__init__.py 14.7 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
# pylint: disable=doc-string-missing
G
guru4elephant 已提交
15

M
MRXLT 已提交
16 17
import paddle_serving_client
import os
18 19 20
from .proto import sdk_configure_pb2 as sdk
from .proto import general_model_config_pb2 as m_config
import google.protobuf.text_format
D
dongdaxiang 已提交
21 22
import numpy as np
import time
23
import sys
G
guru4elephant 已提交
24

G
guru4elephant 已提交
25 26 27
int_type = 0
float_type = 1

M
MRXLT 已提交
28

W
WangXi 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
class _NOPProfiler(object):
    def record(self, name):
        pass

    def print_profile(self):
        pass


class _TimeProfiler(object):
    def __init__(self):
        self.pid = os.getpid()
        self.print_head = 'PROFILE\tpid:{}\t'.format(self.pid)
        self.time_record = [self.print_head]

    def record(self, name):
        self.time_record.append('{}:{} '.format(
            name, int(round(time.time() * 1000000))))

    def print_profile(self):
        self.time_record.append('\n')
        sys.stderr.write(''.join(self.time_record))
        self.time_record = [self.print_head]


_is_profile = int(os.environ.get('FLAGS_profile_client', 0))
_Profiler = _TimeProfiler if _is_profile else _NOPProfiler


G
guru4elephant 已提交
57 58 59
class SDKConfig(object):
    def __init__(self):
        self.sdk_desc = sdk.SDKConf()
60 61 62
        self.tag_list = []
        self.cluster_list = []
        self.variant_weight_list = []
G
guru4elephant 已提交
63

64 65 66 67
    def add_server_variant(self, tag, cluster, variant_weight):
        self.tag_list.append(tag)
        self.cluster_list.append(cluster)
        self.variant_weight_list.append(variant_weight)
G
guru4elephant 已提交
68 69 70 71 72 73 74

    def gen_desc(self):
        predictor_desc = sdk.Predictor()
        predictor_desc.name = "general_model"
        predictor_desc.service_name = \
            "baidu.paddle_serving.predictor.general_model.GeneralModelService"
        predictor_desc.endpoint_router = "WeightedRandomRender"
75 76
        predictor_desc.weighted_random_render_conf.variant_weight_list = "|".join(
            self.variant_weight_list)
G
guru4elephant 已提交
77

78 79 80 81 82 83
        for idx, tag in enumerate(self.tag_list):
            variant_desc = sdk.VariantConf()
            variant_desc.tag = tag
            variant_desc.naming_conf.cluster = "list://{}".format(",".join(
                self.cluster_list[idx]))
            predictor_desc.variants.extend([variant_desc])
G
guru4elephant 已提交
84 85 86 87 88 89 90 91 92 93

        self.sdk_desc.predictors.extend([predictor_desc])
        self.sdk_desc.default_variant_conf.tag = "default"
        self.sdk_desc.default_variant_conf.connection_conf.connect_timeout_ms = 2000
        self.sdk_desc.default_variant_conf.connection_conf.rpc_timeout_ms = 20000
        self.sdk_desc.default_variant_conf.connection_conf.connect_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.max_connection_per_host = 100
        self.sdk_desc.default_variant_conf.connection_conf.hedge_request_timeout_ms = -1
        self.sdk_desc.default_variant_conf.connection_conf.hedge_fetch_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.connection_type = "pooled"
M
MRXLT 已提交
94

G
guru4elephant 已提交
95 96 97 98 99 100 101 102
        self.sdk_desc.default_variant_conf.naming_conf.cluster_filter_strategy = "Default"
        self.sdk_desc.default_variant_conf.naming_conf.load_balance_strategy = "la"

        self.sdk_desc.default_variant_conf.rpc_parameter.compress_type = 0
        self.sdk_desc.default_variant_conf.rpc_parameter.package_size = 20
        self.sdk_desc.default_variant_conf.rpc_parameter.protocol = "baidu_std"
        self.sdk_desc.default_variant_conf.rpc_parameter.max_channel_per_request = 3

