Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
5ad5a819
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5ad5a819
编写于
5月 14, 2021
作者:
Z
zhiboniu
提交者:
GitHub
5月 14, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
pose bottomup higherhrnet: deploy (#2737)
上级
c1bd0ac2
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
1686 addition
and
14 deletion
+1686
-14
configs/keypoint/README.md
configs/keypoint/README.md
+74
-0
configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml
configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml
+1
-2
configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512_swahr.yml
.../keypoint/higherhrnet/higherhrnet_hrnet_w32_512_swahr.yml
+1
-1
configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_640.yml
configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_640.yml
+134
-0
configs/keypoint/hrnet/hrnet_w32_256x192.yml
configs/keypoint/hrnet/hrnet_w32_256x192.yml
+1
-1
configs/keypoint/hrnet/hrnet_w32_384x288.yml
configs/keypoint/hrnet/hrnet_w32_384x288.yml
+144
-0
deploy/python/infer.py
deploy/python/infer.py
+23
-9
deploy/python/keypoint_det_unite_infer.py
deploy/python/keypoint_det_unite_infer.py
+195
-0
deploy/python/keypoint_infer.py
deploy/python/keypoint_infer.py
+415
-0
deploy/python/keypoint_postprocess.py
deploy/python/keypoint_postprocess.py
+302
-0
deploy/python/keypoint_preprocess.py
deploy/python/keypoint_preprocess.py
+178
-0
deploy/python/keypoint_visualize.py
deploy/python/keypoint_visualize.py
+106
-0
deploy/python/topdown_unite_utils.py
deploy/python/topdown_unite_utils.py
+111
-0
ppdet/optimizer.py
ppdet/optimizer.py
+1
-1
未找到文件。
configs/keypoint/README.md
0 → 100644
浏览文件 @
5ad5a819
# KeyPoint模型系列
## 简介
-
PaddleDetection KeyPoint部分紧跟业内最新最优算法方案,包含Top-Down、BottomUp两套方案,以满足用户的不同需求。
#### Model Zoo
| 模型 | 输入尺寸 | 通道数 | AP(coco val) | 模型下载 | 配置文件 |
| :---------------- | -------- | ------ | :----------: | :----------------------------------------------------------: | ------------------------------------------------------------ |
| HigherHRNet | 512 | 32 | 67.1 |
[
higherhrnet_hrnet_w32_512.pdparams
](
https://paddledet.bj.bcebos.com/models/keypoint/higherhrnet_hrnet_w32_512.pdparams
)
|
[
config
](
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml
)
|
| HigherHRNet | 640 | 32 | 68.3 |
[
higherhrnet_hrnet_w32_640.pdparams
](
https://paddledet.bj.bcebos.com/models/keypoint/higherhrnet_hrnet_w32_640.pdparams
)
|
[
config
](
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_640.yml
)
|
| HigherHRNet+SWAHR | 512 | 32 | 68.9 |
[
higherhrnet_hrnet_w32_512_swahr.pdparams
](
https://paddledet.bj.bcebos.com/models/keypoint/higherhrnet_hrnet_w32_512_swahr.pdparams
)
|
[
config
](
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512_swahr.yml
)
|
| HRNet | 256x192 | 32 | 76.9 |
[
hrnet_w32_256x192.pdparams
](
https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams
)
|
[
config
](
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/keypoint/hrnet/hrnet_w32_256x192.yml
)
|
| HRNet | 384x288 | 32 | 77.8 |
[
hrnet_w32_384x288.pdparams
](
https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_384x288.pdparams
)
|
[
config
](
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/keypoint/hrnet/hrnet_w32_384x288.yml
)
|
## 快速开始
### 1、环境安装
请参考PaddleDetection
[
安装文档
](
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/INSTALL_cn.md
)
正确安装PaddlePaddle和PaddleDetection即可
### 2、数据准备
目前KeyPoint模型基于coco数据集开发,其他数据集尚未验证
请参考PaddleDetection
[
数据准备部分
](
https://github.com/PaddlePaddle/PaddleDetection/blob/f0a30f3ba6095ebfdc8fffb6d02766406afc438a/docs/tutorials/PrepareDataSet.md
)
部署准备COCO数据集即可
### 3、训练与测试
**单卡训练:**
```
shell
CUDA_VISIBLE_DEVICES
=
0 python3 tools/train.py
-c
configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml
```
**多卡训练:**
```
shell
CUDA_VISIBLE_DEVICES
=
0,1,2,3 python3
-m
paddle.distributed.launch tools/train.py
-c
configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml
```
**模型评估:**
```
shell
CUDA_VISIBLE_DEVICES
=
0 python3 tools/eval.py
-c
configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml
```
**模型预测:**
```
shell
CUDA_VISIBLE_DEVICES
=
0 python3 tools/infer.py
-c
configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml
-o
weights
=
./output/higherhrnet_hrnet_w32_512/model_final.pdparams
--infer_dir
=
../images/
--draw_threshold
=
0.5
--save_txt
=
True
```
**部署预测:**
```
shell
#导出模型
python tools/export_model.py
-c
configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml
-o
weights
=
output/higherhrnet_hrnet_w32_512/model_final.pdparams
#部署推理
#keypoint top-down/bottom-up 单独推理,图片
python deploy/python/keypoint_infer.py
--model_dir
=
output_inference/higherhrnet_hrnet_w32_512/
--image_file
=
../images/xxx.jpeg
--use_gpu
=
True
--threshold
=
0.5
python deploy/python/keypoint_infer.py
--model_dir
=
output_inference/hrnet_w32_384x288/
--image_file
=
../images/xxx.jpeg
--use_gpu
=
True
--threshold
=
0.5
#keypoint top-down + detector 与检测联合部署推理
python deploy/python/keypoint_det_unite_infer.py
--det_model_dir
=
output_inference/ppyolo_r50vd_dcn_2x_coco/
--keypoint_model_dir
=
output_inference/hrnet_w32_384x288/
--video_file
=
../video/xxx.mp4
```
configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml
浏览文件 @
5ad5a819
...
...
@@ -57,8 +57,7 @@ LearningRate:
OptimizerBuilder
:
optimizer
:
type
:
Adam
regularizer
:
regularizer
:
None
#####data
TrainDataset
:
...
...
configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512_swahr.yml
浏览文件 @
5ad5a819
...
...
@@ -57,7 +57,7 @@ LearningRate:
OptimizerBuilder
:
optimizer
:
type
:
Adam
regularizer
:
regularizer
:
None
#####data
...
...
configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_640.yml
0 → 100644
浏览文件 @
5ad5a819
use_gpu
:
true
log_iter
:
10
save_dir
:
output
snapshot_epoch
:
10
weights
:
output/higherhrnet_hrnet_w32_640/model_final
epoch
:
300
num_joints
:
&num_joints
17
flip_perm
:
&flip_perm
[
0
,
2
,
1
,
4
,
3
,
6
,
5
,
8
,
7
,
10
,
9
,
12
,
11
,
14
,
13
,
16
,
15
]
input_size
:
&input_size
640
hm_size
:
&hm_size
160
hm_size_2x
:
&hm_size_2x
320
max_people
:
&max_people
30
metric
:
COCO
IouType
:
keypoints
num_classes
:
1
#####model
architecture
:
HigherHRNet
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/pretrained/Trunc_HRNet_W32_C_pretrained.pdparams
HigherHRNet
:
backbone
:
HRNet
hrhrnet_head
:
HrHRNetHead
post_process
:
HrHRNetPostProcess
flip_perm
:
*flip_perm
eval_flip
:
true
HRNet
:
width
:
&width
32
freeze_at
:
-1
freeze_norm
:
false
return_idx
:
[
0
]
HrHRNetHead
:
num_joints
:
*num_joints
width
:
*width
loss
:
HrHRNetLoss
swahr
:
false
HrHRNetLoss
:
num_joints
:
*num_joints
swahr
:
false
#####optimizer
LearningRate
:
base_lr
:
0.001
schedulers
:
-
!PiecewiseDecay
milestones
:
[
200
,
260
]
gamma
:
0.1
-
!LinearWarmup
start_factor
:
0.001
steps
:
1000
OptimizerBuilder
:
optimizer
:
type
:
Adam
regularizer
:
None
#####data
TrainDataset
:
!KeypointBottomUpCocoDataset
image_dir
:
train2017
anno_path
:
annotations/person_keypoints_train2017.json
dataset_dir
:
dataset/coco
num_joints
:
*num_joints
EvalDataset
:
!KeypointBottomUpCocoDataset
image_dir
:
val2017
anno_path
:
annotations/person_keypoints_val2017.json
dataset_dir
:
dataset/coco
num_joints
:
*num_joints
test_mode
:
true
TestDataset
:
!ImageFolder
anno_path
:
dataset/coco/keypoint_imagelist.txt
worker_num
:
0
global_mean
:
&global_mean
[
0.485
,
0.456
,
0.406
]
global_std
:
&global_std
[
0.229
,
0.224
,
0.225
]
TrainReader
:
sample_transforms
:
-
RandomAffine
:
max_degree
:
30
scale
:
[
0.75
,
1.5
]
max_shift
:
0.2
trainsize
:
*input_size
hmsize
:
[
*hm_size
,
*hm_size_2x
]
-
KeyPointFlip
:
flip_prob
:
0.5
flip_permutation
:
*flip_perm
hmsize
:
[
*hm_size
,
*hm_size_2x
]
-
ToHeatmaps
:
num_joints
:
*num_joints
hmsize
:
[
*hm_size
,
*hm_size_2x
]
sigma
:
2
-
TagGenerate
:
num_joints
:
*num_joints
max_people
:
*max_people
-
NormalizePermute
:
mean
:
*global_mean
std
:
*global_std
batch_size
:
20
shuffle
:
true
drop_last
:
true
use_shared_memory
:
true
EvalReader
:
sample_transforms
:
-
EvalAffine
:
size
:
*input_size
-
NormalizeImage
:
mean
:
*global_mean
std
:
*global_std
is_scale
:
true
-
Permute
:
{}
batch_size
:
1
drop_empty
:
false
TestReader
:
sample_transforms
:
-
Decode
:
{}
-
EvalAffine
:
size
:
*input_size
-
NormalizeImage
:
mean
:
*global_mean
std
:
*global_std
is_scale
:
true
-
Permute
:
{}
batch_size
:
1
configs/keypoint/hrnet/hrnet_
coco
_256x192.yml
→
configs/keypoint/hrnet/hrnet_
w32
_256x192.yml
浏览文件 @
5ad5a819
...
