infer.py 24.1 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
G
Guanghua Yu 已提交
18
import glob
Q
qingqing01 已提交
19 20 21 22 23
from functools import reduce

from PIL import Image
import cv2
import numpy as np
C
cnn 已提交
24
import math
Q
qingqing01 已提交
25 26 27 28
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

29
from benchmark_utils import PaddleInferBenchmark
G
Guanghua Yu 已提交
30 31
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride
from visualize import visualize_box_mask
32
from utils import argsparser, Timer, get_current_memory_mb
G
Guanghua Yu 已提交
33

Q
qingqing01 已提交
34 35 36 37 38
# Global dictionary
SUPPORT_MODELS = {
    'YOLO',
    'RCNN',
    'SSD',
F
Feng Ni 已提交
39
    'FCOS',
G
Guanghua Yu 已提交
40
    'SOLOv2',
F
Feng Ni 已提交
41
    'TTFNet',
C
cnn 已提交
42
    'S2ANet',
Q
qingqing01 已提交
43 44 45 46 47 48 49 50 51 52
}


class Detector(object):
    """
    Args:
        config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        use_gpu (bool): whether use gpu
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
53
        batch_size (int): size of pre batch in inference
54 55 56 57 58
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
Q
qingqing01 已提交
59 60 61 62 63 64 65 66
        threshold (float): threshold to reserve the result for output.
    """

    def __init__(self,
                 pred_config,
                 model_dir,
                 use_gpu=False,
                 run_mode='fluid',
67
                 batch_size=1,
68 69 70 71
                 use_dynamic_shape=False,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
72 73 74
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
Q
qingqing01 已提交
75
        self.pred_config = pred_config
76
        self.predictor, self.config = load_predictor(
Q
qingqing01 已提交
77 78
            model_dir,
            run_mode=run_mode,
79
            batch_size=batch_size,
Q
qingqing01 已提交
80
            min_subgraph_size=self.pred_config.min_subgraph_size,
81 82 83 84
            use_gpu=use_gpu,
            use_dynamic_shape=use_dynamic_shape,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
85
            trt_opt_shape=trt_opt_shape,
86 87 88
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
G
Guanghua Yu 已提交
89 90
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
Q
qingqing01 已提交
91

C
cnn 已提交
92
    def preprocess(self, image_list):
Q
qingqing01 已提交
93 94 95 96 97
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
C
cnn 已提交
98 99 100 101 102 103 104 105 106

        input_im_lst = []
        input_im_info_lst = []
        for im_path in image_list:
            im, im_info = preprocess(im_path, preprocess_ops,
                                     self.pred_config.input_shape)
            input_im_lst.append(im)
            input_im_info_lst.append(im_info)
        inputs = create_inputs(input_im_lst, input_im_info_lst)
Q
qingqing01 已提交
107 108
        return inputs

C
cnn 已提交
109 110 111 112 113 114
    def postprocess(self,
                    np_boxes,
                    np_masks,
                    inputs,
                    np_boxes_num,
                    threshold=0.5):
Q
qingqing01 已提交
115 116 117 118 119 120 121 122 123 124 125
        # postprocess output of predictor
        results = {}
        if self.pred_config.arch in ['Face']:
            h, w = inputs['im_shape']
            scale_y, scale_x = inputs['scale_factor']
            w, h = float(h) / scale_y, float(w) / scale_x
            np_boxes[:, 2] *= h
            np_boxes[:, 3] *= w
            np_boxes[:, 4] *= h
            np_boxes[:, 5] *= w
        results['boxes'] = np_boxes
C
cnn 已提交
126
        results['boxes_num'] = np_boxes_num
Q
qingqing01 已提交
127 128 129 130
        if np_masks is not None:
            results['masks'] = np_masks
        return results

C
cnn 已提交
131
    def predict(self, image_list, threshold=0.5, warmup=0, repeats=1):
Q
qingqing01 已提交
132 133
        '''
        Args:
C
cnn 已提交
134
            image_list (list): ,list of image
Q
qingqing01 已提交
135 136 137 138 139
            threshold (float): threshold of predicted box' score
        Returns:
            results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                            matix element:[class, score, x_min, y_min, x_max, y_max]
                            MaskRCNN's results include 'masks': np.ndarray:
G
Guanghua Yu 已提交
140
                            shape: [N, im_h, im_w]
Q
qingqing01 已提交
141
        '''
142
        self.det_times.preprocess_time_s.start()
C
cnn 已提交
143
        inputs = self.preprocess(image_list)
Q
qingqing01 已提交
144 145 146 147 148
        np_boxes, np_masks = None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
149
        self.det_times.preprocess_time_s.end()
Q
qingqing01 已提交
150 151 152 153 154
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
G
Guanghua Yu 已提交
155
            if self.pred_config.mask:
Q
qingqing01 已提交
156 157 158
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()

