__init__.py 27.5 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
# pylint: disable=doc-string-missing
G
guru4elephant 已提交
15

M
MRXLT 已提交
16 17
import paddle_serving_client
import os
18 19 20
from .proto import sdk_configure_pb2 as sdk
from .proto import general_model_config_pb2 as m_config
import google.protobuf.text_format
D
dongdaxiang 已提交
21 22
import numpy as np
import time
23
import sys
G
guru4elephant 已提交
24

B
barrierye 已提交
25
import grpc
B
barrierye 已提交
26
from .proto import multi_lang_general_model_service_pb2
B
barrierye 已提交
27 28
sys.path.append(
    os.path.join(os.path.abspath(os.path.dirname(__file__)), 'proto'))
B
barrierye 已提交
29
from .proto import multi_lang_general_model_service_pb2_grpc
B
barrierye 已提交
30

M
MRXLT 已提交
31 32 33 34 35
int64_type = 0
float32_type = 1
int32_type = 2
int_type = set([int64_type, int32_type])
float_type = set([float32_type])
G
guru4elephant 已提交
36

M
MRXLT 已提交
37

W
WangXi 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
class _NOPProfiler(object):
    def record(self, name):
        pass

    def print_profile(self):
        pass


class _TimeProfiler(object):
    def __init__(self):
        self.pid = os.getpid()
        self.print_head = 'PROFILE\tpid:{}\t'.format(self.pid)
        self.time_record = [self.print_head]

    def record(self, name):
        self.time_record.append('{}:{} '.format(
            name, int(round(time.time() * 1000000))))

    def print_profile(self):
        self.time_record.append('\n')
        sys.stderr.write(''.join(self.time_record))
        self.time_record = [self.print_head]


_is_profile = int(os.environ.get('FLAGS_profile_client', 0))
_Profiler = _TimeProfiler if _is_profile else _NOPProfiler


G
guru4elephant 已提交
66 67 68
class SDKConfig(object):
    def __init__(self):
        self.sdk_desc = sdk.SDKConf()
69 70 71
        self.tag_list = []
        self.cluster_list = []
        self.variant_weight_list = []
M
MRXLT 已提交
72 73
        self.rpc_timeout_ms = 20000
        self.load_balance_strategy = "la"
G
guru4elephant 已提交
74

75 76 77 78
    def add_server_variant(self, tag, cluster, variant_weight):
        self.tag_list.append(tag)
        self.cluster_list.append(cluster)
        self.variant_weight_list.append(variant_weight)
G
guru4elephant 已提交
79

M
MRXLT 已提交
80 81 82 83
    def set_load_banlance_strategy(self, strategy):
        self.load_balance_strategy = strategy

    def gen_desc(self, rpc_timeout_ms):
G
guru4elephant 已提交
84 85 86 87 88
        predictor_desc = sdk.Predictor()
        predictor_desc.name = "general_model"
        predictor_desc.service_name = \
            "baidu.paddle_serving.predictor.general_model.GeneralModelService"
        predictor_desc.endpoint_router = "WeightedRandomRender"
89 90
        predictor_desc.weighted_random_render_conf.variant_weight_list = "|".join(
            self.variant_weight_list)
G
guru4elephant 已提交
91

92 93 94 95 96 97
        for idx, tag in enumerate(self.tag_list):
            variant_desc = sdk.VariantConf()
            variant_desc.tag = tag
            variant_desc.naming_conf.cluster = "list://{}".format(",".join(
                self.cluster_list[idx]))
            predictor_desc.variants.extend([variant_desc])
G
guru4elephant 已提交
98 99 100 101

        self.sdk_desc.predictors.extend([predictor_desc])
        self.sdk_desc.default_variant_conf.tag = "default"
        self.sdk_desc.default_variant_conf.connection_conf.connect_timeout_ms = 2000
M
MRXLT 已提交
102
        self.sdk_desc.default_variant_conf.connection_conf.rpc_timeout_ms = rpc_timeout_ms
G
guru4elephant 已提交
103 104 105 106 107
        self.sdk_desc.default_variant_conf.connection_conf.connect_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.max_connection_per_host = 100
        self.sdk_desc.default_variant_conf.connection_conf.hedge_request_timeout_ms = -1
        self.sdk_desc.default_variant_conf.connection_conf.hedge_fetch_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.connection_type = "pooled"
M
MRXLT 已提交
108

