self.config = load_predictor(
Q
qingqing01 已提交
79 80
            model_dir,
            run_mode=run_mode,
81
            batch_size=batch_size,
Q
qingqing01 已提交
82
            min_subgraph_size=self.pred_config.min_subgraph_size,
G
Guanghua Yu 已提交
83
            device=device,
84
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
85 86
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
87
            trt_opt_shape=trt_opt_shape,
88 89 90
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
G
Guanghua Yu 已提交
91 92
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
Q
qingqing01 已提交
93

C
cnn 已提交
94
    def preprocess(self, image_list):
Q
qingqing01 已提交
95 96 97 98 99
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
C
cnn 已提交
100 101 102 103

        input_im_lst = []
        input_im_info_lst = []
        for im_path in image_list:
104
            im, im_info = preprocess(im_path, preprocess_ops)
C
cnn 已提交
105 106 107
            input_im_lst.append(im)
            input_im_info_lst.append(im_info)
        inputs = create_inputs(input_im_lst, input_im_info_lst)
Q
qingqing01 已提交
108 109
        return inputs

C
cnn 已提交
110 111 112 113 114 115
    def postprocess(self,
                    np_boxes,
                    np_masks,
                    inputs,
                    np_boxes_num,
                    threshold=0.5):
Q
qingqing01 已提交
116 117 118
        # postprocess output of predictor
        results = {}
        results['boxes'] = np_boxes
C
cnn 已提交
119
        results['boxes_num'] = np_boxes_num
Q
qingqing01 已提交
120 121 122 123
        if np_masks is not None:
            results['masks'] = np_masks
        return results

C
cnn 已提交
124
    def predict(self, image_list, threshold=0.5, warmup=0, repeats=1):
Q
qingqing01 已提交
125 126
        '''
        Args:
C
cnn 已提交
127
            image_list (list): ,list of image
Q
qingqing01 已提交
128 129 130 131 132
            threshold (float): threshold of predicted box' score
        Returns:
            results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                            matix element:[class, score, x_min, y_min, x_max, y_max]
                            MaskRCNN's results include 'masks': np.ndarray:
G
Guanghua Yu 已提交
133
                            shape: [N, im_h, im_w]
Q
qingqing01 已提交
134
        '''
135
        self.det_times.preprocess_time_s.start()
C
cnn 已提交
136
        inputs = self.preprocess(image_list)
137
        self.det_times.preprocess_time_s.end()
Q
qingqing01 已提交
138 139 140 141 142 143 144 145 146 147
        np_boxes, np_masks = None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
G
Guanghua Yu 已提交
148
            if self.pred_config.mask:
Q
qingqing01 已提交
149 150 151
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()

152
        self.det_times.inference_time_s.start()
Q
qingqing01 已提交
153 154 155 156 157
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
C
cnn 已提交
158 159
            boxes_num = self.predictor.get_output_handle(output_names[1])
            np_boxes_num = boxes_num.copy_to_cpu()
G
Guanghua Yu 已提交
160
            if self.pred_config.mask:
Q
qingqing01 已提交
161 162
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()
163
        self.det_times.inference_time_s.end(repeats=repeats)
Q
qingqing01 已提交
164

165
        self.det_times.postprocess_time_s.start()
Q
qingqing01 已提交
166
        results = []
G
Guanghua Yu 已提交
167 168
        if reduce(lambda x, y: x * y, np_boxes.shape) < 6:
            print('[WARNNING] No object detected.')
169
            results = {'boxes': np.array([[]]), 'boxes_num': [0]}
G
Guanghua Yu 已提交
170 171
        else:
            results = self.postprocess(
C
cnn 已提交
172
                np_boxes, np_masks, inputs, np_boxes_num, threshold=threshold)
173
        self.det_times.postprocess_time_s.end()
C
cnn 已提交
174
        self.det_times.img_num += len(image_list)
Q
qingqing01 已提交
175 176
        return results

W
wangguanzhong 已提交
177 178 179
    def get_timer(self):
        return self.det_times

Q
qingqing01 已提交
180

G
Guanghua Yu 已提交
181 182 183 184 185
class DetectorSOLOv2(Detector):
    """
    Args:
        config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
186
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
G
Guanghua Yu 已提交
187
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
188
        batch_size (int): size of pre batch in inference
189 190 191
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
192 193 194 195 196 197
        threshold (float): threshold to reserve the result for output.
    """