159
        self.det_times.inference_time_s.start()
Q
qingqing01 已提交
160 161 162 163 164
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
C
cnn 已提交
165 166
            boxes_num = self.predictor.get_output_handle(output_names[1])
            np_boxes_num = boxes_num.copy_to_cpu()
G
Guanghua Yu 已提交
167
            if self.pred_config.mask:
Q
qingqing01 已提交
168 169
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()
170
        self.det_times.inference_time_s.end(repeats=repeats)
Q
qingqing01 已提交
171

172
        self.det_times.postprocess_time_s.start()
Q
qingqing01 已提交
173
        results = []
G
Guanghua Yu 已提交
174 175
        if reduce(lambda x, y: x * y, np_boxes.shape) < 6:
            print('[WARNNING] No object detected.')
C
cnn 已提交
176
            results = {'boxes': np.array([]), 'boxes_num': [0]}
G
Guanghua Yu 已提交
177 178
        else:
            results = self.postprocess(
C
cnn 已提交
179
                np_boxes, np_masks, inputs, np_boxes_num, threshold=threshold)
180
        self.det_times.postprocess_time_s.end()
C
cnn 已提交
181
        self.det_times.img_num += len(image_list)
Q
qingqing01 已提交
182 183 184
        return results


G
Guanghua Yu 已提交
185 186 187 188 189 190 191
class DetectorSOLOv2(Detector):
    """
    Args:
        config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        use_gpu (bool): whether use gpu
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
192
        batch_size (int): size of pre batch in inference
193 194 195 196
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
197 198 199 200 201 202 203 204
        threshold (float): threshold to reserve the result for output.
    """

    def __init__(self,
                 pred_config,
                 model_dir,
                 use_gpu=False,
                 run_mode='fluid',
205
                 batch_size=1,
206 207 208 209
                 use_dynamic_shape=False,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
210 211 212
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
G
Guanghua Yu 已提交
213
        self.pred_config = pred_config
214
        self.predictor, self.config = load_predictor(
G
Guanghua Yu 已提交
215 216
            model_dir,
            run_mode=run_mode,
217
            batch_size=batch_size,
G
Guanghua Yu 已提交
218
            min_subgraph_size=self.pred_config.min_subgraph_size,
219 220 221 222
            use_gpu=use_gpu,
            use_dynamic_shape=use_dynamic_shape,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
223
            trt_opt_shape=trt_opt_shape,
224 225 226
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
G
Guanghua Yu 已提交
227 228 229
        self.det_times = Timer()

    def predict(self, image, threshold=0.5, warmup=0, repeats=1):
G
Guanghua Yu 已提交
230 231 232 233 234
        '''
        Args:
            image (str/np.ndarray): path of image/ np.ndarray read by cv2
            threshold (float): threshold of predicted box' score
        Returns:
G
Guanghua Yu 已提交
235 236 237
            results (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
                            'cate_label': label of segm, shape:[N]
                            'cate_score': confidence score of segm, shape:[N]
G
Guanghua Yu 已提交
238
        '''
239
        self.det_times.postprocess_time_s.start()
G
Guanghua Yu 已提交
240 241 242 243 244 245
        inputs = self.preprocess(image)
        np_label, np_score, np_segms = None, None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
246
        self.det_times.postprocess_time_s.end()
G
Guanghua Yu 已提交
247 248 249 250 251
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
252
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
253
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
254 255
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
G
Guanghua Yu 已提交
256

257
        self.det_times.inference_time_s.start()
G
Guanghua Yu 已提交
258 259 260 261 262
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
263
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
264
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
265 266
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
267
        self.det_times.inference_time_s.end(repeats=repeats)
G
Guanghua Yu 已提交
268
        self.det_times.img_num += 1
G
Guanghua Yu 已提交
269

G
Guanghua Yu 已提交
270
        return dict(segm=np_segms, label=np_label, score=np_score)
G
Guanghua Yu 已提交
271 272


C
cnn 已提交
273
def create_inputs(imgs, im_info):
Q
qingqing01 已提交
274 275 276 277 278 279 280 281 282
    """generate input for different model type
    Args:
        im (np.ndarray): image (np.ndarray)
        im_info (dict): info of image
    Returns:
        inputs (dict): input of model
    """
    inputs = {}