G
guru4elephant 已提交
109 110 111 112 113 114 115 116
        self.sdk_desc.default_variant_conf.naming_conf.cluster_filter_strategy = "Default"
        self.sdk_desc.default_variant_conf.naming_conf.load_balance_strategy = "la"

        self.sdk_desc.default_variant_conf.rpc_parameter.compress_type = 0
        self.sdk_desc.default_variant_conf.rpc_parameter.package_size = 20
        self.sdk_desc.default_variant_conf.rpc_parameter.protocol = "baidu_std"
        self.sdk_desc.default_variant_conf.rpc_parameter.max_channel_per_request = 3

G
guru4elephant 已提交
117
        return self.sdk_desc
G
guru4elephant 已提交
118

G
guru4elephant 已提交
119 120 121 122 123 124

class Client(object):
    def __init__(self):
        self.feed_names_ = []
        self.fetch_names_ = []
        self.client_handle_ = None
M
MRXLT 已提交
125
        self.feed_shapes_ = {}
G
guru4elephant 已提交
126
        self.feed_types_ = {}
G
guru4elephant 已提交
127
        self.feed_names_to_idx_ = {}
M
MRXLT 已提交
128
        self.pid = os.getpid()
B
barrierye 已提交
129
        self.predictor_sdk_ = None
G
guru4elephant 已提交
130 131
        self.producers = []
        self.consumer = None
W
WangXi 已提交
132
        self.profile_ = _Profiler()
M
MRXLT 已提交
133 134
        self.all_numpy_input = True
        self.has_numpy_input = False
M
MRXLT 已提交
135
        self.rpc_timeout_ms = 20000
136 137
        from .serving_client import PredictorRes
        self.predictorres_constructor = PredictorRes
M
MRXLT 已提交
138

G
guru4elephant 已提交
139
    def load_client_config(self, path):
M
MRXLT 已提交
140
        from .serving_client import PredictorClient
141 142 143 144 145
        model_conf = m_config.GeneralModelConfig()
        f = open(path, 'r')
        model_conf = google.protobuf.text_format.Merge(
            str(f.read()), model_conf)

G
guru4elephant 已提交
146 147 148 149
        # load configuraion here
        # get feed vars, fetch vars
        # get feed shapes, feed types
        # map feed names to index
G
guru4elephant 已提交
150 151
        self.client_handle_ = PredictorClient()
        self.client_handle_.init(path)
M
bug fix  
MRXLT 已提交
152 153
        if "FLAGS_max_body_size" not in os.environ:
            os.environ["FLAGS_max_body_size"] = str(512 * 1024 * 1024)
M
MRXLT 已提交
154
        read_env_flags = ["profile_client", "profile_server", "max_body_size"]
M
MRXLT 已提交
155 156
        self.client_handle_.init_gflags([sys.argv[
            0]] + ["--tryfromenv=" + ",".join(read_env_flags)])
157 158
        self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
        self.fetch_names_ = [var.alias_name for var in model_conf.fetch_var]
G
guru4elephant 已提交
159
        self.feed_names_to_idx_ = {}
G
guru4elephant 已提交
160 161
        self.fetch_names_to_type_ = {}
        self.fetch_names_to_idx_ = {}
M
MRXLT 已提交
162
        self.lod_tensor_set = set()
M
MRXLT 已提交
163
        self.feed_tensor_len = {}
164

165 166 167
        for i, var in enumerate(model_conf.feed_var):
            self.feed_names_to_idx_[var.alias_name] = i
            self.feed_types_[var.alias_name] = var.feed_type
M
MRXLT 已提交
168
            self.feed_shapes_[var.alias_name] = var.shape
M
MRXLT 已提交
169

M
MRXLT 已提交
170 171
            if var.is_lod_tensor:
                self.lod_tensor_set.add(var.alias_name)
M
MRXLT 已提交
172 173 174 175 176
            else:
                counter = 1
                for dim in self.feed_shapes_[var.alias_name]:
                    counter *= dim
                self.feed_tensor_len[var.alias_name] = counter
G
guru4elephant 已提交
177 178 179
        for i, var in enumerate(model_conf.fetch_var):
            self.fetch_names_to_idx_[var.alias_name] = i
            self.fetch_names_to_type_[var.alias_name] = var.fetch_type
180 181
            if var.is_lod_tensor:
                self.lod_tensor_set.add(var.alias_name)
G
guru4elephant 已提交
182 183
        return

