infer.py 20.6 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
G
Guanghua Yu 已提交
18
import glob
Q
qingqing01 已提交
19 20 21 22 23 24 25 26 27
from functools import reduce

from PIL import Image
import cv2
import numpy as np
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

G
Guanghua Yu 已提交
28 29 30 31
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride
from visualize import visualize_box_mask
from utils import argsparser, Timer, get_current_memory_mb, LoggerHelper

Q
qingqing01 已提交
32 33 34 35 36
# Global dictionary
SUPPORT_MODELS = {
    'YOLO',
    'RCNN',
    'SSD',
F
Feng Ni 已提交
37
    'FCOS',
G
Guanghua Yu 已提交
38
    'SOLOv2',
F
Feng Ni 已提交
39
    'TTFNet',
C
cnn 已提交
40
    'S2ANet',
Q
qingqing01 已提交
41 42 43 44 45 46 47 48 49 50
}


class Detector(object):
    """
    Args:
        config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        use_gpu (bool): whether use gpu
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
51 52 53 54 55
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
Q
qingqing01 已提交
56 57 58 59 60 61 62 63
        threshold (float): threshold to reserve the result for output.
    """

    def __init__(self,
                 pred_config,
                 model_dir,
                 use_gpu=False,
                 run_mode='fluid',
64 65 66 67
                 use_dynamic_shape=False,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
68 69 70
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
Q
qingqing01 已提交
71 72 73 74 75
        self.pred_config = pred_config
        self.predictor = load_predictor(
            model_dir,
            run_mode=run_mode,
            min_subgraph_size=self.pred_config.min_subgraph_size,
76 77 78 79
            use_gpu=use_gpu,
            use_dynamic_shape=use_dynamic_shape,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
80
            trt_opt_shape=trt_opt_shape,
81 82 83
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
G
Guanghua Yu 已提交
84 85
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
Q
qingqing01 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

    def preprocess(self, im):
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
        im, im_info = preprocess(im, preprocess_ops,
                                 self.pred_config.input_shape)
        inputs = create_inputs(im, im_info)
        return inputs

    def postprocess(self, np_boxes, np_masks, inputs, threshold=0.5):
        # postprocess output of predictor
        results = {}
        if self.pred_config.arch in ['Face']:
            h, w = inputs['im_shape']
            scale_y, scale_x = inputs['scale_factor']
            w, h = float(h) / scale_y, float(w) / scale_x
            np_boxes[:, 2] *= h
            np_boxes[:, 3] *= w
            np_boxes[:, 4] *= h
            np_boxes[:, 5] *= w
        results['boxes'] = np_boxes
        if np_masks is not None:
            results['masks'] = np_masks
        return results

G
Guanghua Yu 已提交
114
    def predict(self, image, threshold=0.5, warmup=0, repeats=1):
Q
qingqing01 已提交
115 116 117 118 119 120 121 122
        '''
        Args:
            image (str/np.ndarray): path of image/ np.ndarray read by cv2
            threshold (float): threshold of predicted box' score
        Returns:
            results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                            matix element:[class, score, x_min, y_min, x_max, y_max]
                            MaskRCNN's results include 'masks': np.ndarray:
G
Guanghua Yu 已提交
123
                            shape: [N, im_h, im_w]
Q
qingqing01 已提交
124
        '''
G
Guanghua Yu 已提交
125
        self.det_times.preprocess_time.start()
Q
qingqing01 已提交
126 127 128 129 130 131
        inputs = self.preprocess(image)
        np_boxes, np_masks = None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
G
Guanghua Yu 已提交
132
        self.det_times.preprocess_time.end()
Q
qingqing01 已提交
133 134 135 136 137
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
G
Guanghua Yu 已提交
138
            if self.pred_config.mask:
Q
qingqing01 已提交
139 140 141
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()

G
Guanghua Yu 已提交
142
        self.det_times.inference_time.start()
Q
qingqing01 已提交
143 144 145 146 147
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
G
Guanghua Yu 已提交
148
            if self.pred_config.mask:
Q
qingqing01 已提交
149 150
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()
G
Guanghua Yu 已提交
151
        self.det_times.inference_time.end(repeats=repeats)
Q
qingqing01 已提交
152

G
Guanghua Yu 已提交
153
        self.det_times.postprocess_time.start()
Q
qingqing01 已提交
154
        results = []
G
Guanghua Yu 已提交
155 156 157 158 159 160 161 162
        if reduce(lambda x, y: x * y, np_boxes.shape) < 6:
            print('[WARNNING] No object detected.')
            results = {'boxes': np.array([])}
        else:
            results = self.postprocess(
                np_boxes, np_masks, inputs, threshold=threshold)
        self.det_times.postprocess_time.end()
        self.det_times.img_num += 1
Q
qingqing01 已提交
163 164 165
        return results