C
cnn 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
    im_shape = []
    scale_factor = []
    for e in im_info:
        im_shape.append(np.array((e['im_shape'], )).astype('float32'))
        scale_factor.append(np.array((e['scale_factor'], )).astype('float32'))

    origin_scale_factor = np.concatenate(scale_factor, axis=0)

    imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
    max_shape_h = max([e[0] for e in imgs_shape])
    max_shape_w = max([e[1] for e in imgs_shape])
    padding_imgs = []
    padding_imgs_shape = []
    padding_imgs_scale = []
    for img in imgs:
        im_c, im_h, im_w = img.shape[:]
        padding_im = np.zeros(
            (im_c, max_shape_h, max_shape_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = img
        padding_imgs.append(padding_im)
        padding_imgs_shape.append(
            np.array([max_shape_h, max_shape_w]).astype('float32'))
        rescale = [
            float(max_shape_h) / float(im_h), float(max_shape_w) / float(im_w)
        ]
        padding_imgs_scale.append(np.array(rescale).astype('float32'))
    inputs['image'] = np.stack(padding_imgs, axis=0)
    inputs['im_shape'] = np.stack(padding_imgs_shape, axis=0)
    inputs['scale_factor'] = origin_scale_factor
Q
qingqing01 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
    return inputs


class PredictConfig():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
G
Guanghua Yu 已提交
331 332 333
        self.mask = False
        if 'mask' in yml_conf:
            self.mask = yml_conf['mask']
Q
qingqing01 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
        self.input_shape = yml_conf['image_shape']
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def load_predictor(model_dir,
                   run_mode='fluid',
                   batch_size=1,
                   use_gpu=False,
361 362 363 364
                   min_subgraph_size=3,
                   use_dynamic_shape=False,
                   trt_min_shape=1,
                   trt_max_shape=1280,
G
Guanghua Yu 已提交
365
                   trt_opt_shape=640,
366 367 368
                   trt_calib_mode=False,
                   cpu_threads=1,
                   enable_mkldnn=False):
Q
qingqing01 已提交
369 370 371 372
    """set AnalysisConfig, generate AnalysisPredictor
    Args:
        model_dir (str): root path of __model__ and __params__
        use_gpu (bool): whether use gpu
373
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16/trt_int8)
374 375 376 377
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
378 379
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
Q
qingqing01 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
        ValueError: predict by TensorRT need use_gpu == True.
    """
    if not use_gpu and not run_mode == 'fluid':
        raise ValueError(
            "Predict by TensorRT mode: {}, expect use_gpu==True, but use_gpu == {}"
            .format(run_mode, use_gpu))
    config = Config(
        os.path.join(model_dir, 'model.pdmodel'),
        os.path.join(model_dir, 'model.pdiparams'))
    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }
    if use_gpu:
        # initial GPU memory(M), device ID
        config.enable_use_gpu(200, 0)
        # optimize graph and fuse op
401
        config.switch_ir_optim(True)
Q
qingqing01 已提交
402 403
    else:
        config.disable_gpu()
404 405
        config.set_cpu_math_library_num_threads(cpu_threads)
        if enable_mkldnn:
G
Guanghua Yu 已提交
406 407 408 409 410 411 412 413 414
            try:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
            except Exception as e:
                print(
                    "The current environment does not support `mkldnn`, so disable mkldnn."
                )
                pass
Q
qingqing01 已提交
415 416 417 418 419 420 421 422

    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
            workspace_size=1 << 10,
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
G
Guanghua Yu 已提交
423
            use_calib_mode=trt_calib_mode)
424 425 426 427 428 429 430 431

        if use_dynamic_shape:
            min_input_shape = {'image': [1, 3, trt_min_shape, trt_min_shape]}
            max_input_shape = {'image': [1, 3, trt_max_shape, trt_max_shape]}
            opt_input_shape = {'image': [1, 3, trt_opt_shape, trt_opt_shape]}
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
            print('trt set dynamic shape done!')
Q
qingqing01 已提交
432 433 434 435 436 437 438 439

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
    predictor = create_predictor(config)
440
    return predictor, config
Q
qingqing01 已提交
441 442


G
Guanghua Yu 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
        "--infer_img or --infer_dir should be set"
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


C
cnn 已提交
474
def visualize(image_list, results, labels, output_dir='output/', threshold=0.5):
Q
qingqing01 已提交
475
    # visualize the predict result
C
cnn 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
    start_idx = 0
    for idx, image_file in enumerate(image_list):
        im_bboxes_num = results['boxes_num'][idx]
        im_results = {}
        if 'boxes' in results:
            im_results['boxes'] = results['boxes'][start_idx:start_idx +
                                                   im_bboxes_num, :]
        if 'masks' in results:
            im_results['masks'] = results['masks'][start_idx:start_idx +
                                                   im_bboxes_num, :]
        if 'segm' in results:
            im_results['segm'] = results['segm'][start_idx:start_idx +
                                                 im_bboxes_num, :]
        start_idx += im_bboxes_num
        im = visualize_box_mask(
            image_file, im_results, labels, threshold=threshold)
        img_name = os.path.split(image_file)[-1]
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        out_path = os.path.join(output_dir, img_name)
        im.save(out_path, quality=95)
        print("save result to: " + out_path)
Q
qingqing01 已提交
498 499 500 501 502 503 504 505 506


def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')


