__init__.py 21.7 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
# pylint: disable=doc-string-missing
G
guru4elephant 已提交
15

M
MRXLT 已提交
16 17
import paddle_serving_client
import os
18 19 20
from .proto import sdk_configure_pb2 as sdk
from .proto import general_model_config_pb2 as m_config
import google.protobuf.text_format
D
dongdaxiang 已提交
21 22
import numpy as np
import time
23
import sys
G
guru4elephant 已提交
24

B
barrierye 已提交
25
import grpc
B
barrierye 已提交
26
from .proto import multi_lang_general_model_service_pb2
B
barrierye 已提交
27 28
sys.path.append(
    os.path.join(os.path.abspath(os.path.dirname(__file__)), 'proto'))
B
barrierye 已提交
29
from .proto import multi_lang_general_model_service_pb2_grpc
B
barrierye 已提交
30

G
guru4elephant 已提交
31 32 33
int_type = 0
float_type = 1

M
MRXLT 已提交
34

W
WangXi 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
class _NOPProfiler(object):
    def record(self, name):
        pass

    def print_profile(self):
        pass


class _TimeProfiler(object):
    def __init__(self):
        self.pid = os.getpid()
        self.print_head = 'PROFILE\tpid:{}\t'.format(self.pid)
        self.time_record = [self.print_head]

    def record(self, name):
        self.time_record.append('{}:{} '.format(
            name, int(round(time.time() * 1000000))))

    def print_profile(self):
        self.time_record.append('\n')
        sys.stderr.write(''.join(self.time_record))
        self.time_record = [self.print_head]


_is_profile = int(os.environ.get('FLAGS_profile_client', 0))
_Profiler = _TimeProfiler if _is_profile else _NOPProfiler


G
guru4elephant 已提交
63 64 65
class SDKConfig(object):
    def __init__(self):
        self.sdk_desc = sdk.SDKConf()
66 67 68
        self.tag_list = []
        self.cluster_list = []
        self.variant_weight_list = []
M
MRXLT 已提交
69 70
        self.rpc_timeout_ms = 20000
        self.load_balance_strategy = "la"
G
guru4elephant 已提交
71

72 73 74 75
    def add_server_variant(self, tag, cluster, variant_weight):
        self.tag_list.append(tag)
        self.cluster_list.append(cluster)
        self.variant_weight_list.append(variant_weight)
G
guru4elephant 已提交
76

M
MRXLT 已提交
77 78 79 80
    def set_load_banlance_strategy(self, strategy):
        self.load_balance_strategy = strategy

    def gen_desc(self, rpc_timeout_ms):
G
guru4elephant 已提交
81 82 83 84 85
        predictor_desc = sdk.Predictor()
        predictor_desc.name = "general_model"
        predictor_desc.service_name = \
            "baidu.paddle_serving.predictor.general_model.GeneralModelService"
        predictor_desc.endpoint_router = "WeightedRandomRender"
86 87
        predictor_desc.weighted_random_render_conf.variant_weight_list = "|".join(
            self.variant_weight_list)
G
guru4elephant 已提交
88

89 90 91 92 93 94
        for idx, tag in enumerate(self.tag_list):
            variant_desc = sdk.VariantConf()
            variant_desc.tag = tag
            variant_desc.naming_conf.cluster = "list://{}".format(",".join(
                self.cluster_list[idx]))
            predictor_desc.variants.extend([variant_desc])
G
guru4elephant 已提交
95 96 97 98

        self.sdk_desc.predictors.extend([predictor_desc])
        self.sdk_desc.default_variant_conf.tag = "default"
        self.sdk_desc.default_variant_conf.connection_conf.connect_timeout_ms = 2000
M
MRXLT 已提交
99
        self.sdk_desc.default_variant_conf.connection_conf.rpc_timeout_ms = rpc_timeout_ms
G
guru4elephant 已提交
100 101 102 103 104
        self.sdk_desc.default_variant_conf.connection_conf.connect_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.max_connection_per_host = 100
        self.sdk_desc.default_variant_conf.connection_conf.hedge_request_timeout_ms = -1
        self.sdk_desc.default_variant_conf.connection_conf.hedge_fetch_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.connection_type = "pooled"
M
MRXLT 已提交
105