G
guru4elephant 已提交
103
        return self.sdk_desc
G
guru4elephant 已提交
104

G
guru4elephant 已提交
105 106 107 108 109 110

class Client(object):
    def __init__(self):
        self.feed_names_ = []
        self.fetch_names_ = []
        self.client_handle_ = None
111
        self.result_handle_ = None
M
MRXLT 已提交
112
        self.feed_shapes_ = {}
G
guru4elephant 已提交
113
        self.feed_types_ = {}
G
guru4elephant 已提交
114
        self.feed_names_to_idx_ = {}
M
MRXLT 已提交
115
        self.pid = os.getpid()
B
barrierye 已提交
116
        self.predictor_sdk_ = None
G
guru4elephant 已提交
117 118
        self.producers = []
        self.consumer = None
W
WangXi 已提交
119
        self.profile_ = _Profiler()
M
MRXLT 已提交
120 121
        self.all_numpy_input = True
        self.has_numpy_input = False
M
MRXLT 已提交
122

G
guru4elephant 已提交
123
    def load_client_config(self, path):
M
MRXLT 已提交
124
        from .serving_client import PredictorClient
125
        from .serving_client import PredictorRes
126 127 128 129 130
        model_conf = m_config.GeneralModelConfig()
        f = open(path, 'r')
        model_conf = google.protobuf.text_format.Merge(
            str(f.read()), model_conf)

G
guru4elephant 已提交
131 132 133 134
        # load configuraion here
        # get feed vars, fetch vars
        # get feed shapes, feed types
        # map feed names to index
135
        self.result_handle_ = PredictorRes()
G
guru4elephant 已提交
136 137
        self.client_handle_ = PredictorClient()
        self.client_handle_.init(path)
M
bug fix  
MRXLT 已提交
138 139
        if "FLAGS_max_body_size" not in os.environ:
            os.environ["FLAGS_max_body_size"] = str(512 * 1024 * 1024)
M
MRXLT 已提交
140
        read_env_flags = ["profile_client", "profile_server", "max_body_size"]
M
MRXLT 已提交
141 142
        self.client_handle_.init_gflags([sys.argv[
            0]] + ["--tryfromenv=" + ",".join(read_env_flags)])
143 144
        self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
        self.fetch_names_ = [var.alias_name for var in model_conf.fetch_var]
G
guru4elephant 已提交
145
        self.feed_names_to_idx_ = {}
G
guru4elephant 已提交
146 147
        self.fetch_names_to_type_ = {}
        self.fetch_names_to_idx_ = {}
M
MRXLT 已提交
148
        self.lod_tensor_set = set()
M
MRXLT 已提交
149
        self.feed_tensor_len = {}
150

151 152 153
        for i, var in enumerate(model_conf.feed_var):
            self.feed_names_to_idx_[var.alias_name] = i
            self.feed_types_[var.alias_name] = var.feed_type
M
MRXLT 已提交
154
            self.feed_shapes_[var.alias_name] = var.shape
M
MRXLT 已提交
155

M
MRXLT 已提交
156 157
            if var.is_lod_tensor:
                self.lod_tensor_set.add(var.alias_name)
M
MRXLT 已提交
158 159 160 161 162
            else:
                counter = 1
                for dim in self.feed_shapes_[var.alias_name]:
                    counter *= dim
                self.feed_tensor_len[var.alias_name] = counter
G
guru4elephant 已提交
163 164 165
        for i, var in enumerate(model_conf.fetch_var):
            self.fetch_names_to_idx_[var.alias_name] = i
            self.fetch_names_to_type_[var.alias_name] = var.fetch_type
166 167
            if var.is_lod_tensor:
                self.lod_tensor_set.add(var.alias_name)
G
guru4elephant 已提交
168 169
        return

170
    def add_variant(self, tag, cluster, variant_weight):
B
barrierye 已提交
171 172
        if self.predictor_sdk_ is None:
            self.predictor_sdk_ = SDKConfig()
173 174 175
        self.predictor_sdk_.add_server_variant(tag, cluster,
                                               str(variant_weight))