G
Guanghua Yu 已提交
166 167 168 169 170 171 172
class DetectorSOLOv2(Detector):
    """
    Args:
        config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        use_gpu (bool): whether use gpu
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
173 174 175 176
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
177 178 179 180 181 182 183 184
        threshold (float): threshold to reserve the result for output.
    """

    def __init__(self,
                 pred_config,
                 model_dir,
                 use_gpu=False,
                 run_mode='fluid',
185 186 187 188
                 use_dynamic_shape=False,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
189 190 191
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
G
Guanghua Yu 已提交
192 193 194 195 196
        self.pred_config = pred_config
        self.predictor = load_predictor(
            model_dir,
            run_mode=run_mode,
            min_subgraph_size=self.pred_config.min_subgraph_size,
197 198 199 200
            use_gpu=use_gpu,
            use_dynamic_shape=use_dynamic_shape,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
201
            trt_opt_shape=trt_opt_shape,
202 203 204
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
G
Guanghua Yu 已提交
205 206 207
        self.det_times = Timer()

    def predict(self, image, threshold=0.5, warmup=0, repeats=1):
G
Guanghua Yu 已提交
208 209 210 211 212
        '''
        Args:
            image (str/np.ndarray): path of image/ np.ndarray read by cv2
            threshold (float): threshold of predicted box' score
        Returns:
G
Guanghua Yu 已提交
213 214 215
            results (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
                            'cate_label': label of segm, shape:[N]
                            'cate_score': confidence score of segm, shape:[N]
G
Guanghua Yu 已提交
216
        '''
G
Guanghua Yu 已提交
217
        self.det_times.preprocess_time.start()
G
Guanghua Yu 已提交
218 219 220 221 222 223
        inputs = self.preprocess(image)
        np_label, np_score, np_segms = None, None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
G
Guanghua Yu 已提交
224
        self.det_times.preprocess_time.end()
G
Guanghua Yu 已提交
225 226 227 228 229
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
230
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
231
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
232 233
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
G
Guanghua Yu 已提交
234

G
Guanghua Yu 已提交
235
        self.det_times.inference_time.start()
G
Guanghua Yu 已提交
236 237 238 239 240
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
241
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
242
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
243 244
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
G
Guanghua Yu 已提交
245 246
        self.det_times.inference_time.end(repeats=repeats)
        self.det_times.img_num += 1
G
Guanghua Yu 已提交
247

G
Guanghua Yu 已提交
248
        return dict(segm=np_segms, label=np_label, score=np_score)
G
Guanghua Yu 已提交
249 250


Q
qingqing01 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
def create_inputs(im, im_info):
    """generate input for different model type
    Args:
        im (np.ndarray): image (np.ndarray)
        im_info (dict): info of image
        model_arch (str): model type
    Returns:
        inputs (dict): input of model
    """
    inputs = {}
    inputs['image'] = np.array((im, )).astype('float32')
    inputs['im_shape'] = np.array((im_info['im_shape'], )).astype('float32')
    inputs['scale_factor'] = np.array(
        (im_info['scale_factor'], )).astype('float32')

    return inputs


class PredictConfig():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
G
Guanghua Yu 已提交
285 286 287
        self.mask = False
        if 'mask' in yml_conf:
            self.mask = yml_conf['mask']
Q
qingqing01 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
        self.input_shape = yml_conf['image_shape']
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def load_predictor(model_dir,
                   run_mode='fluid',
                   batch_size=1,
                   use_gpu=False,
315 316 317 318
                   min_subgraph_size=3,
                   use_dynamic_shape=False,
                   trt_min_shape=1,
                   trt_max_shape=1280,
G
Guanghua Yu 已提交
319
                   trt_opt_shape=640,
320 321 322
                   trt_calib_mode=False,
                   cpu_threads=1,
                   enable_mkldnn=False):
Q
qingqing01 已提交
323 324 325 326
    """set AnalysisConfig, generate AnalysisPredictor
    Args:
        model_dir (str): root path of __model__ and __params__
        use_gpu (bool): whether use gpu
327
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16/trt_int8)
328 329 330 331
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
332 333
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
Q
qingqing01 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
        ValueError: predict by TensorRT need use_gpu == True.
    """
    if not use_gpu and not run_mode == 'fluid':
        raise ValueError(
            "Predict by TensorRT mode: {}, expect use_gpu==True, but use_gpu == {}"
            .format(run_mode, use_gpu))
    config = Config(
        os.path.join(model_dir, 'model.pdmodel'),
        os.path.join(model_dir, 'model.pdiparams'))
    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }
    if use_gpu:
        # initial GPU memory(M), device ID
        config.enable_use_gpu(200, 0)
        # optimize graph and fuse op
355
        config.switch_ir_optim(True)
Q
qingqing01 已提交
356 357
    else:
        config.disable_gpu()
358 359
        config.set_cpu_math_library_num_threads(cpu_threads)
        if enable_mkldnn:
G
Guanghua Yu 已提交
360 361 362 363 364 365 366 367 368
            try:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
            except Exception as e:
                print(
                    "The current environment does not support `mkldnn`, so disable mkldnn."
                )
                pass
Q
qingqing01 已提交
369 370 371 372 373 374 375 376