G
guru4elephant 已提交
106 107 108 109 110 111 112 113
        self.sdk_desc.default_variant_conf.naming_conf.cluster_filter_strategy = "Default"
        self.sdk_desc.default_variant_conf.naming_conf.load_balance_strategy = "la"

        self.sdk_desc.default_variant_conf.rpc_parameter.compress_type = 0
        self.sdk_desc.default_variant_conf.rpc_parameter.package_size = 20
        self.sdk_desc.default_variant_conf.rpc_parameter.protocol = "baidu_std"
        self.sdk_desc.default_variant_conf.rpc_parameter.max_channel_per_request = 3

G
guru4elephant 已提交
114
        return self.sdk_desc
G
guru4elephant 已提交
115

G
guru4elephant 已提交
116 117 118 119 120 121

class Client(object):
    def __init__(self):
        self.feed_names_ = []
        self.fetch_names_ = []
        self.client_handle_ = None
M
MRXLT 已提交
122
        self.feed_shapes_ = {}
G
guru4elephant 已提交
123
        self.feed_types_ = {}
G
guru4elephant 已提交
124
        self.feed_names_to_idx_ = {}
M
MRXLT 已提交
125
        self.pid = os.getpid()
B
barrierye 已提交
126
        self.predictor_sdk_ = None
G
guru4elephant 已提交
127 128
        self.producers = []
        self.consumer = None
W
WangXi 已提交
129
        self.profile_ = _Profiler()
M
MRXLT 已提交
130 131
        self.all_numpy_input = True
        self.has_numpy_input = False
M
MRXLT 已提交
132
        self.rpc_timeout_ms = 20000
133 134
        from .serving_client import PredictorRes
        self.predictorres_constructor = PredictorRes
M
MRXLT 已提交
135

G
guru4elephant 已提交
136
    def load_client_config(self, path):
M
MRXLT 已提交
137
        from .serving_client import PredictorClient
138 139 140 141 142
        model_conf = m_config.GeneralModelConfig()
        f = open(path, 'r')
        model_conf = google.protobuf.text_format.Merge(
            str(f.read()), model_conf)

G
guru4elephant 已提交
143 144 145 146
        # load configuraion here
        # get feed vars, fetch vars
        # get feed shapes, feed types
        # map feed names to index
G
guru4elephant 已提交
147 148
        self.client_handle_ = PredictorClient()
        self.client_handle_.init(path)
M
bug fix  
MRXLT 已提交
149 150
        if "FLAGS_max_body_size" not in os.environ:
            os.environ["FLAGS_max_body_size"] = str(512 * 1024 * 1024)
M
MRXLT 已提交
151
        read_env_flags = ["profile_client", "profile_server", "max_body_size"]
M
MRXLT 已提交
152 153
        self.client_handle_.init_gflags([sys.argv[
            0]] + ["--tryfromenv=" + ",".join(read_env_flags)])
154 155
        self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
        self.fetch_names_ = [var.alias_name for var in model_conf.fetch_var]
G
guru4elephant 已提交
156
        self.feed_names_to_idx_ = {}
G
guru4elephant 已提交
157 158
        self.fetch_names_to_type_ = {}
        self.fetch_names_to_idx_ = {}
M
MRXLT 已提交
159
        self.lod_tensor_set = set()
M
MRXLT 已提交
160
        self.feed_tensor_len = {}
161

162 163 164
        for i, var in enumerate(model_conf.feed_var):
            self.feed_names_to_idx_[var.alias_name] = i
            self.feed_types_[var.alias_name] = var.feed_type
M
MRXLT 已提交
165
            self.feed_shapes_[var.alias_name] = var.shape
M
MRXLT 已提交
166