...
@@ -2,7 +2,7 @@ use_gpu: true
log_iter
:
5
save_dir
:
output
snapshot_epoch
:
10
weights
:
output/hrnet_
coco
_256x192/model_final
weights
:
output/hrnet_
w32
_256x192/model_final
epoch
:
210
num_joints
:
&num_joints
17
pixel_std
:
&pixel_std
200
...
...
configs/keypoint/hrnet/hrnet_w32_384x288.yml
0 → 100644
浏览文件 @
5ad5a819
use_gpu
:
true
log_iter
:
5
save_dir
:
output
snapshot_epoch
:
10
weights
:
output/hrnet_w32_384x288/model_final
epoch
:
210
num_joints
:
&num_joints
17
pixel_std
:
&pixel_std
200
metric
:
KeyPointTopDownCOCOEval
num_classes
:
1
train_height
:
&train_height
384
train_width
:
&train_width
288
trainsize
:
&trainsize
[
*train_width
,
*train_height
]
hmsize
:
&hmsize
[
72
,
96
]
flip_perm
:
&flip_perm
[[
1
,
2
],
[
3
,
4
],
[
5
,
6
],
[
7
,
8
],
[
9
,
10
],
[
11
,
12
],
[
13
,
14
],
[
15
,
16
]]
#####model
architecture
:
TopDownHRNet
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/pretrained/Trunc_HRNet_W32_C_pretrained.pdparams
TopDownHRNet
:
backbone
:
HRNet
post_process
:
HRNetPostProcess
flip_perm
:
*flip_perm
num_joints
:
*num_joints
width
:
&width
32
loss
:
KeyPointMSELoss
flip
:
true
HRNet
:
width
:
*width
freeze_at
:
-1
freeze_norm
:
false
return_idx
:
[
0
]
KeyPointMSELoss
:
use_target_weight
:
true
#####optimizer
LearningRate
:
base_lr
:
0.0005
schedulers
:
-
!PiecewiseDecay
milestones
:
[
170
,
200
]
gamma
:
0.1
-
!LinearWarmup
start_factor
:
0.001
steps
:
1000
OptimizerBuilder
:
optimizer
:
type
:
Adam
regularizer
:
factor
:
0.0
type
:
L2
#####data
TrainDataset
:
!KeypointTopDownCocoDataset
image_dir
:
train2017
anno_path
:
annotations/person_keypoints_train2017.json
dataset_dir
:
dataset/coco
num_joints
:
*num_joints
trainsize
:
*trainsize
pixel_std
:
*pixel_std
use_gt_bbox
:
True
EvalDataset
:
!KeypointTopDownCocoDataset
image_dir
:
val2017
anno_path
:
annotations/person_keypoints_val2017.json
dataset_dir
:
dataset/coco
bbox_file
:
person_detection_results/COCO_val2017_detections_AP_H_56_person.json
num_joints
:
*num_joints
trainsize
:
*trainsize
pixel_std
:
*pixel_std
use_gt_bbox
:
True
image_thre
:
0.0
TestDataset
:
!ImageFolder
anno_path
:
dataset/coco/keypoint_imagelist.txt
worker_num
:
2
global_mean
:
&global_mean
[
0.485
,
0.456
,
0.406
]
global_std
:
&global_std
[
0.229
,
0.224
,
0.225
]
TrainReader
:
sample_transforms
:
-
RandomFlipHalfBodyTransform
:
scale
:
0.5
rot
:
40
num_joints_half_body
:
8
prob_half_body
:
0.3
pixel_std
:
*pixel_std
trainsize
:
*trainsize
upper_body_ids
:
[
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
]
flip_pairs
:
*flip_perm
-
TopDownAffine
:
trainsize
:
*trainsize
-
ToHeatmapsTopDown
:
hmsize
:
*hmsize
sigma
:
2
batch_transforms
:
-
NormalizeImage
:
mean
:
*global_mean
std
:
*global_std
is_scale
:
true
-
Permute
:
{}
batch_size
:
64
shuffle
:
true
drop_last
:
false
EvalReader
:
sample_transforms
:
-
TopDownAffine
:
trainsize
:
*trainsize
-
ToHeatmapsTopDown
:
hmsize
:
*hmsize
sigma
:
2
batch_transforms
:
-
NormalizeImage
:
mean
:
*global_mean
std
:
*global_std
is_scale
:
true
-
Permute
:
{}
batch_size
:
16
drop_empty
:
false
TestReader
:
sample_transforms
:
-
Decode
:
{}
-
TopDownEvalAffine
:
trainsize
:
*trainsize
-
NormalizeImage
:
mean
:
*global_mean
std
:
*global_std
is_scale
:
true
-
Permute
:
{}
batch_size
:
1
deploy/python/infer.py
浏览文件 @
5ad5a819
...
...
@@ -65,7 +65,9 @@ class Detector(object):
trt_min_shape
=
1
,
trt_max_shape
=
1280
,
trt_opt_shape
=
640
,
trt_calib_mode
=
False
):
trt_calib_mode
=
False
,
cpu_threads
=
1
,
enable_mkldnn
=
False
):
self
.
pred_config
=
pred_config
self
.
predictor
=
load_predictor
(
model_dir
,
...
...
@@ -76,7 +78,9 @@ class Detector(object):
trt_min_shape
=
trt_min_shape
,
trt_max_shape
=
trt_max_shape
,
trt_opt_shape
=
trt_opt_shape
,
trt_calib_mode
=
trt_calib_mode
)
trt_calib_mode
=
trt_calib_mode
,
cpu_threads
=
cpu_threads
,
enable_mkldnn
=
enable_mkldnn
)
self
.
det_times
=
Timer
()
self
.
cpu_mem
,
self
.
gpu_mem
,
self
.
gpu_util
=
0
,
0
,
0
...
...
@@ -182,7 +186,9 @@ class DetectorSOLOv2(Detector):
trt_min_shape
=
1
,
trt_max_shape
=
1280
,
trt_opt_shape
=
640
,
trt_calib_mode
=
False
):
trt_calib_mode
=
False
,
cpu_threads
=
1
,
enable_mkldnn
=
False
):
self
.
pred_config
=
pred_config
self
.
predictor
=
load_predictor
(
model_dir
,
...
...
@@ -193,7 +199,9 @@ class DetectorSOLOv2(Detector):
trt_min_shape
=
trt_min_shape
,
trt_max_shape
=
trt_max_shape
,
trt_opt_shape
=
trt_opt_shape
,
trt_calib_mode
=
trt_calib_mode
)
trt_calib_mode
=
trt_calib_mode
,
cpu_threads
=
cpu_threads
,
enable_mkldnn
=
enable_mkldnn
)
self
.
det_times
=
Timer
()
def
predict
(
self
,
image
,
threshold
=
0.5
,
warmup
=
0
,
repeats
=
1
):
...
...
@@ -309,7 +317,9 @@ def load_predictor(model_dir,
trt_min_shape
=
1
,
trt_max_shape
=
1280
,
trt_opt_shape
=
640
,
trt_calib_mode
=
False
):
trt_calib_mode
=
False
,
cpu_threads
=
1
,
enable_mkldnn
=
False
):
"""set AnalysisConfig, generate AnalysisPredictor
Args:
model_dir (str): root path of __model__ and __params__
...
...
@@ -345,8 +355,8 @@ def load_predictor(model_dir,
config
.
switch_ir_optim
(
True
)
else
:
config
.
disable_gpu
()
config
.
set_cpu_math_library_num_threads
(
FLAGS
.
cpu_threads
)
if
FLAGS
.
enable_mkldnn
:
config
.
set_cpu_math_library_num_threads
(
cpu_threads
)
if
enable_mkldnn
:
try
:
# cache 10 different shapes for mkldnn to avoid memory leak
config
.
set_mkldnn_cache_capacity
(
10
)
...
...
@@ -502,7 +512,9 @@ def main():
trt_min_shape
=
FLAGS
.
trt_min_shape
,
trt_max_shape
=
FLAGS
.
trt_max_shape
,
trt_opt_shape
=
FLAGS
.
trt_opt_shape
,
trt_calib_mode
=
FLAGS
.
trt_calib_mode
)
trt_calib_mode
=
FLAGS
.
trt_calib_mode
,
cpu_threads
=
FLAGS
.
cpu_threads
,
enable_mkldnn
=
FLAGS
.
enable_mkldnn
)
if
pred_config
.
arch
==
'SOLOv2'
:
detector
=
DetectorSOLOv2
(
pred_config
,
...
...