184
    def add_variant(self, tag, cluster, variant_weight):
B
barrierye 已提交
185 186
        if self.predictor_sdk_ is None:
            self.predictor_sdk_ = SDKConfig()
187 188 189
        self.predictor_sdk_.add_server_variant(tag, cluster,
                                               str(variant_weight))

M
MRXLT 已提交
190 191 192 193 194 195
    def set_rpc_timeout_ms(self, rpc_timeout):
        if not isinstance(rpc_timeout, int):
            raise ValueError("rpc_timeout must be int type.")
        else:
            self.rpc_timeout_ms = rpc_timeout

B
barrierye 已提交
196
    def connect(self, endpoints=None):
G
guru4elephant 已提交
197 198 199
        # check whether current endpoint is available
        # init from client config
        # create predictor here
B
barrierye 已提交
200 201
        if endpoints is None:
            if self.predictor_sdk_ is None:
M
MRXLT 已提交
202
                raise ValueError(
B
barrierye 已提交
203 204 205 206
                    "You must set the endpoints parameter or use add_variant function to create a variant."
                )
        else:
            if self.predictor_sdk_ is None:
207
                self.add_variant('default_tag_{}'.format(id(self)), endpoints,
208
                                 100)
B
barrierye 已提交
209 210
            else:
                print(
211
                    "parameter endpoints({}) will not take effect, because you use the add_variant function.".
B
barrierye 已提交
212
                    format(endpoints))
M
MRXLT 已提交
213
        sdk_desc = self.predictor_sdk_.gen_desc(self.rpc_timeout_ms)
M
MRXLT 已提交
214 215
        self.client_handle_.create_predictor_by_desc(sdk_desc.SerializeToString(
        ))
G
guru4elephant 已提交
216 217 218 219 220 221 222

    def get_feed_names(self):
        return self.feed_names_

    def get_fetch_names(self):
        return self.fetch_names_

M
MRXLT 已提交
223 224 225
    def shape_check(self, feed, key):
        if key in self.lod_tensor_set:
            return
M
MRXLT 已提交
226 227
        if isinstance(feed[key],
                      list) and len(feed[key]) != self.feed_tensor_len[key]:
M
MRXLT 已提交
228
            raise ValueError("The shape of feed tensor {} not match.".format(
M
MRXLT 已提交
229 230 231
                key))
        if type(feed[key]).__module__ == np.__name__ and np.size(feed[
                key]) != self.feed_tensor_len[key]:
M
MRXLT 已提交
232 233 234
            #raise SystemExit("The shape of feed tensor {} not match.".format(
            #    key))
            pass
M
MRXLT 已提交
235

236
    def predict(self, feed=None, fetch=None, need_variant_tag=False, log_id=0):
W
WangXi 已提交
237 238
        self.profile_.record('py_prepro_0')

G
guru4elephant 已提交
239 240 241
        if feed is None or fetch is None:
            raise ValueError("You should specify feed and fetch for prediction")

242 243 244 245 246 247
        fetch_list = []
        if isinstance(fetch, str):
            fetch_list = [fetch]
        elif isinstance(fetch, list):
            fetch_list = fetch
        else:
M
MRXLT 已提交
248
            raise ValueError("Fetch only accepts string and list of string")
249 250 251 252 253 254 255

        feed_batch = []
        if isinstance(feed, dict):
            feed_batch.append(feed)
        elif isinstance(feed, list):
            feed_batch = feed
        else:
M
MRXLT 已提交
256
            raise ValueError("Feed only accepts dict and list of dict")
G
guru4elephant 已提交
257