M
MRXLT 已提交
167 168
            if var.is_lod_tensor:
                self.lod_tensor_set.add(var.alias_name)
M
MRXLT 已提交
169 170 171 172 173
            else:
                counter = 1
                for dim in self.feed_shapes_[var.alias_name]:
                    counter *= dim
                self.feed_tensor_len[var.alias_name] = counter
G
guru4elephant 已提交
174 175 176
        for i, var in enumerate(model_conf.fetch_var):
            self.fetch_names_to_idx_[var.alias_name] = i
            self.fetch_names_to_type_[var.alias_name] = var.fetch_type
177 178
            if var.is_lod_tensor:
                self.lod_tensor_set.add(var.alias_name)
G
guru4elephant 已提交
179 180
        return

181
    def add_variant(self, tag, cluster, variant_weight):
B
barrierye 已提交
182 183
        if self.predictor_sdk_ is None:
            self.predictor_sdk_ = SDKConfig()
184 185 186
        self.predictor_sdk_.add_server_variant(tag, cluster,
                                               str(variant_weight))

M
MRXLT 已提交
187 188 189 190 191 192
    def set_rpc_timeout_ms(self, rpc_timeout):
        if not isinstance(rpc_timeout, int):
            raise ValueError("rpc_timeout must be int type.")
        else:
            self.rpc_timeout_ms = rpc_timeout

B
barrierye 已提交
193
    def connect(self, endpoints=None):
G
guru4elephant 已提交
194 195 196
        # check whether current endpoint is available
        # init from client config
        # create predictor here
B
barrierye 已提交
197 198
        if endpoints is None:
            if self.predictor_sdk_ is None:
M
MRXLT 已提交
199
                raise ValueError(
B
barrierye 已提交
200 201 202 203
                    "You must set the endpoints parameter or use add_variant function to create a variant."
                )
        else:
            if self.predictor_sdk_ is None:
204
                self.add_variant('default_tag_{}'.format(id(self)), endpoints,
205
                                 100)
B
barrierye 已提交
206 207
            else:
                print(
208
                    "parameter endpoints({}) will not take effect, because you use the add_variant function.".
B
barrierye 已提交
209
                    format(endpoints))
M
MRXLT 已提交
210
        sdk_desc = self.predictor_sdk_.gen_desc(self.rpc_timeout_ms)
M
MRXLT 已提交
211 212
        self.client_handle_.create_predictor_by_desc(sdk_desc.SerializeToString(
        ))
G
guru4elephant 已提交
213 214 215 216 217 218 219

    def get_feed_names(self):
        return self.feed_names_

    def get_fetch_names(self):
        return self.fetch_names_

M
MRXLT 已提交
220 221 222
    def shape_check(self, feed, key):
        if key in self.lod_tensor_set:
            return
M
MRXLT 已提交
223 224
        if isinstance(feed[key],
                      list) and len(feed[key]) != self.feed_tensor_len[key]:
M
MRXLT 已提交
225
            raise ValueError("The shape of feed tensor {} not match.".format(
M
MRXLT 已提交
226 227 228
                key))
        if type(feed[key]).__module__ == np.__name__ and np.size(feed[
                key]) != self.feed_tensor_len[key]:
M
MRXLT 已提交
229 230 231
            #raise SystemExit("The shape of feed tensor {} not match.".format(
            #    key))
            pass
M
MRXLT 已提交
232

233
    def predict(self, feed=None, fetch=None, need_variant_tag=False):
W
WangXi 已提交
234 235
        self.profile_.record('py_prepro_0')

G
guru4elephant 已提交
236 237 238
        if feed is None or fetch is None:
            raise ValueError("You should specify feed and fetch for prediction")