@@ -513,7 +525,9 @@ def main():
trt_min_shape
=
FLAGS
.
trt_min_shape
,
trt_max_shape
=
FLAGS
.
trt_max_shape
,
trt_opt_shape
=
FLAGS
.
trt_opt_shape
,
trt_calib_mode
=
FLAGS
.
trt_calib_mode
)
trt_calib_mode
=
FLAGS
.
trt_calib_mode
,
cpu_threads
=
FLAGS
.
cpu_threads
,
enable_mkldnn
=
FLAGS
.
enable_mkldnn
)
# predict from video file or camera video stream
if
FLAGS
.
video_file
is
not
None
or
FLAGS
.
camera_id
!=
-
1
:
...
...
deploy/python/keypoint_det_unite_infer.py
0 → 100644
浏览文件 @
5ad5a819
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
from
PIL
import
Image
import
cv2
import
numpy
as
np
import
paddle
from
topdown_unite_utils
import
argsparser
from
preprocess
import
decode_image
from
infer
import
Detector
,
PredictConfig
,
print_arguments
,
get_test_images
from
keypoint_infer
import
KeyPoint_Detector
,
PredictConfig_KeyPoint
from
keypoint_visualize
import
draw_pose
def
expand_crop
(
images
,
rect
,
expand_ratio
=
0.5
):
imgh
,
imgw
,
c
=
images
.
shape
label
,
_
,
xmin
,
ymin
,
xmax
,
ymax
=
[
int
(
x
)
for
x
in
rect
.
tolist
()]
if
label
!=
0
:
return
None
,
None
h_half
=
(
ymax
-
ymin
)
*
(
1
+
expand_ratio
)
/
2.
w_half
=
(
xmax
-
xmin
)
*
(
1
+
expand_ratio
)
/
2.
center
=
[(
ymin
+
ymax
)
/
2.
,
(
xmin
+
xmax
)
/
2.
]
ymin
=
max
(
0
,
int
(
center
[
0
]
-
h_half
))
ymax
=
min
(
imgh
-
1
,
int
(
center
[
0
]
+
h_half
))
xmin
=
max
(
0
,
int
(
center
[
1
]
-
w_half
))
xmax
=
min
(
imgw
-
1
,
int
(
center
[
1
]
+
w_half
))
return
images
[
ymin
:
ymax
,
xmin
:
xmax
,
:],
[
xmin
,
ymin
,
xmax
,
ymax
]
def
get_person_from_rect
(
images
,
results
):
det_results
=
results
[
'boxes'
]
mask
=
det_results
[:,
1
]
>
FLAGS
.
det_threshold
valid_rects
=
det_results
[
mask
]
image_buff
=
[]
for
rect
in
valid_rects
:
rect_image
,
new_rect
=
expand_crop
(
images
,
rect
)
if
rect_image
is
None
:
continue
image_buff
.
append
([
rect_image
,
new_rect
])
return
image_buff
def
affine_backto_orgimages
(
keypoint_result
,
batch_records
):
kpts
,
scores
=
keypoint_result
[
'keypoint'
]
kpts
[...,
0
]
+=
batch_records
[
0
]
kpts
[...,
1
]
+=
batch_records
[
1
]
return
kpts
,
scores
def
topdown_unite_predict
(
detector
,
topdown_keypoint_detector
,
image_list
):
for
i
,
img_file
in
enumerate
(
image_list
):
image
,
_
=
decode_image
(
img_file
,
{})
results
=
detector
.
predict
(
image
,
FLAGS
.
det_threshold
)
batchs_images
=
get_person_from_rect
(
image
,
results
)
keypoint_vector
=
[]
score_vector
=
[]
rect_vecotr
=
[]
for
batch_images
,
batch_records
in
batchs_images
:
keypoint_result
=
topdown_keypoint_detector
.
predict
(
batch_images
,
FLAGS
.
keypoint_threshold
)
orgkeypoints
,
scores
=
affine_backto_orgimages
(
keypoint_result
,
batch_records
)
keypoint_vector
.
append
(
orgkeypoints
)
score_vector
.
append
(
scores
)
rect_vecotr
.
append
(
batch_records
)
keypoint_res
=
{}
keypoint_res
[
'keypoint'
]
=
[
np
.
vstack
(
keypoint_vector
),
np
.
vstack
(
score_vector
)
]
keypoint_res
[
'bbox'
]
=
rect_vecotr
draw_pose
(
img_file
,
keypoint_res
,
visual_thread
=
FLAGS
.
keypoint_threshold
)
def
topdown_unite_predict_video
(
detector
,
topdown_keypoint_detector
,
camera_id
):
if
camera_id
!=
-
1
:
capture
=
cv2
.
VideoCapture
(
camera_id
)
video_name
=
'output.mp4'
else
:
capture
=
cv2
.
VideoCapture
(
FLAGS
.
video_file
)
video_name
=
os
.
path
.
basename
(
os
.
path
.
split
(
FLAGS
.
video_file
+
'.mp4'
)[
-
1
])
fps
=
30
width
=
int
(
capture
.
get
(
cv2
.
CAP_PROP_FRAME_WIDTH
))
height
=
int
(
capture
.
get
(
cv2
.
CAP_PROP_FRAME_HEIGHT
))
# yapf: disable
fourcc
=
cv2
.
VideoWriter_fourcc
(
*
'mp4v'
)
# yapf: enable
if
not
os
.
path
.
exists
(
FLAGS
.
output_dir
):
os
.
makedirs
(
FLAGS
.
output_dir
)
out_path
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
video_name
)
writer
=
cv2
.
VideoWriter
(
out_path
,
fourcc
,
fps
,
(
width
,
height
))
index
=
1
while
(
1
):
ret
,
frame
=
capture
.
read
()
if
not
ret
:
break
print
(
'detect frame:%d'
%
(
index
))
index
+=
1
frame2
=
cv2
.
cvtColor
(
frame
,
cv2
.
COLOR_BGR2RGB
)
results
=
detector
.
predict
(
frame2
,
FLAGS
.
det_threshold
)
batchs_images
=
get_person_from_rect
(
frame
,
results
)
keypoint_vector
=
[]
score_vector
=
[]
rect_vecotr
=
[]
for
batch_images
,
batch_records
in
batchs_images
:
keypoint_result
=
topdown_keypoint_detector
.
predict
(
batch_images
,
FLAGS
.
keypoint_threshold
)
orgkeypoints
,
scores
=
affine_backto_orgimages
(
keypoint_result
,
batch_records
)
keypoint_vector
.
append
(
orgkeypoints
)
score_vector
.
append
(
scores
)
rect_vecotr
.
append
(
batch_records
)
keypoint_res
=
{}
keypoint_res
[
'keypoint'
]
=
[
np
.
vstack
(
keypoint_vector
),
np
.
vstack
(
score_vector
)
]
keypoint_res
[
'bbox'
]
=
rect_vecotr
im
=
draw_pose
(
frame
,
keypoint_res
,
visual_thread
=
FLAGS
.
keypoint_threshold
,
returnimg
=
True
)
writer
.
write
(
im
)
if
camera_id
!=
-
1
:
cv2
.
imshow
(
'Mask Detection'
,
im
)
if
cv2
.
waitKey
(
1
)
&
0xFF
==
ord
(
'q'
):
break
writer
.
release
()
def
main
():
pred_config
=
PredictConfig
(
FLAGS
.
det_model_dir
)
detector
=
Detector
(
pred_config
,
FLAGS
.
det_model_dir
,
use_gpu
=
FLAGS
.
use_gpu
,
run_mode
=
FLAGS
.
run_mode
,
use_dynamic_shape
=
FLAGS
.
use_dynamic_shape
,
trt_min_shape
=
FLAGS
.
trt_min_shape
,
trt_max_shape
=
FLAGS
.
trt_max_shape
,
trt_opt_shape
=
FLAGS
.
trt_opt_shape
,
trt_calib_mode
=
FLAGS
.
trt_calib_mode
,
cpu_threads
=
FLAGS
.
cpu_threads
,
enable_mkldnn
=
FLAGS
.
enable_mkldnn
)
pred_config
=
PredictConfig_KeyPoint
(
FLAGS
.
keypoint_model_dir
)
topdown_keypoint_detector
=
KeyPoint_Detector
(
pred_config
,
FLAGS
.
keypoint_model_dir
,
use_gpu
=
FLAGS
.
use_gpu
,
run_mode
=
FLAGS
.
run_mode
,
use_dynamic_shape
=
FLAGS
.
use_dynamic_shape
,
trt_min_shape
=
FLAGS
.
trt_min_shape
,
trt_max_shape
=
FLAGS
.
trt_max_shape
,
trt_opt_shape
=
FLAGS
.
trt_opt_shape
,
trt_calib_mode
=
FLAGS
.
trt_calib_mode
,
cpu_threads
=
FLAGS
.
cpu_threads
,
enable_mkldnn
=
FLAGS
.
enable_mkldnn
)
# predict from video file or camera video stream
if
FLAGS
.
video_file
is
not
None
or
FLAGS
.
camera_id
!=
-
1
:
topdown_unite_predict_video
(
detector
,
topdown_keypoint_detector
,
FLAGS
.
camera_id
)
else
:
# predict from image
img_list
=
get_test_images
(
FLAGS
.
image_dir
,
FLAGS
.
image_file
)
topdown_unite_predict
(
detector
,
topdown_keypoint_detector
,
img_list
)
detector
.
det_times
.
info
(
average
=
True
)
topdown_keypoint_detector
.
det_times
.
info
(
average
=
True
)
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
parser
=
argsparser
()
FLAGS
=
parser
.