    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
            workspace_size=1 << 10,
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
G
Guanghua Yu 已提交
377
            use_calib_mode=trt_calib_mode)
378 379 380 381 382 383 384 385

        if use_dynamic_shape:
            min_input_shape = {'image': [1, 3, trt_min_shape, trt_min_shape]}
            max_input_shape = {'image': [1, 3, trt_max_shape, trt_max_shape]}
            opt_input_shape = {'image': [1, 3, trt_opt_shape, trt_opt_shape]}
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
            print('trt set dynamic shape done!')
Q
qingqing01 已提交
386 387 388 389 390 391 392 393 394 395 396

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
    predictor = create_predictor(config)
    return predictor


G
Guanghua Yu 已提交
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
        "--infer_img or --infer_dir should be set"
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


G
Guanghua Yu 已提交
428
def visualize(image_file, results, labels, output_dir='output/', threshold=0.5):
Q
qingqing01 已提交
429
    # visualize the predict result
G
Guanghua Yu 已提交
430
    im = visualize_box_mask(image_file, results, labels, threshold=threshold)
Q
qingqing01 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
    img_name = os.path.split(image_file)[-1]
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    out_path = os.path.join(output_dir, img_name)
    im.save(out_path, quality=95)
    print("save result to: " + out_path)


def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')


G
Guanghua Yu 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
def predict_image(detector, image_list):
    for i, img_file in enumerate(image_list):
        if FLAGS.run_benchmark:
            detector.predict(img_file, FLAGS.threshold, warmup=10, repeats=10)
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
            print('Test iter {}, file name:{}'.format(i, img_file))
        else:
            results = detector.predict(img_file, FLAGS.threshold)
            visualize(
                img_file,
                results,
                detector.pred_config.labels,
                output_dir=FLAGS.output_dir,
                threshold=FLAGS.threshold)
Q
qingqing01 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509


def predict_video(detector, camera_id):
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
    fps = 30
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
    # yapf: disable
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    # yapf: enable
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    index = 1
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        print('detect frame:%d' % (index))
        index += 1
        results = detector.predict(frame, FLAGS.threshold)
        im = visualize_box_mask(
            frame,
            results,
            detector.pred_config.labels,
            threshold=FLAGS.threshold)
        im = np.array(im)
        writer.write(im)
        if camera_id != -1:
            cv2.imshow('Mask Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
    writer.release()


def main():
    pred_config = PredictConfig(FLAGS.model_dir)
    detector = Detector(
        pred_config,
        FLAGS.model_dir,
        use_gpu=FLAGS.use_gpu,
510 511 512 513
        run_mode=FLAGS.run_mode,
        use_dynamic_shape=FLAGS.use_dynamic_shape,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
G
Guanghua Yu 已提交
514
        trt_opt_shape=FLAGS.trt_opt_shape,
515 516 517
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)
G
Guanghua Yu 已提交
518 519 520 521 522
    if pred_config.arch == 'SOLOv2':
        detector = DetectorSOLOv2(
            pred_config,
            FLAGS.model_dir,
            use_gpu=FLAGS.use_gpu,
523 524 525 526
            run_mode=FLAGS.run_mode,
            use_dynamic_shape=FLAGS.use_dynamic_shape,
            trt_min_shape=FLAGS.trt_min_shape,
            trt_max_shape=FLAGS.trt_max_shape,
G
Guanghua Yu 已提交
527
            trt_opt_shape=FLAGS.trt_opt_shape,
528 529 530
            trt_calib_mode=FLAGS.trt_calib_mode,
            cpu_threads=FLAGS.cpu_threads,
            enable_mkldnn=FLAGS.enable_mkldnn)
G
Guanghua Yu 已提交
531

Q
qingqing01 已提交
532
    # predict from video file or camera video stream
G
Guanghua Yu 已提交
533
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
Q
qingqing01 已提交
534
        predict_video(detector, FLAGS.camera_id)
G
Guanghua Yu 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
    else:
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
        predict_image(detector, img_list)
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mems = {
                'cpu_rss': detector.cpu_mem / len(img_list),
                'gpu_rss': detector.gpu_mem / len(img_list),
                'gpu_util': detector.gpu_util * 100 / len(img_list)
            }
            det_logger = LoggerHelper(
                FLAGS, detector.det_times.report(average=True), mems)
            det_logger.report()
Q
qingqing01 已提交
550 551 552 553


if __name__ == '__main__':
    paddle.enable_static()
G
Guanghua Yu 已提交
554
    parser = argsparser()
Q
qingqing01 已提交
555 556 557 558
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)

    main()