M
MRXLT 已提交
258 259 260 261
        int_slot_batch = []
        float_slot_batch = []
        int_feed_names = []
        float_feed_names = []
D
dongdaxiang 已提交
262 263
        int_shape = []
        float_shape = []
M
MRXLT 已提交
264
        fetch_names = []
M
MRXLT 已提交
265
        counter = 0
M
MRXLT 已提交
266
        batch_size = len(feed_batch)
267 268 269 270 271 272 273

        for key in fetch_list:
            if key in self.fetch_names_:
                fetch_names.append(key)

        if len(fetch_names) == 0:
            raise ValueError(
M
MRXLT 已提交
274
                "Fetch names should not be empty or out of saved fetch list.")
275 276
            return {}

G
guru4elephant 已提交
277
        for i, feed_i in enumerate(feed_batch):
M
MRXLT 已提交
278 279
            int_slot = []
            float_slot = []
280
            for key in feed_i:
M
MRXLT 已提交
281
                if key not in self.feed_names_:
M
MRXLT 已提交
282
                    raise ValueError("Wrong feed name: {}.".format(key))
M
MRXLT 已提交
283 284
                #if not isinstance(feed_i[key], np.ndarray):
                self.shape_check(feed_i, key)
M
MRXLT 已提交
285
                if self.feed_types_[key] in int_type:
G
guru4elephant 已提交
286
                    if i == 0:
M
MRXLT 已提交
287
                        int_feed_names.append(key)
D
dongdaxiang 已提交
288
                        if isinstance(feed_i[key], np.ndarray):
289
                            int_shape.append(list(feed_i[key].shape))
D
dongdaxiang 已提交
290 291
                        else:
                            int_shape.append(self.feed_shapes_[key])
D
dongdaxiang 已提交
292
                    if isinstance(feed_i[key], np.ndarray):
M
MRXLT 已提交
293
                        int_slot.append(feed_i[key])
M
MRXLT 已提交
294
                        self.has_numpy_input = True
D
dongdaxiang 已提交
295 296
                    else:
                        int_slot.append(feed_i[key])
M
MRXLT 已提交
297
                        self.all_numpy_input = False
M
MRXLT 已提交
298
                elif self.feed_types_[key] in float_type:
G
guru4elephant 已提交
299
                    if i == 0:
M
MRXLT 已提交
300
                        float_feed_names.append(key)
D
dongdaxiang 已提交
301
                        if isinstance(feed_i[key], np.ndarray):
302
                            float_shape.append(list(feed_i[key].shape))
D
dongdaxiang 已提交
303 304
                        else:
                            float_shape.append(self.feed_shapes_[key])
D
dongdaxiang 已提交
305
                    if isinstance(feed_i[key], np.ndarray):
M
MRXLT 已提交
306
                        float_slot.append(feed_i[key])
M
MRXLT 已提交
307
                        self.has_numpy_input = True
D
dongdaxiang 已提交
308 309
                    else:
                        float_slot.append(feed_i[key])
M
MRXLT 已提交
310
                        self.all_numpy_input = False
M
MRXLT 已提交
311 312 313
            int_slot_batch.append(int_slot)
            float_slot_batch.append(float_slot)

W
WangXi 已提交
314 315 316
        self.profile_.record('py_prepro_1')
        self.profile_.record('py_client_infer_0')

317
        result_batch_handle = self.predictorres_constructor()
M
MRXLT 已提交
318
        if self.all_numpy_input:
M
MRXLT 已提交
319 320
            res = self.client_handle_.numpy_predict(
                float_slot_batch, float_feed_names, float_shape, int_slot_batch,
321
                int_feed_names, int_shape, fetch_names, result_batch_handle,
322
                self.pid, log_id)
M
MRXLT 已提交
323
        elif self.has_numpy_input == False:
M
MRXLT 已提交
324 325
            res = self.client_handle_.batch_predict(
                float_slot_batch, float_feed_names, float_shape, int_slot_batch,
326
                int_feed_names, int_shape, fetch_names, result_batch_handle,
327
                self.pid, log_id)
M
MRXLT 已提交
328
        else:
M
MRXLT 已提交
329
            raise ValueError(
M
MRXLT 已提交
330 331
                "Please make sure the inputs are all in list type or all in numpy.array type"
            )
M
MRXLT 已提交
332

W
WangXi 已提交
333 334 335
        self.profile_.record('py_client_infer_1')
        self.profile_.record('py_postpro_0')