parse_args
()
print_arguments
(
FLAGS
)
main
()
deploy/python/keypoint_infer.py
0 → 100644
浏览文件 @
5ad5a819
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
time
import
yaml
import
glob
from
functools
import
reduce
from
PIL
import
Image
import
cv2
import
numpy
as
np
import
paddle
from
preprocess
import
preprocess
,
NormalizeImage
,
Permute
from
keypoint_preprocess
import
EvalAffine
,
TopDownEvalAffine
from
keypoint_postprocess
import
HrHRNetPostProcess
,
HRNetPostProcess
from
keypoint_visualize
import
draw_pose
from
paddle.inference
import
Config
from
paddle.inference
import
create_predictor
from
utils
import
argsparser
,
Timer
,
get_current_memory_mb
,
LoggerHelper
from
infer
import
get_test_images
,
print_arguments
# Global dictionary
KEYPOINT_SUPPORT_MODELS
=
{
'HigherHRNet'
:
'keypoint_bottomup'
,
'HRNet'
:
'keypoint_topdown'
}
class
KeyPoint_Detector
(
object
):
"""
Args:
config (object): config of model, defined by `Config(model_dir)`
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
use_gpu (bool): whether use gpu
run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
use_dynamic_shape (bool): use dynamic shape or not
trt_min_shape (int): min shape for dynamic shape in trt
trt_max_shape (int): max shape for dynamic shape in trt
trt_opt_shape (int): opt shape for dynamic shape in trt
run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
threshold (float): threshold to reserve the result for output.
"""
def
__init__
(
self
,
pred_config
,
model_dir
,
use_gpu
=
False
,
run_mode
=
'fluid'
,
use_dynamic_shape
=
False
,
trt_min_shape
=
1
,
trt_max_shape
=
1280
,
trt_opt_shape
=
640
,
trt_calib_mode
=
False
,
cpu_threads
=
1
,
enable_mkldnn
=
False
):
self
.
pred_config
=
pred_config
self
.
predictor
=
load_predictor
(
model_dir
,
run_mode
=
run_mode
,
min_subgraph_size
=
self
.
pred_config
.
min_subgraph_size
,
use_gpu
=
use_gpu
,
use_dynamic_shape
=
use_dynamic_shape
,
trt_min_shape
=
trt_min_shape
,
trt_max_shape
=
trt_max_shape
,
trt_opt_shape
=
trt_opt_shape
,
trt_calib_mode
=
trt_calib_mode
,
cpu_threads
=
cpu_threads
,
enable_mkldnn
=
enable_mkldnn
)
self
.
det_times
=
Timer
()
self
.
cpu_mem
,
self
.
gpu_mem
,
self
.
gpu_util
=
0
,
0
,
0
def
preprocess
(
self
,
im
):
preprocess_ops
=
[]
for
op_info
in
self
.
pred_config
.
preprocess_infos
:
new_op_info
=
op_info
.
copy
()
op_type
=
new_op_info
.
pop
(
'type'
)
preprocess_ops
.
append
(
eval
(
op_type
)(
**
new_op_info
))
im
,
im_info
=
preprocess
(
im
,
preprocess_ops
,
self
.
pred_config
.
input_shape
)
inputs
=
create_inputs
(
im
,
im_info
)
return
inputs
def
postprocess
(
self
,
np_boxes
,
np_masks
,
inputs
,
threshold
=
0.5
):
# postprocess output of predictor
if
KEYPOINT_SUPPORT_MODELS
[
self
.
pred_config
.
arch
]
==
'keypoint_bottomup'
:
results
=
{}
h
,
w
=
inputs
[
'im_shape'
][
0
]
preds
=
[
np_boxes
]
if
np_masks
is
not
None
:
preds
+=
np_masks
preds
+=
[
h
,
w
]
keypoint_postprocess
=
HrHRNetPostProcess
()
results
[
'keypoint'
]
=
keypoint_postprocess
(
*
preds
)
return
results
elif
KEYPOINT_SUPPORT_MODELS
[
self
.
pred_config
.
arch
]
==
'keypoint_topdown'
:
results
=
{}
imshape
=
inputs
[
'im_shape'
][:,
::
-
1
]
center
=
np
.
round
(
imshape
/
2.
)
scale
=
imshape
/
200.
keypoint_postprocess
=
HRNetPostProcess
()
results
[
'keypoint'
]
=
keypoint_postprocess
(
np_boxes
,
center
,
scale
)
return
results
else
:
raise
ValueError
(
"Unsupported arch: {}, expect {}"
.
format
(
self
.
pred_config
.
arch
,
KEYPOINT_SUPPORT_MODELS
))
def
predict
(
self
,
image
,
threshold
=
0.5
,
warmup
=
0
,
repeats
=
1
):
'''
Args:
image (str/np.ndarray): path of image/ np.ndarray read by cv2
threshold (float): threshold of predicted box' score
Returns:
results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
matix element:[class, score, x_min, y_min, x_max, y_max]
MaskRCNN's results include 'masks': np.ndarray:
shape: [N, im_h, im_w]
'''
self
.
det_times
.
preprocess_time
.
start
()
inputs
=
self
.
preprocess
(
image
)
np_boxes
,
np_masks
=
None
,
None
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
self
.
det_times
.
preprocess_time
.
end
()
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
np_boxes
=
boxes_tensor
.
copy_to_cpu
()
if
self
.
pred_config
.
tagmap
:
masks_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
1
])
heat_k
=
self
.
predictor
.
get_output_handle
(
output_names
[
2
])
inds_k
=
self
.
predictor
.
get_output_handle
(
output_names
[
3
])
np_masks
=
[
masks_tensor
.
copy_to_cpu
(),
heat_k
.
copy_to_cpu
(),
inds_k
.
copy_to_cpu
()
]
self
.
det_times
.
inference_time
.
start
()
for
i
in
range
(
repeats
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
np_boxes
=
boxes_tensor
.
copy_to_cpu
()
if
self
.
pred_config
.
tagmap
:
masks_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
1
])
heat_k
=
self
.
predictor
.
get_output_handle
(
output_names
[
2
])
inds_k
=
self
.
predictor
.
get_output_handle
(
output_names
[
3
])
np_masks
=
[
masks_tensor
.
copy_to_cpu
(),
heat_k
.
copy_to_cpu
(),
inds_k
.
copy_to_cpu
()
]
self
.
det_times
.
inference_time
.
end
(
repeats
=
repeats
)
self
.
det_times
.
postprocess_time
.
start
()
results
=
self
.
postprocess
(
np_boxes
,
np_masks
,
inputs
,
threshold
=
threshold
)
self
.
det_times
.
postprocess_time
.
end
()
self
.
det_times
.
img_num
+=
1
return
results
def
create_inputs
(
im
,
im_info
):
"""generate input for different model type
Args:
im (np.ndarray): image (np.ndarray)
im_info (dict): info of image
model_arch (str): model type
Returns:
inputs (dict): input of model
"""
inputs
=
{}
inputs
[
'image'
]
=
np
.
array
((
im
,
)).
astype
(
'float32'
)
inputs
[
'im_shape'
]
=
np
.
array
((
im_info
[
'im_shape'
],
)).
astype
(
'float32'
)
return
inputs
class
PredictConfig_KeyPoint
():
"""set config of preprocess, postprocess and visualize
Args:
model_dir (str): root path of model.yml
"""
def
__init__
(
self
,
model_dir
):
# parsing Yaml config for Preprocess
deploy_file
=
os
.
path
.
join
(
model_dir
,
'infer_cfg.yml'
)
with
open
(
deploy_file
)
as
f
:
yml_conf
=
yaml
.
safe_load
(
f
)
self
.
check_model
(
yml_conf
)
self
.
arch
=
yml_conf
[
'arch'
]
self
.
archcls
=
KEYPOINT_SUPPORT_MODELS
[
yml_conf
[
'arch'
]]
self
.
preprocess_infos
=
yml_conf
[
'Preprocess'
]
self
.
min_subgraph_size
=
yml_conf
[
'min_subgraph_size'
]
self
.
labels
=
yml_conf
[
'label_list'
]
self
.
tagmap
=
False
if
'keypoint_bottomup'
==
self
.
archcls
:
self
.
tagmap
=
True
self
.
input_shape
=
yml_conf
[
'image_shape'
]
self
.
print_config
()
def
check_model
(
self
,
yml_conf
):
"""
Raises:
ValueError: loaded model not in supported model type
"""
for
support_model
in
KEYPOINT_SUPPORT_MODELS
:
if
support_model
in
yml_conf
[
'arch'
]:
return
True
raise
ValueError
(
"Unsupported arch: {}, expect {}"
.
format
(
yml_conf
[
'arch'
],
KEYPOINT_SUPPORT_MODELS
))
def
print_config
(
self
):
print
(
'----------- Model Configuration -----------'
)
print
(
'%s: %s'
%
(
'Model Arch'
,
self
.
arch
))
print
(
'%s: '
%
(
'Transform Order'
))
for
op_info
in
self
.
preprocess_infos
:
print
(
'--%s: %s'
%
(
'transform op'
,
op_info
[
'type'
]))
print
(
'--------------------------------------------'
)
def
load_predictor
(
model_dir
,
run_mode
=
'fluid'
,
batch_size
=
1
,
use_gpu
=
False
,
min_subgraph_size
=
3
,
use_dynamic_shape
=
False
,
trt_min_shape
=
1
,
trt_max_shape
=
1280
,
trt_opt_shape
=
640
,
trt_calib_mode
=
False
,
cpu_threads
=
1
,
enable_mkldnn
=
False
):
"""set AnalysisConfig, generate AnalysisPredictor
Args:
model_dir (str): root path of __model__ and __params__
use_gpu (bool): whether use gpu
run_mode (str): mode of running(fluid/trt_fp32/trt_fp16/trt_int8)
use_dynamic_shape (bool): use dynamic shape or not
trt_min_shape (int): min shape for dynamic shape in trt
trt_max_shape (int): max shape for dynamic shape in trt
trt_opt_shape (int): opt shape for dynamic shape in trt
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
calibration, trt_calib_mode need to set True
Returns:
predictor (PaddlePredictor): AnalysisPredictor
Raises:
ValueError: predict by TensorRT need use_gpu == True.