239 240 241 242 243 244
        fetch_list = []
        if isinstance(fetch, str):
            fetch_list = [fetch]
        elif isinstance(fetch, list):
            fetch_list = fetch
        else:
M
MRXLT 已提交
245
            raise ValueError("Fetch only accepts string and list of string")
246 247 248 249 250 251 252

        feed_batch = []
        if isinstance(feed, dict):
            feed_batch.append(feed)
        elif isinstance(feed, list):
            feed_batch = feed
        else:
M
MRXLT 已提交
253
            raise ValueError("Feed only accepts dict and list of dict")
G
guru4elephant 已提交
254

M
MRXLT 已提交
255 256 257 258
        int_slot_batch = []
        float_slot_batch = []
        int_feed_names = []
        float_feed_names = []
D
dongdaxiang 已提交
259 260
        int_shape = []
        float_shape = []
M
MRXLT 已提交
261
        fetch_names = []
M
MRXLT 已提交
262
        counter = 0
M
MRXLT 已提交
263
        batch_size = len(feed_batch)
264 265 266 267 268 269 270

        for key in fetch_list:
            if key in self.fetch_names_:
                fetch_names.append(key)

        if len(fetch_names) == 0:
            raise ValueError(
M
MRXLT 已提交
271
                "Fetch names should not be empty or out of saved fetch list.")
272 273
            return {}

G
guru4elephant 已提交
274
        for i, feed_i in enumerate(feed_batch):
M
MRXLT 已提交
275 276
            int_slot = []
            float_slot = []
277
            for key in feed_i:
M
MRXLT 已提交
278
                if key not in self.feed_names_:
M
MRXLT 已提交
279
                    raise ValueError("Wrong feed name: {}.".format(key))
M
MRXLT 已提交
280 281
                #if not isinstance(feed_i[key], np.ndarray):
                self.shape_check(feed_i, key)
M
MRXLT 已提交
282
                if self.feed_types_[key] == int_type:
G
guru4elephant 已提交
283
                    if i == 0:
M
MRXLT 已提交
284
                        int_feed_names.append(key)
D
dongdaxiang 已提交
285
                        if isinstance(feed_i[key], np.ndarray):
286
                            int_shape.append(list(feed_i[key].shape))
D
dongdaxiang 已提交
287 288
                        else:
                            int_shape.append(self.feed_shapes_[key])
D
dongdaxiang 已提交
289
                    if isinstance(feed_i[key], np.ndarray):
M
MRXLT 已提交
290
                        int_slot.append(feed_i[key])
M
MRXLT 已提交
291
                        self.has_numpy_input = True
D
dongdaxiang 已提交
292 293
                    else:
                        int_slot.append(feed_i[key])
M
MRXLT 已提交
294
                        self.all_numpy_input = False
M
MRXLT 已提交
295
                elif self.feed_types_[key] == float_type:
G
guru4elephant 已提交
296
                    if i == 0:
M
MRXLT 已提交
297
                        float_feed_names.append(key)
D
dongdaxiang 已提交
298
                        if isinstance(feed_i[key], np.ndarray):
299
                            float_shape.append(list(feed_i[key].shape))
D
dongdaxiang 已提交
300 301
                        else:
                            float_shape.append(self.feed_shapes_[key])
D
dongdaxiang 已提交
302
                    if isinstance(feed_i[key], np.ndarray):
M
MRXLT 已提交
303
                        float_slot.append(feed_i[key])
M
MRXLT 已提交
304
                        self.has_numpy_input = True
D
dongdaxiang 已提交
305 306
                    else:
                        float_slot.append(feed_i[key])
M
MRXLT 已提交
307
                        self.all_numpy_input = False
M
MRXLT 已提交
308 309 310
            int_slot_batch.append(int_slot)
            float_slot_batch.append(float_slot)

W
WangXi 已提交
311 312 313
        self.profile_.record('py_prepro_1')
        self.profile_.record('py_client_infer_0')