336 337 338
        if res == -1:
            return None

B
barrierye 已提交
339
        multi_result_map = []
340
        model_engine_names = result_batch_handle.get_engine_names()
B
barrierye 已提交
341
        for mi, engine_name in enumerate(model_engine_names):
B
barrierye 已提交
342
            result_map = {}
B
barrierye 已提交
343
            # result map needs to be a numpy array
B
barrierye 已提交
344
            for i, name in enumerate(fetch_names):
M
MRXLT 已提交
345
                if self.fetch_names_to_type_[name] == int64_type:
B
barrierye 已提交
346
                    # result_map[name] will be py::array(numpy array)
347 348 349
                    result_map[name] = result_batch_handle.get_int64_by_name(
                        mi, name)
                    shape = result_batch_handle.get_shape(mi, name)
B
barriery 已提交
350 351 352 353 354
                    if result_map[name].size == 0:
                        raise ValueError(
                            "Failed to fetch, maybe the type of [{}]"
                            " is wrong, please check the model file".format(
                                name))
B
barrierye 已提交
355 356
                    result_map[name].shape = shape
                    if name in self.lod_tensor_set:
357 358
                        result_map["{}.lod".format(
                            name)] = result_batch_handle.get_lod(mi, name)
M
MRXLT 已提交
359
                elif self.fetch_names_to_type_[name] == float32_type:
360 361
                    result_map[name] = result_batch_handle.get_float_by_name(
                        mi, name)
B
barriery 已提交
362 363 364 365 366
                    if result_map[name].size == 0:
                        raise ValueError(
                            "Failed to fetch, maybe the type of [{}]"
                            " is wrong, please check the model file".format(
                                name))
367
                    shape = result_batch_handle.get_shape(mi, name)
B
barrierye 已提交
368 369
                    result_map[name].shape = shape
                    if name in self.lod_tensor_set:
370 371
                        result_map["{}.lod".format(
                            name)] = result_batch_handle.get_lod(mi, name)
M
MRXLT 已提交
372 373 374 375 376

                elif self.fetch_names_to_type_[name] == int32_type:
                    # result_map[name] will be py::array(numpy array)
                    result_map[name] = result_batch_handle.get_int32_by_name(
                        mi, name)
B
barriery 已提交
377 378 379 380 381
                    if result_map[name].size == 0:
                        raise ValueError(
                            "Failed to fetch, maybe the type of [{}]"
                            " is wrong, please check the model file".format(
                                name))
M
MRXLT 已提交
382 383 384 385 386
                    shape = result_batch_handle.get_shape(mi, name)
                    result_map[name].shape = shape
                    if name in self.lod_tensor_set:
                        result_map["{}.lod".format(
                            name)] = result_batch_handle.get_lod(mi, name)
B
barrierye 已提交
387
            multi_result_map.append(result_map)
B
barrierye 已提交
388 389
        ret = None
        if len(model_engine_names) == 1:
B
barrierye 已提交
390 391
            # If only one model result is returned, the format of ret is result_map
            ret = multi_result_map[0]
G
guru4elephant 已提交
392
        else:
B
barrierye 已提交
393 394 395 396 397 398
            # If multiple model results are returned, the format of ret is {name: result_map}
            ret = {
                engine_name: multi_result_map[mi]
                for mi, engine_name in enumerate(model_engine_names)
            }

W
WangXi 已提交
399 400 401
        self.profile_.record('py_postpro_1')
        self.profile_.print_profile()

B
barrierye 已提交
402
        # When using the A/B test, the tag of variant needs to be returned
B
barrierye 已提交
403
        return ret if not need_variant_tag else [
404
            ret, result_batch_handle.variant_tag()
B
barrierye 已提交
405
        ]
B
barrierye 已提交
406

407 408
    def release(self):
        self.client_handle_.destroy_predictor()
G
guru4elephant 已提交
409
        self.client_handle_ = None
B
barrierye 已提交
410 411


412
class MultiLangClient(object):
B
barrierye 已提交
413 414
    def __init__(self):
        self.channel_ = None
415
        self.stub_ = None
B
barrierye 已提交
416
        self.rpc_timeout_s_ = 2
B
barrierye 已提交
417
        self.profile_ = _Profiler()
B
barrierye 已提交
418