"""
if
not
use_gpu
and
not
run_mode
==
'fluid'
:
raise
ValueError
(
"Predict by TensorRT mode: {}, expect use_gpu==True, but use_gpu == {}"
.
format
(
run_mode
,
use_gpu
))
config
=
Config
(
os
.
path
.
join
(
model_dir
,
'model.pdmodel'
),
os
.
path
.
join
(
model_dir
,
'model.pdiparams'
))
precision_map
=
{
'trt_int8'
:
Config
.
Precision
.
Int8
,
'trt_fp32'
:
Config
.
Precision
.
Float32
,
'trt_fp16'
:
Config
.
Precision
.
Half
}
if
use_gpu
:
# initial GPU memory(M), device ID
config
.
enable_use_gpu
(
200
,
0
)
# optimize graph and fuse op
config
.
switch_ir_optim
(
True
)
else
:
config
.
disable_gpu
()
config
.
set_cpu_math_library_num_threads
(
cpu_threads
)
if
enable_mkldnn
:
try
:
# cache 10 different shapes for mkldnn to avoid memory leak
config
.
set_mkldnn_cache_capacity
(
10
)
config
.
enable_mkldnn
()
except
Exception
as
e
:
print
(
"The current environment does not support `mkldnn`, so disable mkldnn."
)
pass
if
run_mode
in
precision_map
.
keys
():
config
.
enable_tensorrt_engine
(
workspace_size
=
1
<<
10
,
max_batch_size
=
batch_size
,
min_subgraph_size
=
min_subgraph_size
,
precision_mode
=
precision_map
[
run_mode
],
use_static
=
False
,
use_calib_mode
=
trt_calib_mode
)
if
use_dynamic_shape
:
min_input_shape
=
{
'image'
:
[
1
,
3
,
trt_min_shape
,
trt_min_shape
]}
max_input_shape
=
{
'image'
:
[
1
,
3
,
trt_max_shape
,
trt_max_shape
]}
opt_input_shape
=
{
'image'
:
[
1
,
3
,
trt_opt_shape
,
trt_opt_shape
]}
config
.
set_trt_dynamic_shape_info
(
min_input_shape
,
max_input_shape
,
opt_input_shape
)
print
(
'trt set dynamic shape done!'
)
# disable print log when predict
config
.
disable_glog_info
()
# enable shared memory
config
.
enable_memory_optim
()
# disable feed, fetch OP, needed by zero_copy_run
config
.
switch_use_feed_fetch_ops
(
False
)
predictor
=
create_predictor
(
config
)
return
predictor
def
predict_image
(
detector
,
image_list
):
for
i
,
img_file
in
enumerate
(
image_list
):
if
FLAGS
.
run_benchmark
:
detector
.
predict
(
img_file
,
FLAGS
.
threshold
,
warmup
=
10
,
repeats
=
10
)
cm
,
gm
,
gu
=
get_current_memory_mb
()
detector
.
cpu_mem
+=
cm
detector
.
gpu_mem
+=
gm
detector
.
gpu_util
+=
gu
print
(
'Test iter {}, file name:{}'
.
format
(
i
,
img_file
))
else
:
results
=
detector
.
predict
(
img_file
,
FLAGS
.
threshold
)
draw_pose
(
img_file
,
results
,
visual_thread
=
FLAGS
.
threshold
)
def
predict_video
(
detector
,
camera_id
):
if
camera_id
!=
-
1
:
capture
=
cv2
.
VideoCapture
(
camera_id
)
video_name
=
'output.mp4'
else
:
capture
=
cv2
.
VideoCapture
(
FLAGS
.
video_file
)
video_name
=
os
.
path
.
basename
(
os
.
path
.
split
(
FLAGS
.
video_file
)[
-
1
])
fps
=
30
width
=
int
(
capture
.
get
(
cv2
.
CAP_PROP_FRAME_WIDTH
))
height
=
int
(
capture
.
get
(
cv2
.
CAP_PROP_FRAME_HEIGHT
))
# yapf: disable
fourcc
=
cv2
.
VideoWriter_fourcc
(
*
'mp4v'
)
# yapf: enable
if
not
os
.
path
.
exists
(
FLAGS
.
output_dir
):
os
.
makedirs
(
FLAGS
.
output_dir
)
out_path
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
video_name
+
'.mp4'
)
writer
=
cv2
.
VideoWriter
(
out_path
,
fourcc
,
fps
,
(
width
,
height
))
index
=
1
while
(
1
):
ret
,
frame
=
capture
.
read
()
if
not
ret
:
break
print
(
'detect frame:%d'
%
(
index
))
index
+=
1
results
=
detector
.
predict
(
frame
,
FLAGS
.
threshold
)
im
=
draw_pose
(
frame
,
results
,
visual_thread
=
FLAGS
.
threshold
,
returnimg
=
True
)
writer
.
write
(
im
)
if
camera_id
!=
-
1
:
cv2
.
imshow
(
'Mask Detection'
,
im
)
if
cv2
.
waitKey
(
1
)
&
0xFF
==
ord
(
'q'
):
break
writer
.
release
()
def
main
():
pred_config
=
PredictConfig_KeyPoint
(
FLAGS
.
model_dir
)
detector
=
KeyPoint_Detector
(
pred_config
,
FLAGS
.
model_dir
,
use_gpu
=
FLAGS
.
use_gpu
,
run_mode
=
FLAGS
.
run_mode
,
use_dynamic_shape
=
FLAGS
.
use_dynamic_shape
,
trt_min_shape
=
FLAGS
.
trt_min_shape
,
trt_max_shape
=
FLAGS
.
trt_max_shape
,
trt_opt_shape
=
FLAGS
.
trt_opt_shape
,
trt_calib_mode
=
FLAGS
.
trt_calib_mode
,
cpu_threads
=
FLAGS
.
cpu_threads
,
enable_mkldnn
=
FLAGS
.
enable_mkldnn
)
# predict from video file or camera video stream
if
FLAGS
.
video_file
is
not
None
or
FLAGS
.
camera_id
!=
-
1
:
predict_video
(
detector
,
FLAGS
.
camera_id
)
else
:
# predict from image
img_list
=
get_test_images
(
FLAGS
.
image_dir
,
FLAGS
.
image_file
)
predict_image
(
detector
,
img_list
)
if
not
FLAGS
.
run_benchmark
:
detector
.
det_times
.
info
(
average
=
True
)
else
:
mems
=
{
'cpu_rss'
:
detector
.
cpu_mem
/
len
(
img_list
),
'gpu_rss'
:
detector
.
gpu_mem
/
len
(
img_list
),
'gpu_util'
:
detector
.
gpu_util
*
100
/
len
(
img_list
)
}
det_logger
=
LoggerHelper
(
FLAGS
,
detector
.
det_times
.
report
(
average
=
True
),
mems
)
det_logger
.
report
()
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
parser
=
argsparser
()
FLAGS
=
parser
.
parse_args
()
print_arguments
(
FLAGS
)
main
()
deploy/python/keypoint_postprocess.py
0 → 100644
浏览文件 @
5ad5a819
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
scipy.optimize
import
linear_sum_assignment
from
collections
import
abc
,
defaultdict
import
numpy
as
np
import
math
import
paddle
import
paddle.nn
as
nn
from
keypoint_preprocess
import
get_affine_mat_kernel
,
get_affine_transform
class
HrHRNetPostProcess
(
object
):
'''
HrHRNet postprocess contain:
1) get topk keypoints in the output heatmap
2) sample the tagmap's value corresponding to each of the topk coordinate
3) match different joints to combine to some people with Hungary algorithm
4) adjust the coordinate by +-0.25 to decrease error std
5) salvage missing joints by check positivity of heatmap - tagdiff_norm
Args:
max_num_people (int): max number of people support in postprocess
heat_thresh (float): value of topk below this threshhold will be ignored
tag_thresh (float): coord's value sampled in tagmap below this threshold belong to same people for init
inputs(list[heatmap]): the output list of modle, [heatmap, heatmap_maxpool, tagmap], heatmap_maxpool used to get topk
original_height, original_width (float): the original image size
'''
def
__init__
(
self
,
max_num_people
=
30
,
heat_thresh
=
0.2
,
tag_thresh
=
1.