    def __init__(self,
                 pred_config,
                 model_dir,
G
Guanghua Yu 已提交
198
                 device='CPU',
G
Guanghua Yu 已提交
199
                 run_mode='fluid',
200
                 batch_size=1,
201 202 203
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
204 205 206
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
G
Guanghua Yu 已提交
207
        self.pred_config = pred_config
208
        self.predictor, self.config = load_predictor(
G
Guanghua Yu 已提交
209 210
            model_dir,
            run_mode=run_mode,
211
            batch_size=batch_size,
G
Guanghua Yu 已提交
212
            min_subgraph_size=self.pred_config.min_subgraph_size,
G
Guanghua Yu 已提交
213
            device=device,
214
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
215 216
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
217
            trt_opt_shape=trt_opt_shape,
218 219 220
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
G
Guanghua Yu 已提交
221
        self.det_times = Timer()
222
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
G
Guanghua Yu 已提交
223 224

    def predict(self, image, threshold=0.5, warmup=0, repeats=1):
G
Guanghua Yu 已提交
225 226 227 228 229
        '''
        Args:
            image (str/np.ndarray): path of image/ np.ndarray read by cv2
            threshold (float): threshold of predicted box' score
        Returns:
G
Guanghua Yu 已提交
230 231 232
            results (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
                            'cate_label': label of segm, shape:[N]
                            'cate_score': confidence score of segm, shape:[N]
G
Guanghua Yu 已提交
233
        '''
234
        self.det_times.preprocess_time_s.start()
G
Guanghua Yu 已提交
235
        inputs = self.preprocess(image)
236
        self.det_times.preprocess_time_s.end()
G
Guanghua Yu 已提交
237 238 239 240 241 242 243 244
        np_label, np_score, np_segms = None, None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
W
wangguanzhong 已提交
245 246
            np_boxes_num = self.predictor.get_output_handle(output_names[
                0]).copy_to_cpu()
G
Guanghua Yu 已提交
247 248
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
249
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
250
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
251 252
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
253
        self.det_times.inference_time_s.start()
G
Guanghua Yu 已提交
254 255 256
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
W
wangguanzhong 已提交
257 258
            np_boxes_num = self.predictor.get_output_handle(output_names[
                0]).copy_to_cpu()
G
Guanghua Yu 已提交
259 260
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
261
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
262
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
263 264
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
265
        self.det_times.inference_time_s.end(repeats=repeats)
G
Guanghua Yu 已提交
266
        self.det_times.img_num += 1
G
Guanghua Yu 已提交
267

W
wangguanzhong 已提交
268 269 270 271 272
        return dict(
            segm=np_segms,
            label=np_label,
            score=np_score,
            boxes_num=np_boxes_num)
G
Guanghua Yu 已提交
273 274


C
cnn 已提交
275
def create_inputs(imgs, im_info):
Q
qingqing01 已提交
276 277
    """generate input for different model type
    Args:
W
wangguanzhong 已提交
278 279
        imgs (list(numpy)): list of images (np.ndarray)
        im_info (list(dict)): list of image info
Q
qingqing01 已提交
280 281 282 283 284
    Returns:
        inputs (dict): input of model
    """
    inputs = {}

C
cnn 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
    im_shape = []
    scale_factor = []
    for e in im_info:
        im_shape.append(np.array((e['im_shape'], )).astype('float32'))
        scale_factor.append(np.array((e['scale_factor'], )).astype('float32'))

    origin_scale_factor = np.concatenate(scale_factor, axis=0)

    imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
    max_shape_h = max([e[0] for e in imgs_shape])
    max_shape_w = max([e[1] for e in imgs_shape])
    padding_imgs = []
    padding_imgs_shape = []
    padding_imgs_scale = []
    for img in imgs:
        im_c, im_h, im_w = img.shape[:]
        padding_im = np.zeros(
            (im_c, max_shape_h, max_shape_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = img
        padding_imgs.append(padding_im)
        padding_imgs_shape.append(
            np.array([max_shape_h, max_shape_w]).astype('float32'))
        rescale = [
            float(max_shape_h) / float(im_h), float(max_shape_w) / float(im_w)
        ]
        padding_imgs_scale.append(np.array(rescale).astype('float32'))
    inputs['image'] = np.stack(padding_imgs, axis=0)
    inputs['im_shape'] = np.stack(padding_imgs_shape, axis=0)
    inputs['scale_factor'] = origin_scale_factor
Q
qingqing01 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
    return inputs