B
barrierye 已提交
419 420
    def add_variant(self, tag, cluster, variant_weight):
        # TODO
B
barrierye 已提交
421
        raise Exception("cannot support ABtest yet")
B
barrierye 已提交
422 423

    def set_rpc_timeout_ms(self, rpc_timeout):
424 425 426 427 428
        if self.stub_ is None:
            raise Exception("set timeout must be set after connect.")
        if not isinstance(rpc_timeout, int):
            # for bclient
            raise ValueError("rpc_timeout must be int type.")
B
barrierye 已提交
429
        self.rpc_timeout_s_ = rpc_timeout / 1000.0
430 431 432 433
        timeout_req = multi_lang_general_model_service_pb2.SetTimeoutRequest()
        timeout_req.timeout_ms = rpc_timeout
        resp = self.stub_.SetTimeout(timeout_req)
        return resp.err_code == 0
B
barrierye 已提交
434 435

    def connect(self, endpoints):
W
WangXi 已提交
436 437
        # https://github.com/tensorflow/serving/issues/1382
        options = [('grpc.max_receive_message_length', 512 * 1024 * 1024),
438 439
                   ('grpc.max_send_message_length', 512 * 1024 * 1024),
                   ('grpc.lb_policy_name', 'round_robin')]
B
barrierye 已提交
440
        # TODO: weight round robin
441
        g_endpoint = 'ipv4:{}'.format(','.join(endpoints))
B
barrierye 已提交
442
        self.channel_ = grpc.insecure_channel(g_endpoint, options=options)
443
        self.stub_ = multi_lang_general_model_service_pb2_grpc.MultiLangGeneralModelServiceStub(
B
barrierye 已提交
444
            self.channel_)
445 446 447 448 449 450
        # get client model config
        get_client_config_req = multi_lang_general_model_service_pb2.GetClientConfigRequest(
        )
        resp = self.stub_.GetClientConfig(get_client_config_req)
        model_config_str = resp.client_config_str
        self._parse_model_config(model_config_str)
B
barrierye 已提交
451

B
barrierye 已提交
452 453 454 455 456 457 458 459
    def _flatten_list(self, nested_list):
        for item in nested_list:
            if isinstance(item, (list, tuple)):
                for sub_item in self._flatten_list(item):
                    yield sub_item
            else:
                yield item

460
    def _parse_model_config(self, model_config_str):
B
barrierye 已提交
461
        model_conf = m_config.GeneralModelConfig()
462 463
        model_conf = google.protobuf.text_format.Merge(model_config_str,
                                                       model_conf)
B
barrierye 已提交
464 465
        self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
        self.feed_types_ = {}
B
barrierye 已提交
466
        self.feed_shapes_ = {}
B
barrierye 已提交
467
        self.fetch_names_ = [var.alias_name for var in model_conf.fetch_var]
B
barrierye 已提交
468 469
        self.fetch_types_ = {}
        self.lod_tensor_set_ = set()
B
barrierye 已提交
470 471 472
        for i, var in enumerate(model_conf.feed_var):
            self.feed_types_[var.alias_name] = var.feed_type
            self.feed_shapes_[var.alias_name] = var.shape
B
barrierye 已提交
473
            if var.is_lod_tensor:
B
barrierye 已提交
474
                self.lod_tensor_set_.add(var.alias_name)
B
barrierye 已提交
475 476 477 478
            else:
                counter = 1
                for dim in self.feed_shapes_[var.alias_name]:
                    counter *= dim
B
barrierye 已提交
479
        for i, var in enumerate(model_conf.fetch_var):
B
barrierye 已提交
480 481 482
            self.fetch_types_[var.alias_name] = var.fetch_type
            if var.is_lod_tensor:
                self.lod_tensor_set_.add(var.alias_name)
B
barrierye 已提交
483