314
        result_batch_handle = self.predictorres_constructor()
M
MRXLT 已提交
315
        if self.all_numpy_input:
M
MRXLT 已提交
316 317
            res = self.client_handle_.numpy_predict(
                float_slot_batch, float_feed_names, float_shape, int_slot_batch,
318 319
                int_feed_names, int_shape, fetch_names, result_batch_handle,
                self.pid)
M
MRXLT 已提交
320
        elif self.has_numpy_input == False:
M
MRXLT 已提交
321 322
            res = self.client_handle_.batch_predict(
                float_slot_batch, float_feed_names, float_shape, int_slot_batch,
323 324
                int_feed_names, int_shape, fetch_names, result_batch_handle,
                self.pid)
M
MRXLT 已提交
325
        else:
M
MRXLT 已提交
326
            raise ValueError(
M
MRXLT 已提交
327 328
                "Please make sure the inputs are all in list type or all in numpy.array type"
            )
M
MRXLT 已提交
329

W
WangXi 已提交
330 331 332
        self.profile_.record('py_client_infer_1')
        self.profile_.record('py_postpro_0')

333 334 335
        if res == -1:
            return None

B
barrierye 已提交
336
        multi_result_map = []
337
        model_engine_names = result_batch_handle.get_engine_names()
B
barrierye 已提交
338
        for mi, engine_name in enumerate(model_engine_names):
B
barrierye 已提交
339
            result_map = {}
B
barrierye 已提交
340
            # result map needs to be a numpy array
B
barrierye 已提交
341 342
            for i, name in enumerate(fetch_names):
                if self.fetch_names_to_type_[name] == int_type:
B
barrierye 已提交
343
                    # result_map[name] will be py::array(numpy array)
344 345 346
                    result_map[name] = result_batch_handle.get_int64_by_name(
                        mi, name)
                    shape = result_batch_handle.get_shape(mi, name)
B
barrierye 已提交
347 348
                    result_map[name].shape = shape
                    if name in self.lod_tensor_set:
349 350
                        result_map["{}.lod".format(
                            name)] = result_batch_handle.get_lod(mi, name)
B
barrierye 已提交
351
                elif self.fetch_names_to_type_[name] == float_type:
352 353 354
                    result_map[name] = result_batch_handle.get_float_by_name(
                        mi, name)
                    shape = result_batch_handle.get_shape(mi, name)
B
barrierye 已提交
355 356
                    result_map[name].shape = shape
                    if name in self.lod_tensor_set:
357 358
                        result_map["{}.lod".format(
                            name)] = result_batch_handle.get_lod(mi, name)
B
barrierye 已提交
359
            multi_result_map.append(result_map)
B
barrierye 已提交
360 361
        ret = None
        if len(model_engine_names) == 1:
B
barrierye 已提交
362 363
            # If only one model result is returned, the format of ret is result_map
            ret = multi_result_map[0]
G
guru4elephant 已提交
364
        else:
B
barrierye 已提交
365 366 367 368 369 370
            # If multiple model results are returned, the format of ret is {name: result_map}
            ret = {
                engine_name: multi_result_map[mi]
                for mi, engine_name in enumerate(model_engine_names)
            }

W
WangXi 已提交
371 372 373
        self.profile_.record('py_postpro_1')
        self.profile_.print_profile()

B
barrierye 已提交
374
        # When using the A/B test, the tag of variant needs to be returned
B
barrierye 已提交
375
        return ret if not need_variant_tag else [
376
            ret, result_batch_handle.variant_tag()
B
barrierye 已提交
377
        ]
B
barrierye 已提交
378

379 380
    def release(self):
        self.client_handle_.destroy_predictor()
G
guru4elephant 已提交
381
        self.client_handle_ = None
B
barrierye 已提交
382 383