C
cnn 已提交
507 508 509 510 511 512
def predict_image(detector, image_list, batch_size=1):
    batch_loop_cnt = math.ceil(float(len(image_list)) / batch_size)
    for i in range(batch_loop_cnt):
        start_index = i * batch_size
        end_index = min((i + 1) * batch_size, len(image_list))
        batch_image_list = image_list[start_index:end_index]
G
Guanghua Yu 已提交
513
        if FLAGS.run_benchmark:
C
cnn 已提交
514 515
            detector.predict(
                batch_image_list, FLAGS.threshold, warmup=10, repeats=10)
G
Guanghua Yu 已提交
516 517 518 519
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
C
cnn 已提交
520
            print('Test iter {}'.format(i))
G
Guanghua Yu 已提交
521
        else:
C
cnn 已提交
522
            results = detector.predict(batch_image_list, FLAGS.threshold)
G
Guanghua Yu 已提交
523
            visualize(
C
cnn 已提交
524
                batch_image_list,
G
Guanghua Yu 已提交
525 526 527 528
                results,
                detector.pred_config.labels,
                output_dir=FLAGS.output_dir,
                threshold=FLAGS.threshold)
Q
qingqing01 已提交
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575


def predict_video(detector, camera_id):
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
    fps = 30
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
    # yapf: disable
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    # yapf: enable
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    index = 1
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        print('detect frame:%d' % (index))
        index += 1
        results = detector.predict(frame, FLAGS.threshold)
        im = visualize_box_mask(
            frame,
            results,
            detector.pred_config.labels,
            threshold=FLAGS.threshold)
        im = np.array(im)
        writer.write(im)
        if camera_id != -1:
            cv2.imshow('Mask Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
    writer.release()


def main():
    pred_config = PredictConfig(FLAGS.model_dir)
    detector = Detector(
        pred_config,
        FLAGS.model_dir,
        use_gpu=FLAGS.use_gpu,
576
        run_mode=FLAGS.run_mode,
577
        batch_size=FLAGS.batch_size,
578 579 580
        use_dynamic_shape=FLAGS.use_dynamic_shape,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
G
Guanghua Yu 已提交
581
        trt_opt_shape=FLAGS.trt_opt_shape,
582 583 584
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)
G
Guanghua Yu 已提交
585 586 587 588 589
    if pred_config.arch == 'SOLOv2':
        detector = DetectorSOLOv2(
            pred_config,
            FLAGS.model_dir,
            use_gpu=FLAGS.use_gpu,
590
            run_mode=FLAGS.run_mode,
591
            batch_size=FLAGS.batch_size,
592 593 594
            use_dynamic_shape=FLAGS.use_dynamic_shape,
            trt_min_shape=FLAGS.trt_min_shape,
            trt_max_shape=FLAGS.trt_max_shape,
G
Guanghua Yu 已提交
595
            trt_opt_shape=FLAGS.trt_opt_shape,
596 597 598
            trt_calib_mode=FLAGS.trt_calib_mode,
            cpu_threads=FLAGS.cpu_threads,
            enable_mkldnn=FLAGS.enable_mkldnn)
G
Guanghua Yu 已提交
599

Q
qingqing01 已提交
600
    # predict from video file or camera video stream
G
Guanghua Yu 已提交
601
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
Q
qingqing01 已提交
602
        predict_video(detector, FLAGS.camera_id)
G
Guanghua Yu 已提交
603 604
    else:
        # predict from image
C
cnn 已提交
605 606
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
G
Guanghua Yu 已提交
607
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
C
cnn 已提交
608
        predict_image(detector, img_list, FLAGS.batch_size)
G
Guanghua Yu 已提交
609 610 611 612
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mems = {
613 614
                'cpu_rss_mb': detector.cpu_mem / len(img_list),
                'gpu_rss_mb': detector.gpu_mem / len(img_list),
G
Guanghua Yu 已提交
615 616
                'gpu_util': detector.gpu_util * 100 / len(img_list)
            }
617 618 619 620 621

            perf_info = detector.det_times.report(average=True)
            model_dir = FLAGS.model_dir
            mode = FLAGS.run_mode
            model_info = {
622 623
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
624 625
            }
            data_info = {
626
                'batch_size': FLAGS.batch_size,
627 628 629
                'shape': "dynamic_shape",
                'data_num': perf_info['img_num']
            }
630 631
            det_log = PaddleInferBenchmark(detector.config, model_info,
                                           data_info, perf_info, mems)
632
            det_log('Det')
Q
qingqing01 已提交
633 634 635 636


if __name__ == '__main__':
    paddle.enable_static()
G
Guanghua Yu 已提交
637
    parser = argsparser()
Q
qingqing01 已提交
638 639 640 641
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)

    main()