B
barriery 已提交
484
    def _pack_inference_request(self, feed, fetch, is_python, log_id):
485
        req = multi_lang_general_model_service_pb2.InferenceRequest()
B
barrierye 已提交
486
        req.fetch_var_names.extend(fetch)
B
barrierye 已提交
487
        req.is_python = is_python
B
barriery 已提交
488
        req.log_id = log_id
B
barrierye 已提交
489 490 491 492 493 494 495
        feed_batch = None
        if isinstance(feed, dict):
            feed_batch = [feed]
        elif isinstance(feed, list):
            feed_batch = feed
        else:
            raise Exception("{} not support".format(type(feed)))
W
WangXi 已提交
496
        req.feed_var_names.extend(feed_batch[0].keys())
B
barrierye 已提交
497
        init_feed_names = False
B
barrierye 已提交
498
        for feed_data in feed_batch:
499
            inst = multi_lang_general_model_service_pb2.FeedInst()
B
barrierye 已提交
500
            for name in req.feed_var_names:
501
                tensor = multi_lang_general_model_service_pb2.Tensor()
B
barrierye 已提交
502 503
                var = feed_data[name]
                v_type = self.feed_types_[name]
B
barrierye 已提交
504 505 506 507 508 509 510
                if is_python:
                    data = None
                    if isinstance(var, list):
                        if v_type == 0:  # int64
                            data = np.array(var, dtype="int64")
                        elif v_type == 1:  # float32
                            data = np.array(var, dtype="float32")
B
barrierye 已提交
511 512
                        elif v_type == 2:  # int32
                            data = np.array(var, dtype="int32")
B
barrierye 已提交
513
                        else:
B
barrierye 已提交
514 515
                            raise Exception("error tensor value type.")
                    elif isinstance(var, np.ndarray):
B
barrierye 已提交
516
                        data = var
B
barrierye 已提交
517 518 519 520 521 522 523 524 525
                        if v_type == 0:
                            if data.dtype != 'int64':
                                data = data.astype("int64")
                        elif v_type == 1:
                            if data.dtype != 'float32':
                                data = data.astype("float32")
                        elif v_type == 2:
                            if data.dtype != 'int32':
                                data = data.astype("int32")
B
barrierye 已提交
526 527 528 529
                        else:
                            raise Exception("error tensor value type.")
                    else:
                        raise Exception("var must be list or ndarray.")
B
barrierye 已提交
530
                    tensor.data = data.tobytes()
B
barrierye 已提交
531
                else:
B
barrierye 已提交
532 533 534 535 536 537 538 539
                    if isinstance(var, np.ndarray):
                        if v_type == 0:  # int64
                            tensor.int64_data.extend(
                                var.reshape(-1).astype("int64").tolist())
                        elif v_type == 1:
                            tensor.float_data.extend(
                                var.reshape(-1).astype('float32').tolist())
                        elif v_type == 2:
540
                            tensor.int_data.extend(
B
barrierye 已提交
541
                                var.reshape(-1).astype('int32').tolist())
B
barrierye 已提交
542
                        else:
B
barrierye 已提交
543 544 545
                            raise Exception("error tensor value type.")
                    elif isinstance(var, list):
                        if v_type == 0:
B
barrierye 已提交
546
                            tensor.int64_data.extend(self._flatten_list(var))
B
barrierye 已提交
547
                        elif v_type == 1:
B
barrierye 已提交
548
                            tensor.float_data.extend(self._flatten_list(var))
B
barrierye 已提交
549
                        elif v_type == 2:
550
                            tensor.int_data.extend(self._flatten_list(var))
B
barrierye 已提交
551 552
                        else:
                            raise Exception("error tensor value type.")
B
barrierye 已提交
553
                    else:
B
barrierye 已提交
554
                        raise Exception("var must be list or ndarray.")
B
barrierye 已提交
555
                if isinstance(var, np.ndarray):
B
barrierye 已提交
556
                    tensor.shape.extend(list(var.shape))
B
barrierye 已提交
557
                else:
B
barrierye 已提交
558 559 560
                    tensor.shape.extend(self.feed_shapes_[name])
                inst.tensor_array.append(tensor)
            req.insts.append(inst)
B
barrierye 已提交
561
        return req
B
barrierye 已提交
562