):
self
.
max_num_people
=
max_num_people
self
.
heat_thresh
=
heat_thresh
self
.
tag_thresh
=
tag_thresh
def
lerp
(
self
,
j
,
y
,
x
,
heatmap
):
H
,
W
=
heatmap
.
shape
[
-
2
:]
left
=
np
.
clip
(
x
-
1
,
0
,
W
-
1
)
right
=
np
.
clip
(
x
+
1
,
0
,
W
-
1
)
up
=
np
.
clip
(
y
-
1
,
0
,
H
-
1
)
down
=
np
.
clip
(
y
+
1
,
0
,
H
-
1
)
offset_y
=
np
.
where
(
heatmap
[
j
,
down
,
x
]
>
heatmap
[
j
,
up
,
x
],
0.25
,
-
0.25
)
offset_x
=
np
.
where
(
heatmap
[
j
,
y
,
right
]
>
heatmap
[
j
,
y
,
left
],
0.25
,
-
0.25
)
return
offset_y
+
0.5
,
offset_x
+
0.5
def
__call__
(
self
,
heatmap
,
tagmap
,
heat_k
,
inds_k
,
original_height
,
original_width
):
N
,
J
,
H
,
W
=
heatmap
.
shape
assert
N
==
1
,
"only support batch size 1"
heatmap
=
heatmap
[
0
]
tagmap
=
tagmap
[
0
]
heats
=
heat_k
[
0
]
inds_np
=
inds_k
[
0
]
y
=
inds_np
//
W
x
=
inds_np
%
W
tags
=
tagmap
[
np
.
arange
(
J
)[
None
,
:].
repeat
(
self
.
max_num_people
),
y
.
flatten
(),
x
.
flatten
()].
reshape
(
J
,
-
1
,
tagmap
.
shape
[
-
1
])
coords
=
np
.
stack
((
y
,
x
),
axis
=
2
)
# threshold
mask
=
heats
>
self
.
heat_thresh
# cluster
cluster
=
defaultdict
(
lambda
:
{
'coords'
:
np
.
zeros
((
J
,
2
),
dtype
=
np
.
float32
),
'scores'
:
np
.
zeros
(
J
,
dtype
=
np
.
float32
),
'tags'
:
[]
})
for
jid
,
m
in
enumerate
(
mask
):
num_valid
=
m
.
sum
()
if
num_valid
==
0
:
continue
valid_inds
=
np
.
where
(
m
)[
0
]
valid_tags
=
tags
[
jid
,
m
,
:]
if
len
(
cluster
)
==
0
:
# initialize
for
i
in
valid_inds
:
tag
=
tags
[
jid
,
i
]
key
=
tag
[
0
]
cluster
[
key
][
'tags'
].
append
(
tag
)
cluster
[
key
][
'scores'
][
jid
]
=
heats
[
jid
,
i
]
cluster
[
key
][
'coords'
][
jid
]
=
coords
[
jid
,
i
]
continue
candidates
=
list
(
cluster
.
keys
())[:
self
.
max_num_people
]
centroids
=
[
np
.
mean
(
cluster
[
k
][
'tags'
],
axis
=
0
)
for
k
in
candidates
]
num_clusters
=
len
(
centroids
)
# shape is (num_valid, num_clusters, tag_dim)
dist
=
valid_tags
[:,
None
,
:]
-
np
.
array
(
centroids
)[
None
,
...]
l2_dist
=
np
.
linalg
.
norm
(
dist
,
ord
=
2
,
axis
=
2
)
# modulate dist with heat value, see `use_detection_val`
cost
=
np
.
round
(
l2_dist
)
*
100
-
heats
[
jid
,
m
,
None
]
# pad the cost matrix, otherwise new pose are ignored
if
num_valid
>
num_clusters
:
cost
=
np
.
pad
(
cost
,
((
0
,
0
),
(
0
,
num_valid
-
num_clusters
)),
constant_values
=
((
0
,
0
),
(
0
,
1e-10
)))
rows
,
cols
=
linear_sum_assignment
(
cost
)
for
y
,
x
in
zip
(
rows
,
cols
):
tag
=
tags
[
jid
,
y
]
if
y
<
num_valid
and
x
<
num_clusters
and
\
l2_dist
[
y
,
x
]
<
self
.
tag_thresh
:
key
=
candidates
[
x
]
# merge to cluster
else
:
key
=
tag
[
0
]
# initialize new cluster
cluster
[
key
][
'tags'
].
append
(
tag
)
cluster
[
key
][
'scores'
][
jid
]
=
heats
[
jid
,
y
]
cluster
[
key
][
'coords'
][
jid
]
=
coords
[
jid
,
y
]
# shape is [k, J, 2] and [k, J]
pose_tags
=
np
.
array
([
cluster
[
k
][
'tags'
]
for
k
in
cluster
])
pose_coords
=
np
.
array
([
cluster
[
k
][
'coords'
]
for
k
in
cluster
])
pose_scores
=
np
.
array
([
cluster
[
k
][
'scores'
]
for
k
in
cluster
])
valid
=
pose_scores
>
0
pose_kpts
=
np
.
zeros
((
pose_scores
.
shape
[
0
],
J
,
3
),
dtype
=
np
.
float32
)
if
valid
.
sum
()
==
0
:
return
pose_kpts
,
pose_kpts
# refine coords
valid_coords
=
pose_coords
[
valid
].
astype
(
np
.
int32
)
y
=
valid_coords
[...,
0
].
flatten
()
x
=
valid_coords
[...,
1
].
flatten
()
_
,
j
=
np
.
nonzero
(
valid
)
offsets
=
self
.
lerp
(
j
,
y
,
x
,
heatmap
)
pose_coords
[
valid
,
0
]
+=
offsets
[
0
]
pose_coords
[
valid
,
1
]
+=
offsets
[
1
]
# mean score before salvage
mean_score
=
pose_scores
.
mean
(
axis
=
1
)
pose_kpts
[
valid
,
2
]
=
pose_scores
[
valid
]
# salvage missing joints
if
True
:
for
pid
,
coords
in
enumerate
(
pose_coords
):
tag_mean
=
np
.
array
(
pose_tags
[
pid
]).
mean
(
axis
=
0
)
norm
=
np
.
sum
((
tagmap
-
tag_mean
)
**
2
,
axis
=
3
)
**
0.5
score
=
heatmap
-
np
.
round
(
norm
)
# (J, H, W)
flat_score
=
score
.
reshape
(
J
,
-
1
)
max_inds
=
np
.
argmax
(
flat_score
,
axis
=
1
)
max_scores
=
np
.
max
(
flat_score
,
axis
=
1
)
salvage_joints
=
(
pose_scores
[
pid
]
==
0
)
&
(
max_scores
>
0
)
if
salvage_joints
.
sum
()
==
0
:
continue
y
=
max_inds
[
salvage_joints
]
//
W
x
=
max_inds
[
salvage_joints
]
%
W
offsets
=
self
.
lerp
(
salvage_joints
.
nonzero
()[
0
],
y
,
x
,
heatmap
)
y
=
y
.
astype
(
np
.
float32
)
+
offsets
[
0
]
x
=
x
.
astype
(
np
.
float32
)
+
offsets
[
1
]
pose_coords
[
pid
][
salvage_joints
,
0
]
=
y
pose_coords
[
pid
][
salvage_joints
,
1
]
=
x
pose_kpts
[
pid
][
salvage_joints
,
2
]
=
max_scores
[
salvage_joints
]
pose_kpts
[...,
:
2
]
=
transpred
(
pose_coords
[...,
:
2
][...,
::
-
1
],
original_height
,
original_width
,
min
(
H
,
W
))
return
pose_kpts
,
mean_score
def
transpred
(
kpts
,
h
,
w
,
s
):
trans
,
_
=
get_affine_mat_kernel
(
h
,
w
,
s
,
inv
=
True
)
return
warp_affine_joints
(
kpts
[...,
:
2
].
copy
(),
trans
)
def
warp_affine_joints
(
joints
,
mat
):
"""Apply affine transformation defined by the transform matrix on the
joints.
Args:
joints (np.ndarray[..., 2]): Origin coordinate of joints.
mat (np.ndarray[3, 2]): The affine matrix.
Returns:
matrix (np.ndarray[..., 2]): Result coordinate of joints.
"""
joints
=
np
.
array
(
joints
)
shape
=
joints
.
shape
joints
=
joints
.
reshape
(
-
1
,
2
)
return
np
.
dot
(
np
.
concatenate
(
(
joints
,
joints
[:,
0
:
1
]
*
0
+
1
),
axis
=
1
),
mat
.
T
).
reshape
(
shape
)
class
HRNetPostProcess
(
object
):
def
flip_back
(
self
,
output_flipped
,
matched_parts
):
assert
output_flipped
.
ndim
==
4
,
\
'output_flipped should be [batch_size, num_joints, height, width]'
output_flipped
=
output_flipped
[:,
:,
:,
::
-
1
]
for
pair
in
matched_parts
:
tmp
=
output_flipped
[:,
pair
[
0
],
:,
:].
copy
()
output_flipped
[:,
pair
[
0
],
:,
:]
=
output_flipped
[:,
pair
[
1
],
:,
:]
output_flipped
[:,
pair
[
1
],
:,
:]
=
tmp
return
output_flipped
def
get_max_preds
(
self
,
heatmaps
):
'''get predictions from score maps
Args:
heatmaps: numpy.ndarray([batch_size, num_joints, height, width])
Returns:
preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
maxvals: numpy.ndarray([batch_size, num_joints, 2]), the maximum confidence of the keypoints
'''
assert
isinstance
(
heatmaps
,
np
.
ndarray
),
'heatmaps should be numpy.ndarray'
assert
heatmaps
.
ndim
==
4
,
'batch_images should be 4-ndim'
batch_size
=
heatmaps
.
shape
[
0
]
num_joints
=
heatmaps
.
shape
[
1
]
width
=
heatmaps
.
shape
[
3
]
heatmaps_reshaped
=
heatmaps
.
reshape
((
batch_size
,
num_joints
,
-
1
))
idx
=
np
.
argmax
(
heatmaps_reshaped
,
2
)
maxvals
=
np
.
amax
(
heatmaps_reshaped
,
2
)
maxvals
=
maxvals
.
reshape
((
batch_size
,
num_joints
,
1
))
idx
=
idx
.
reshape
((
batch_size
,
num_joints
,
1
))
preds
=
np
.
tile
(
idx
,
(
1
,
1
,
2
)).
astype
(
np
.
float32
)
preds
[:,
:,
0
]
=
(
preds
[:,
:,
0
])
%
width
preds
[:,
:,
1
]
=
np
.
floor
((
preds
[:,
:,
1
])
/
width
)
pred_mask
=
np
.
tile
(
np
.
greater
(
maxvals
,
0.0
),
(
1
,
1
,
2
))
pred_mask
=
pred_mask
.
astype
(
np
.
float32
)
preds
*=
pred_mask
return
preds
,
maxvals
def
get_final_preds
(
self
,
heatmaps
,
center
,
scale
):
"""the highest heatvalue location with a quarter offset in the
direction from the highest response to the second highest response.