384
class MultiLangClient(object):
B
barrierye 已提交
385 386 387 388
    def __init__(self):
        self.channel_ = None

    def load_client_config(self, path):
B
barrierye 已提交
389 390 391
        if not isinstance(path, str):
            raise Exception("GClient only supports multi-model temporarily")
        self._parse_model_config(path)
B
barrierye 已提交
392 393

    def connect(self, endpoint):
B
barrierye 已提交
394
        self.channel_ = grpc.insecure_channel(endpoint[0])  #TODO
395
        self.stub_ = multi_lang_general_model_service_pb2_grpc.MultiLangGeneralModelServiceStub(
B
barrierye 已提交
396 397
            self.channel_)

B
barrierye 已提交
398 399 400 401 402 403 404 405
    def _flatten_list(self, nested_list):
        for item in nested_list:
            if isinstance(item, (list, tuple)):
                for sub_item in self._flatten_list(item):
                    yield sub_item
            else:
                yield item

B
barrierye 已提交
406 407 408 409 410 411 412
    def _parse_model_config(self, model_config_path):
        model_conf = m_config.GeneralModelConfig()
        f = open(model_config_path, 'r')
        model_conf = google.protobuf.text_format.Merge(
            str(f.read()), model_conf)
        self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
        self.feed_types_ = {}
B
barrierye 已提交
413
        self.feed_shapes_ = {}
B
barrierye 已提交
414
        self.fetch_names_ = [var.alias_name for var in model_conf.fetch_var]
B
barrierye 已提交
415 416
        self.fetch_types_ = {}
        self.lod_tensor_set_ = set()
B
barrierye 已提交
417 418 419
        for i, var in enumerate(model_conf.feed_var):
            self.feed_types_[var.alias_name] = var.feed_type
            self.feed_shapes_[var.alias_name] = var.shape
B
barrierye 已提交
420
            if var.is_lod_tensor:
B
barrierye 已提交
421
                self.lod_tensor_set_.add(var.alias_name)
B
barrierye 已提交
422 423 424 425
            else:
                counter = 1
                for dim in self.feed_shapes_[var.alias_name]:
                    counter *= dim
B
barrierye 已提交
426
        for i, var in enumerate(model_conf.fetch_var):
B
barrierye 已提交
427 428 429
            self.fetch_types_[var.alias_name] = var.fetch_type
            if var.is_lod_tensor:
                self.lod_tensor_set_.add(var.alias_name)
B
barrierye 已提交
430

B
barrierye 已提交
431
    def _pack_feed_data(self, feed, fetch, is_python):
432
        req = multi_lang_general_model_service_pb2.Request()
B
barrierye 已提交
433
        req.fetch_var_names.extend(fetch)
B
barrierye 已提交
434
        req.feed_var_names.extend(feed.keys())
B
barrierye 已提交
435
        req.is_python = is_python
B
barrierye 已提交
436 437 438 439 440 441 442
        feed_batch = None
        if isinstance(feed, dict):
            feed_batch = [feed]
        elif isinstance(feed, list):
            feed_batch = feed
        else:
            raise Exception("{} not support".format(type(feed)))
B
barrierye 已提交
443
        init_feed_names = False
B
barrierye 已提交
444
        for feed_data in feed_batch:
445
            inst = multi_lang_general_model_service_pb2.FeedInst()
B
barrierye 已提交
446
            for name in req.feed_var_names:
447
                tensor = multi_lang_general_model_service_pb2.Tensor()
B
barrierye 已提交
448 449
                var = feed_data[name]
                v_type = self.feed_types_[name]
B
barrierye 已提交
450 451 452 453 454 455 456 457 458
                if is_python:
                    data = None
                    if isinstance(var, list):
                        if v_type == 0:  # int64
                            data = np.array(var, dtype="int64")
                        elif v_type == 1:  # float32
                            data = np.array(var, dtype="float32")
                        else:
                            raise Exception("error type.")
B
barrierye 已提交
459
                    else:
B
barrierye 已提交
460 461 462 463
                        data = var
                        if var.dtype == "float64":
                            data = data.astype("float32")
                    tensor.data = data.tobytes()
B
barrierye 已提交
464
                else:
B
barrierye 已提交
465 466 467 468 469 470 471 472 473 474 475 476
                    if v_type == 0:  # int64
                        if isinstance(var, np.ndarray):
                            tensor.int64_data.extend(var.reshape(-1).tolist())
                        else:
                            tensor.int64_data.extend(self._flatten_list(var))
                    elif v_type == 1:  # float32
                        if isinstance(var, np.ndarray):
                            tensor.float_data.extend(var.reshape(-1).tolist())
                        else:
                            tensor.float_data.extend(self._flatten_list(var))
                    else:
                        raise Exception("error type.")
B
barrierye 已提交
477
                if isinstance(var, np.ndarray):
B
barrierye 已提交
478
                    tensor.shape.extend(list(var.shape))
B
barrierye 已提交
479
                else:
B
barrierye 已提交
480 481 482
                    tensor.shape.extend(self.feed_shapes_[name])
                inst.tensor_array.append(tensor)
            req.insts.append(inst)
B
barrierye 已提交
483
        return req
B
barrierye 已提交
484