563 564 565
    def _unpack_inference_response(self, resp, fetch, is_python,
                                   need_variant_tag):
        if resp.err_code != 0:
B
fix bug  
barrierye 已提交
566 567
            return None
        tag = resp.tag
B
barrierye 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
        multi_result_map = {}
        for model_result in resp.outputs:
            inst = model_result.insts[0]
            result_map = {}
            for i, name in enumerate(fetch):
                var = inst.tensor_array[i]
                v_type = self.fetch_types_[name]
                if is_python:
                    if v_type == 0:  # int64
                        result_map[name] = np.frombuffer(
                            var.data, dtype="int64")
                    elif v_type == 1:  # float32
                        result_map[name] = np.frombuffer(
                            var.data, dtype="float32")
                    else:
                        raise Exception("error type.")
B
barrierye 已提交
584
                else:
B
barrierye 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598
                    if v_type == 0:  # int64
                        result_map[name] = np.array(
                            list(var.int64_data), dtype="int64")
                    elif v_type == 1:  # float32
                        result_map[name] = np.array(
                            list(var.float_data), dtype="float32")
                    else:
                        raise Exception("error type.")
                result_map[name].shape = list(var.shape)
                if name in self.lod_tensor_set_:
                    result_map["{}.lod".format(name)] = np.array(list(var.lod))
            multi_result_map[model_result.engine_name] = result_map
        ret = None
        if len(resp.outputs) == 1:
B
barrierye 已提交
599
            ret = list(multi_result_map.values())[0]
B
barrierye 已提交
600 601
        else:
            ret = multi_result_map
B
barrierye 已提交
602

603
        ret["serving_status_code"] = 0
B
barrierye 已提交
604
        return ret if not need_variant_tag else [ret, tag]
605

B
barrierye 已提交
606
    def _done_callback_func(self, fetch, is_python, need_variant_tag):
607
        def unpack_resp(resp):
608 609
            return self._unpack_inference_response(resp, fetch, is_python,
                                                   need_variant_tag)
B
barrierye 已提交
610

611 612
        return unpack_resp

W
WangXi 已提交
613 614 615
    def get_feed_names(self):
        return self.feed_names_

B
barrierye 已提交
616 617 618 619 620
    def predict(self,
                feed,
                fetch,
                need_variant_tag=False,
                asyn=False,
B
barriery 已提交
621 622
                is_python=True,
                log_id=0):
623
        if not asyn:
B
barrierye 已提交
624
            try:
B
barrierye 已提交
625 626
                self.profile_.record('py_prepro_0')
                req = self._pack_inference_request(
B
barriery 已提交
627
                    feed, fetch, is_python=is_python, log_id=log_id)
B
barrierye 已提交
628 629 630
                self.profile_.record('py_prepro_1')

                self.profile_.record('py_client_infer_0')
B
barrierye 已提交
631
                resp = self.stub_.Inference(req, timeout=self.rpc_timeout_s_)
B
barrierye 已提交
632 633 634 635
                self.profile_.record('py_client_infer_1')

                self.profile_.record('py_postpro_0')
                ret = self._unpack_inference_response(
B
barrierye 已提交
636 637 638 639
                    resp,
                    fetch,
                    is_python=is_python,
                    need_variant_tag=need_variant_tag)
B
barrierye 已提交
640 641 642
                self.profile_.record('py_postpro_1')
                self.profile_.print_profile()
                return ret
B
barrierye 已提交
643
            except grpc.RpcError as e:
644
                return {"serving_status_code": e.code()}
645
        else:
B
barriery 已提交
646 647
            req = self._pack_inference_request(
                feed, fetch, is_python=is_python, log_id=log_id)
648 649
            call_future = self.stub_.Inference.future(
                req, timeout=self.rpc_timeout_s_)
650
            return MultiLangPredictFuture(
B
barrierye 已提交
651 652 653 654 655
                call_future,
                self._done_callback_func(
                    fetch,
                    is_python=is_python,
                    need_variant_tag=need_variant_tag))
656 657 658 659 660 661 662 663


class MultiLangPredictFuture(object):
    def __init__(self, call_future, callback_func):
        self.call_future_ = call_future
        self.callback_func_ = callback_func

    def result(self):
B
barrierye 已提交
664 665 666
        try:
            resp = self.call_future_.result()
        except grpc.RpcError as e:
667
            return {"serving_status_code": e.code()}
668
        return self.callback_func_(resp)
W
WangXi 已提交
669 670 671 672 673 674 675

    def add_done_callback(self, fn):
        def __fn__(call_future):
            assert call_future == self.call_future_
            fn(self)

        self.call_future_.add_done_callback(__fn__)