Args:
heatmaps (numpy.ndarray): The predicted heatmaps
center (numpy.ndarray): The boxes center
scale (numpy.ndarray): The scale factor
Returns:
preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
maxvals: numpy.ndarray([batch_size, num_joints, 1]), the maximum confidence of the keypoints
"""
coords
,
maxvals
=
self
.
get_max_preds
(
heatmaps
)
heatmap_height
=
heatmaps
.
shape
[
2
]
heatmap_width
=
heatmaps
.
shape
[
3
]
for
n
in
range
(
coords
.
shape
[
0
]):
for
p
in
range
(
coords
.
shape
[
1
]):
hm
=
heatmaps
[
n
][
p
]
px
=
int
(
math
.
floor
(
coords
[
n
][
p
][
0
]
+
0.5
))
py
=
int
(
math
.
floor
(
coords
[
n
][
p
][
1
]
+
0.5
))
if
1
<
px
<
heatmap_width
-
1
and
1
<
py
<
heatmap_height
-
1
:
diff
=
np
.
array
([
hm
[
py
][
px
+
1
]
-
hm
[
py
][
px
-
1
],
hm
[
py
+
1
][
px
]
-
hm
[
py
-
1
][
px
]
])
coords
[
n
][
p
]
+=
np
.
sign
(
diff
)
*
.
25
preds
=
coords
.
copy
()
# Transform back
for
i
in
range
(
coords
.
shape
[
0
]):
preds
[
i
]
=
transform_preds
(
coords
[
i
],
center
[
i
],
scale
[
i
],
[
heatmap_width
,
heatmap_height
])
return
preds
,
maxvals
def
__call__
(
self
,
output
,
center
,
scale
):
preds
,
maxvals
=
self
.
get_final_preds
(
output
,
center
,
scale
)
return
np
.
concatenate
(
(
preds
,
maxvals
),
axis
=-
1
),
np
.
mean
(
maxvals
,
axis
=
1
)
def
transform_preds
(
coords
,
center
,
scale
,
output_size
):
target_coords
=
np
.
zeros
(
coords
.
shape
)
trans
=
get_affine_transform
(
center
,
scale
*
200
,
0
,
output_size
,
inv
=
1
)
for
p
in
range
(
coords
.
shape
[
0
]):
target_coords
[
p
,
0
:
2
]
=
affine_transform
(
coords
[
p
,
0
:
2
],
trans
)
return
target_coords
def
affine_transform
(
pt
,
t
):
new_pt
=
np
.
array
([
pt
[
0
],
pt
[
1
],
1.
]).
T
new_pt
=
np
.
dot
(
t
,
new_pt
)
return
new_pt
[:
2
]
deploy/python/keypoint_preprocess.py
0 → 100644
浏览文件 @
5ad5a819
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
cv2
import
numpy
as
np
class
EvalAffine
(
object
):
def
__init__
(
self
,
size
,
stride
=
64
):
super
(
EvalAffine
,
self
).
__init__
()
self
.
size
=
size
self
.
stride
=
stride
def
__call__
(
self
,
image
,
im_info
):
s
=
self
.
size
h
,
w
,
_
=
image
.
shape
trans
,
size_resized
=
get_affine_mat_kernel
(
h
,
w
,
s
,
inv
=
False
)
image_resized
=
cv2
.
warpAffine
(
image
,
trans
,
size_resized
)
return
image_resized
,
im_info
def
get_affine_mat_kernel
(
h
,
w
,
s
,
inv
=
False
):
if
w
<
h
:
w_
=
s
h_
=
int
(
np
.
ceil
((
s
/
w
*
h
)
/
64.
)
*
64
)
scale_w
=
w
scale_h
=
h_
/
w_
*
w
else
:
h_
=
s
w_
=
int
(
np
.
ceil
((
s
/
h
*
w
)
/
64.
)
*
64
)
scale_h
=
h
scale_w
=
w_
/
h_
*
h
center
=
np
.
array
([
np
.
round
(
w
/
2.
),
np
.
round
(
h
/
2.
)])
size_resized
=
(
w_
,
h_
)
trans
=
get_affine_transform
(
center
,
np
.
array
([
scale_w
,
scale_h
]),
0
,
size_resized
,
inv
=
inv
)
return
trans
,
size_resized
def
get_affine_transform
(
center
,
input_size
,
rot
,
output_size
,
shift
=
(
0.
,
0.
),
inv
=
False
):
"""Get the affine transform matrix, given the center/scale/rot/output_size.
Args:
center (np.ndarray[2, ]): Center of the bounding box (x, y).
scale (np.ndarray[2, ]): Scale of the bounding box
wrt [width, height].
rot (float): Rotation angle (degree).
output_size (np.ndarray[2, ]): Size of the destination heatmaps.
shift (0-100%): Shift translation ratio wrt the width/height.
Default (0., 0.).
inv (bool): Option to inverse the affine transform direction.
(inv=False: src->dst or inv=True: dst->src)
Returns:
np.ndarray: The transform matrix.
"""
assert
len
(
center
)
==
2
assert
len
(
input_size
)
==
2
assert
len
(
output_size
)
==
2
assert
len
(
shift
)
==
2
scale_tmp
=
input_size
shift
=
np
.
array
(
shift
)
src_w
=
scale_tmp
[
0
]
dst_w
=
output_size
[
0
]
dst_h
=
output_size
[
1
]
rot_rad
=
np
.
pi
*
rot
/
180
src_dir
=
rotate_point
([
0.
,
src_w
*
-
0.5
],
rot_rad
)
dst_dir
=
np
.
array
([
0.
,
dst_w
*
-
0.5
])
src
=
np
.
zeros
((
3
,
2
),
dtype
=
np
.
float32
)
src
[
0
,
:]
=
center
+
scale_tmp
*
shift
src
[
1
,
:]
=
center
+
src_dir
+
scale_tmp
*
shift
src
[
2
,
:]
=
_get_3rd_point
(
src
[
0
,
:],
src
[
1
,
:])
dst
=
np
.
zeros
((
3
,
2
),
dtype
=
np
.
float32
)
dst
[
0
,
:]
=
[
dst_w
*
0.5
,
dst_h
*
0.5
]
dst
[
1
,
:]
=
np
.
array
([
dst_w
*
0.5
,
dst_h
*
0.5
])
+
dst_dir
dst
[
2
,
:]
=
_get_3rd_point
(
dst
[
0
,
:],
dst
[
1
,
:])
if
inv
:
trans
=
cv2
.
getAffineTransform
(
np
.
float32
(
dst
),
np
.
float32
(
src
))
else
:
trans
=
cv2
.
getAffineTransform
(
np
.
float32
(
src
),
np
.
float32
(
dst
))
return
trans
def
rotate_point
(
pt
,
angle_rad
):
"""Rotate a point by an angle.
Args:
pt (list[float]): 2 dimensional point to be rotated
angle_rad (float): rotation angle by radian
Returns:
list[float]: Rotated point.
"""
assert
len
(
pt
)
==
2
sn
,
cs
=
np
.
sin
(
angle_rad
),
np
.
cos
(
angle_rad
)
new_x
=
pt
[
0
]
*
cs
-
pt
[
1
]
*
sn
new_y
=
pt
[
0
]
*
sn
+
pt
[
1
]
*
cs
rotated_pt
=
[
new_x
,
new_y
]
return
rotated_pt
def
_get_3rd_point
(
a
,
b
):
"""To calculate the affine matrix, three pairs of points are required. This
function is used to get the 3rd point, given 2D points a & b.
The 3rd point is defined by rotating vector `a - b` by 90 degrees
anticlockwise, using b as the rotation center.
Args:
a (np.ndarray): point(x,y)
b (np.ndarray): point(x,y)
Returns:
np.ndarray: The 3rd point.
"""
assert
len
(
a
)
==
2
assert
len
(
b
)
==
2
direction
=
a
-
b
third_pt
=
b
+
np
.
array
([
-
direction
[
1
],
direction
[
0
]],
dtype
=
np
.
float32
)
return
third_pt
class
TopDownEvalAffine
(
object
):
"""apply affine transform to image and coords
Args:
trainsize (list): [w, h], the standard size used to train
records(dict): the dict contained the image and coords
Returns:
records (dict): contain the image and coords after tranformed
"""
def
__init__
(
self
,
trainsize
):
self
.
trainsize
=
trainsize
def
__call__
(
self
,
image
,
im_info
):
rot
=
0
imshape
=
im_info
[
'im_shape'
][::
-
1
]
center
=
im_info
[
'center'
]
if
'center'
in
im_info
else
imshape
/
2.
scale
=
im_info
[
'scale'
]
if
'scale'
in
im_info
else
imshape
trans
=
get_affine_transform
(
center
,
scale
,
rot
,
self
.
trainsize
)
image
=
cv2
.
warpAffine
(
image
,
trans
,
(
int
(
self
.
trainsize
[
0
]),
int
(
self
.
trainsize
[
1
])),
flags
=
cv2
.