B
barrierye 已提交
485
    def _unpack_resp(self, resp, fetch, is_python, need_variant_tag):
B
barrierye 已提交
486
        result_map = {}
B
barrierye 已提交
487 488 489 490 491
        inst = resp.outputs[0].insts[0]
        tag = resp.tag
        for i, name in enumerate(fetch):
            var = inst.tensor_array[i]
            v_type = self.fetch_types_[name]
B
barrierye 已提交
492 493 494 495 496 497 498
            if is_python:
                if v_type == 0:  # int64
                    result_map[name] = np.frombuffer(var.data, dtype="int64")
                elif v_type == 1:  # float32
                    result_map[name] = np.frombuffer(var.data, dtype="float32")
                else:
                    raise Exception("error type.")
B
barrierye 已提交
499
            else:
B
barrierye 已提交
500
                if v_type == 0:  # int64
501 502
                    result_map[name] = np.array(
                        list(var.int64_data), dtype="int64")
B
barrierye 已提交
503
                elif v_type == 1:  # float32
504 505
                    result_map[name] = np.array(
                        list(var.float_data), dtype="float32")
B
barrierye 已提交
506 507
                else:
                    raise Exception("error type.")
B
barrierye 已提交
508
            result_map[name].shape = list(var.shape)
B
barrierye 已提交
509
            if name in self.lod_tensor_set_:
B
barrierye 已提交
510
                result_map["{}.lod".format(name)] = np.array(list(var.lod))
511 512
        return result_map if not need_variant_tag else [result_map, tag]

B
barrierye 已提交
513
    def _done_callback_func(self, fetch, is_python, need_variant_tag):
514
        def unpack_resp(resp):
B
barrierye 已提交
515
            return self._unpack_resp(resp, fetch, is_python, need_variant_tag)
B
barrierye 已提交
516

517 518
        return unpack_resp

B
barrierye 已提交
519 520 521 522 523 524 525
    def predict(self,
                feed,
                fetch,
                need_variant_tag=False,
                asyn=False,
                is_python=True):
        req = self._pack_feed_data(feed, fetch, is_python=is_python)
526 527
        if not asyn:
            resp = self.stub_.inference(req)
B
barrierye 已提交
528 529 530 531 532
            return self._unpack_resp(
                resp,
                fetch,
                is_python=is_python,
                need_variant_tag=need_variant_tag)
533 534 535
        else:
            call_future = self.stub_.inference.future(req)
            return MultiLangPredictFuture(
B
barrierye 已提交
536 537 538 539 540
                call_future,
                self._done_callback_func(
                    fetch,
                    is_python=is_python,
                    need_variant_tag=need_variant_tag))
541 542 543 544 545 546 547 548 549 550


class MultiLangPredictFuture(object):
    def __init__(self, call_future, callback_func):
        self.call_future_ = call_future
        self.callback_func_ = callback_func

    def result(self):
        resp = self.call_future_.result()
        return self.callback_func_(resp)