class PredictConfig():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
G
Guanghua Yu 已提交
333
        self.mask = False
334
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
G
Guanghua Yu 已提交
335 336
        if 'mask' in yml_conf:
            self.mask = yml_conf['mask']
Q
qingqing01 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def load_predictor(model_dir,
                   run_mode='fluid',
                   batch_size=1,
G
Guanghua Yu 已提交
362
                   device='CPU',
363 364 365 366
                   min_subgraph_size=3,
                   use_dynamic_shape=False,
                   trt_min_shape=1,
                   trt_max_shape=1280,
G
Guanghua Yu 已提交
367
                   trt_opt_shape=640,
368 369 370
                   trt_calib_mode=False,
                   cpu_threads=1,
                   enable_mkldnn=False):
Q
qingqing01 已提交
371 372 373
    """set AnalysisConfig, generate AnalysisPredictor
    Args:
        model_dir (str): root path of __model__ and __params__
G
Guanghua Yu 已提交
374
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
375
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16/trt_int8)
376 377 378 379
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
380 381
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
Q
qingqing01 已提交
382 383 384
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
G
Guanghua Yu 已提交
385
        ValueError: predict by TensorRT need device == 'GPU'.
Q
qingqing01 已提交
386
    """
G
Guanghua Yu 已提交
387
    if device != 'GPU' and run_mode != 'fluid':
Q
qingqing01 已提交
388
        raise ValueError(
G
Guanghua Yu 已提交
389 390
            "Predict by TensorRT mode: {}, expect device=='GPU', but device == {}"
            .format(run_mode, device))
Q
qingqing01 已提交
391 392 393
    config = Config(
        os.path.join(model_dir, 'model.pdmodel'),
        os.path.join(model_dir, 'model.pdiparams'))
G
Guanghua Yu 已提交
394
    if device == 'GPU':
Q
qingqing01 已提交
395 396 397
        # initial GPU memory(M), device ID
        config.enable_use_gpu(200, 0)
        # optimize graph and fuse op
398
        config.switch_ir_optim(True)
G
Guanghua Yu 已提交
399 400
    elif device == 'XPU':
        config.enable_xpu(10 * 1024 * 1024)
Q
qingqing01 已提交
401 402
    else:
        config.disable_gpu()
403 404
        config.set_cpu_math_library_num_threads(cpu_threads)
        if enable_mkldnn:
G
Guanghua Yu 已提交
405 406 407 408 409 410 411 412 413
            try:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
            except Exception as e:
                print(
                    "The current environment does not support `mkldnn`, so disable mkldnn."
                )
                pass
Q
qingqing01 已提交
414

G
Guanghua Yu 已提交
415 416 417 418 419
    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }
Q
qingqing01 已提交
420 421 422 423 424 425 426
    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
            workspace_size=1 << 10,
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
G
Guanghua Yu 已提交
427
            use_calib_mode=trt_calib_mode)
428 429

        if use_dynamic_shape:
430 431 432 433 434 435 436 437 438
            min_input_shape = {
                'image': [batch_size, 3, trt_min_shape, trt_min_shape]
            }
            max_input_shape = {
                'image': [batch_size, 3, trt_max_shape, trt_max_shape]
            }
            opt_input_shape = {
                'image': [batch_size, 3, trt_opt_shape, trt_opt_shape]
            }
439 440 441
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
            print('trt set dynamic shape done!')
Q
qingqing01 已提交
442 443 444 445 446 447 448 449

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
    predictor = create_predictor(config)
450
    return predictor, config
Q
qingqing01 已提交
451 452


G
Guanghua Yu 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
        "--infer_img or --infer_dir should be set"
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


C
cnn 已提交
484
def visualize(image_list, results, labels, output_dir='output/', threshold=0.5):
Q
qingqing01 已提交
485
    # visualize the predict result
C
cnn 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498
    start_idx = 0
    for idx, image_file in enumerate(image_list):
        im_bboxes_num = results['boxes_num'][idx]
        im_results = {}
        if 'boxes' in results:
            im_results['boxes'] = results['boxes'][start_idx:start_idx +
                                                   im_bboxes_num, :]
        if 'masks' in results:
            im_results['masks'] = results['masks'][start_idx:start_idx +
                                                   im_bboxes_num, :]
        if 'segm' in results:
            im_results['segm'] = results['segm'][start_idx:start_idx +
                                                 im_bboxes_num, :]
W
wangguanzhong 已提交
499 500 501 502 503 504 505
        if 'label' in results:
            im_results['label'] = results['label'][start_idx:start_idx +
                                                   im_bboxes_num]
        if 'score' in results:
            im_results['score'] = results['score'][start_idx:start_idx +
                                                   im_bboxes_num]

C
cnn 已提交
506 507 508 509 510 511 512 513 514
        start_idx += im_bboxes_num
        im = visualize_box_mask(
            image_file, im_results, labels, threshold=threshold)
        img_name = os.path.split(image_file)[-1]
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        out_path = os.path.join(output_dir, img_name)
        im.save(out_path, quality=95)
        print("save result to: " + out_path)
Q
qingqing01 已提交
515 516 517 518 519 520 521 522 523


def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')