INTER_LINEAR
)
return
image
,
im_info
deploy/python/keypoint_visualize.py
0 → 100644
浏览文件 @
5ad5a819
# coding: utf-8
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
cv2
import
os
import
numpy
as
np
import
math
def
map_coco_to_personlab
(
keypoints
):
permute
=
[
0
,
6
,
8
,
10
,
5
,
7
,
9
,
12
,
14
,
16
,
11
,
13
,
15
,
2
,
1
,
4
,
3
]
return
keypoints
[:,
permute
,
:]
def
draw_pose
(
imgfile
,
results
,
visual_thread
=
0.6
,
save_name
=
'pose.jpg'
,
returnimg
=
False
):
try
:
import
matplotlib.pyplot
as
plt
import
matplotlib
plt
.
switch_backend
(
'agg'
)
except
Exception
as
e
:
logger
.
error
(
'Matplotlib not found, please install matplotlib.'
'for example: `pip install matplotlib`.'
)
raise
e
EDGES
=
[(
0
,
14
),
(
0
,
13
),
(
0
,
4
),
(
0
,
1
),
(
14
,
16
),
(
13
,
15
),
(
4
,
10
),
(
1
,
7
),
(
10
,
11
),
(
7
,
8
),
(
11
,
12
),
(
8
,
9
),
(
4
,
5
),
(
1
,
2
),
(
5
,
6
),
(
2
,
3
)]
NUM_EDGES
=
len
(
EDGES
)
colors
=
[[
255
,
0
,
0
],
[
255
,
85
,
0
],
[
255
,
170
,
0
],
[
255
,
255
,
0
],
[
170
,
255
,
0
],
[
85
,
255
,
0
],
[
0
,
255
,
0
],
\
[
0
,
255
,
85
],
[
0
,
255
,
170
],
[
0
,
255
,
255
],
[
0
,
170
,
255
],
[
0
,
85
,
255
],
[
0
,
0
,
255
],
[
85
,
0
,
255
],
\
[
170
,
0
,
255
],
[
255
,
0
,
255
],
[
255
,
0
,
170
],
[
255
,
0
,
85
]]
cmap
=
matplotlib
.
cm
.
get_cmap
(
'hsv'
)
plt
.
figure
()
img
=
cv2
.
imread
(
imgfile
)
if
type
(
imgfile
)
==
str
else
imgfile
skeletons
,
scores
=
results
[
'keypoint'
]
if
'bbox'
in
results
:
bboxs
=
results
[
'bbox'
]
for
idx
,
rect
in
enumerate
(
bboxs
):
xmin
,
ymin
,
xmax
,
ymax
=
rect
cv2
.
rectangle
(
img
,
(
xmin
,
ymin
),
(
xmax
,
ymax
),
colors
[
idx
%
len
(
colors
)],
2
)
canvas
=
img
.
copy
()
for
i
in
range
(
17
):
rgba
=
np
.
array
(
cmap
(
1
-
i
/
17.
-
1.
/
34
))
rgba
[
0
:
3
]
*=
255
for
j
in
range
(
len
(
skeletons
)):
if
skeletons
[
j
][
i
,
2
]
<
visual_thread
:
continue
cv2
.
circle
(
canvas
,
tuple
(
skeletons
[
j
][
i
,
0
:
2
].
astype
(
'int32'
)),
2
,
colors
[
i
],
thickness
=-
1
)
to_plot
=
cv2
.
addWeighted
(
img
,
0.3
,
canvas
,
0.7
,
0
)
fig
=
matplotlib
.
pyplot
.
gcf
()
stickwidth
=
2
skeletons
=
map_coco_to_personlab
(
skeletons
)
for
i
in
range
(
NUM_EDGES
):
for
j
in
range
(
len
(
skeletons
)):
edge
=
EDGES
[
i
]
if
skeletons
[
j
][
edge
[
0
],
2
]
<
visual_thread
or
skeletons
[
j
][
edge
[
1
],
2
]
<
visual_thread
:
continue
cur_canvas
=
canvas
.
copy
()
X
=
[
skeletons
[
j
][
edge
[
0
],
1
],
skeletons
[
j
][
edge
[
1
],
1
]]
Y
=
[
skeletons
[
j
][
edge
[
0
],
0
],
skeletons
[
j
][
edge
[
1
],
0
]]
mX
=
np
.
mean
(
X
)
mY
=
np
.
mean
(
Y
)
length
=
((
X
[
0
]
-
X
[
1
])
**
2
+
(
Y
[
0
]
-
Y
[
1
])
**
2
)
**
0.5
angle
=
math
.
degrees
(
math
.
atan2
(
X
[
0
]
-
X
[
1
],
Y
[
0
]
-
Y
[
1
]))
polygon
=
cv2
.
ellipse2Poly
((
int
(
mY
),
int
(
mX
)),
(
int
(
length
/
2
),
stickwidth
),
int
(
angle
),
0
,
360
,
1
)
cv2
.
fillConvexPoly
(
cur_canvas
,
polygon
,
colors
[
i
])
canvas
=
cv2
.
addWeighted
(
canvas
,
0.4
,
cur_canvas
,
0.6
,
0
)
if
returnimg
:
return
canvas
save_name
=
'output/'
+
os
.
path
.
basename
(
imgfile
)[:
-
4
]
+
'_vis.jpg'
plt
.
imsave
(
save_name
,
canvas
[:,
:,
::
-
1
])
print
(
"keypoint visualize image saved to: "
+
save_name
)
plt
.
close
()
deploy/python/topdown_unite_utils.py
0 → 100644
浏览文件 @
5ad5a819
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
ast
import
argparse
def
argsparser
():
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
parser
.
add_argument
(
"--det_model_dir"
,
type
=
str
,
default
=
None
,
help
=
(
"Directory include:'model.pdiparams', 'model.pdmodel', "
"'infer_cfg.yml', created by tools/export_model.py."
),
required
=
True
)
parser
.
add_argument
(
"--keypoint_model_dir"
,
type
=
str
,
default
=
None
,
help
=
(
"Directory include:'model.pdiparams', 'model.pdmodel', "
"'infer_cfg.yml', created by tools/export_model.py."
),
required
=
True
)
parser
.
add_argument
(
"--image_file"
,
type
=
str
,
default
=
None
,
help
=
"Path of image file."
)
parser
.
add_argument
(
"--image_dir"
,
type
=
str
,
default
=
None
,
help
=
"Dir of image file, `image_file` has a higher priority."
)
parser
.
add_argument
(
"--video_file"
,
type
=
str
,
default
=
None
,
help
=
"Path of video file, `video_file` or `camera_id` has a highest priority."
)
parser
.
add_argument
(
"--camera_id"
,
type
=
int
,
default
=-
1
,
help
=
"device id of camera to predict."
)
parser
.
add_argument
(
"--det_threshold"
,
type
=
float
,
default
=
0.5
,
help
=
"Threshold of score."
)
parser
.
add_argument
(
"--keypoint_threshold"
,
type
=
float
,
default
=
0.5
,
help
=
"Threshold of score."
)
parser
.
add_argument
(
"--output_dir"
,
type
=
str
,
default
=
"output"
,
help
=
"Directory of output visualization files."
)
parser
.
add_argument
(
"--run_mode"
,
type
=
str
,
default
=
'fluid'
,
help
=
"mode of running(fluid/trt_fp32/trt_fp16/trt_int8)"
)
parser
.
add_argument
(
"--use_gpu"
,
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"Whether to predict with GPU."
)
parser
.
add_argument
(
"--run_benchmark"
,
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"Whether to predict a image_file repeatedly for benchmark"
)
parser
.
add_argument
(
"--enable_mkldnn"
,
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"Whether use mkldnn with CPU."
)
parser
.
add_argument
(
"--cpu_threads"
,
type
=
int
,
default
=
1
,
help
=
"Num of threads with CPU."
)
parser
.
add_argument
(
"--use_dynamic_shape"
,
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"Dynamic_shape for TensorRT."
)
parser
.
add_argument
(
"--trt_min_shape"
,
type
=
int
,
default
=
1
,
help
=
"min_shape for TensorRT."
)
parser
.
add_argument
(
"--trt_max_shape"
,
type
=
int
,
default
=
1280
,
help
=
"max_shape for TensorRT."
)
parser
.
add_argument
(
"--trt_opt_shape"
,
type
=
int
,
default
=
640
,
help
=
"opt_shape for TensorRT."
)
parser
.
add_argument
(
"--trt_calib_mode"
,
type
=
bool
,
default
=
False
,
help
=
"If the model is produced by TRT offline quantitative "
"calibration, trt_calib_mode need to set True."
)
return
parser
ppdet/optimizer.py
浏览文件 @
5ad5a819
...
...
@@ -234,7 +234,7 @@ class OptimizerBuilder():
clip_norm
=
self
.
clip_grad_by_norm
)
else
:
grad_clip
=
None
if
self
.
regularizer
:
if
self
.
regularizer
and
self
.
regularizer
!=
'None'
:
reg_type
=
self
.
regularizer
[
'type'
]
+
'Decay'
reg_factor
=
self
.
regularizer
[
'factor'
]
regularization
=
getattr
(
regularizer
,
reg_type
)(
reg_factor
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录