C
cnn 已提交
524 525 526 527 528 529
def predict_image(detector, image_list, batch_size=1):
    batch_loop_cnt = math.ceil(float(len(image_list)) / batch_size)
    for i in range(batch_loop_cnt):
        start_index = i * batch_size
        end_index = min((i + 1) * batch_size, len(image_list))
        batch_image_list = image_list[start_index:end_index]
G
Guanghua Yu 已提交
530
        if FLAGS.run_benchmark:
C
cnn 已提交
531 532
            detector.predict(
                batch_image_list, FLAGS.threshold, warmup=10, repeats=10)
G
Guanghua Yu 已提交
533 534 535 536
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
C
cnn 已提交
537
            print('Test iter {}'.format(i))
G
Guanghua Yu 已提交
538
        else:
C
cnn 已提交
539
            results = detector.predict(batch_image_list, FLAGS.threshold)
G
Guanghua Yu 已提交
540
            visualize(
C
cnn 已提交
541
                batch_image_list,
G
Guanghua Yu 已提交
542 543 544 545
                results,
                detector.pred_config.labels,
                output_dir=FLAGS.output_dir,
                threshold=FLAGS.threshold)
Q
qingqing01 已提交
546 547 548 549 550 551 552 553 554 555


def predict_video(detector, camera_id):
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
    fps = 30
C
cnn 已提交
556 557
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print('frame_count', frame_count)
Q
qingqing01 已提交
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
    # yapf: disable
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    # yapf: enable
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    index = 1
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        print('detect frame:%d' % (index))
        index += 1
C
cnn 已提交
574
        results = detector.predict([frame], FLAGS.threshold)
Q
qingqing01 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
        im = visualize_box_mask(
            frame,
            results,
            detector.pred_config.labels,
            threshold=FLAGS.threshold)
        im = np.array(im)
        writer.write(im)
        if camera_id != -1:
            cv2.imshow('Mask Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
    writer.release()


def main():
    pred_config = PredictConfig(FLAGS.model_dir)
    detector = Detector(
        pred_config,
        FLAGS.model_dir,
G
Guanghua Yu 已提交
594
        device=FLAGS.device,
595
        run_mode=FLAGS.run_mode,
596
        batch_size=FLAGS.batch_size,
597 598
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
G
Guanghua Yu 已提交
599
        trt_opt_shape=FLAGS.trt_opt_shape,
600 601 602
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)
G
Guanghua Yu 已提交
603 604 605 606
    if pred_config.arch == 'SOLOv2':
        detector = DetectorSOLOv2(
            pred_config,
            FLAGS.model_dir,
G
Guanghua Yu 已提交
607
            device=FLAGS.device,
608
            run_mode=FLAGS.run_mode,
609
            batch_size=FLAGS.batch_size,
610 611
            trt_min_shape=FLAGS.trt_min_shape,
            trt_max_shape=FLAGS.trt_max_shape,
G
Guanghua Yu 已提交
612
            trt_opt_shape=FLAGS.trt_opt_shape,
613 614 615
            trt_calib_mode=FLAGS.trt_calib_mode,
            cpu_threads=FLAGS.cpu_threads,
            enable_mkldnn=FLAGS.enable_mkldnn)
G
Guanghua Yu 已提交
616

Q
qingqing01 已提交
617
    # predict from video file or camera video stream
G
Guanghua Yu 已提交
618
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
Q
qingqing01 已提交
619
        predict_video(detector, FLAGS.camera_id)
G
Guanghua Yu 已提交
620 621
    else:
        # predict from image
C
cnn 已提交
622 623
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
G
Guanghua Yu 已提交
624
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
C
cnn 已提交
625
        predict_image(detector, img_list, FLAGS.batch_size)
G
Guanghua Yu 已提交
626 627 628 629
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mems = {
630 631
                'cpu_rss_mb': detector.cpu_mem / len(img_list),
                'gpu_rss_mb': detector.gpu_mem / len(img_list),
G
Guanghua Yu 已提交
632 633
                'gpu_util': detector.gpu_util * 100 / len(img_list)
            }
634 635 636 637 638

            perf_info = detector.det_times.report(average=True)
            model_dir = FLAGS.model_dir
            mode = FLAGS.run_mode
            model_info = {
639 640
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
641 642
            }
            data_info = {
643
                'batch_size': FLAGS.batch_size,
644 645 646
                'shape': "dynamic_shape",
                'data_num': perf_info['img_num']
            }
647 648
            det_log = PaddleInferBenchmark(detector.config, model_info,
                                           data_info, perf_info, mems)
649
            det_log('Det')
Q
qingqing01 已提交
650 651 652 653


if __name__ == '__main__':
    paddle.enable_static()
G
Guanghua Yu 已提交
654
    parser = argsparser()
Q
qingqing01 已提交
655 656
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
G
Guanghua Yu 已提交
657 658 659 660
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
Q
qingqing01 已提交
661 662

    main()