B
barrierye 已提交
176
    def connect(self, endpoints=None):
G
guru4elephant 已提交
177 178 179
        # check whether current endpoint is available
        # init from client config
        # create predictor here
B
barrierye 已提交
180 181 182 183 184 185 186
        if endpoints is None:
            if self.predictor_sdk_ is None:
                raise SystemExit(
                    "You must set the endpoints parameter or use add_variant function to create a variant."
                )
        else:
            if self.predictor_sdk_ is None:
187
                self.add_variant('default_tag_{}'.format(id(self)), endpoints,
188
                                 100)
B
barrierye 已提交
189 190
            else:
                print(
191
                    "parameter endpoints({}) will not take effect, because you use the add_variant function.".
B
barrierye 已提交
192
                    format(endpoints))
193
        sdk_desc = self.predictor_sdk_.gen_desc()
M
MRXLT 已提交
194 195
        self.client_handle_.create_predictor_by_desc(sdk_desc.SerializeToString(
        ))
G
guru4elephant 已提交
196 197 198 199 200 201 202

    def get_feed_names(self):
        return self.feed_names_

    def get_fetch_names(self):
        return self.fetch_names_

M
MRXLT 已提交
203 204 205
    def shape_check(self, feed, key):
        if key in self.lod_tensor_set:
            return
M
MRXLT 已提交
206
        if len(feed[key]) != self.feed_tensor_len[key]:
M
MRXLT 已提交
207 208 209
            raise SystemExit("The shape of feed tensor {} not match.".format(
                key))

210
    def predict(self, feed=None, fetch=None, need_variant_tag=False):
W
WangXi 已提交
211 212
        self.profile_.record('py_prepro_0')

G
guru4elephant 已提交
213 214 215
        if feed is None or fetch is None:
            raise ValueError("You should specify feed and fetch for prediction")

216 217 218 219 220 221
        fetch_list = []
        if isinstance(fetch, str):
            fetch_list = [fetch]
        elif isinstance(fetch, list):
            fetch_list = fetch
        else:
M
MRXLT 已提交
222
            raise ValueError("Fetch only accepts string and list of string")
223 224 225 226 227 228 229

        feed_batch = []
        if isinstance(feed, dict):
            feed_batch.append(feed)
        elif isinstance(feed, list):
            feed_batch = feed
        else:
M
MRXLT 已提交
230
            raise ValueError("Feed only accepts dict and list of dict")
G
guru4elephant 已提交
231

M
MRXLT 已提交
232 233 234 235
        int_slot_batch = []
        float_slot_batch = []
        int_feed_names = []
        float_feed_names = []
D
dongdaxiang 已提交
236 237
        int_shape = []
        float_shape = []
M
MRXLT 已提交
238
        fetch_names = []
M
MRXLT 已提交
239
        counter = 0
M
MRXLT 已提交
240
        batch_size = len(feed_batch)
241 242 243 244 245 246 247

        for key in fetch_list:
            if key in self.fetch_names_:
                fetch_names.append(key)

        if len(fetch_names) == 0:
            raise ValueError(
M
MRXLT 已提交
248
                "Fetch names should not be empty or out of saved fetch list.")
249 250
            return {}

G
guru4elephant 已提交
251
        for i, feed_i in enumerate(feed_batch):
M
MRXLT 已提交
252 253
            int_slot = []
            float_slot = []
254
            for key in feed_i:
M
MRXLT 已提交
255
                if key not in self.feed_names_:
M
MRXLT 已提交
256
                    raise ValueError("Wrong feed name: {}.".format(key))
257 258
                if not isinstance(feed_i[key], np.ndarray):
                    self.shape_check(feed_i, key)
M
MRXLT 已提交
259
                if self.feed_types_[key] == int_type:
G
guru4elephant 已提交
260
                    if i == 0:
M
MRXLT 已提交
261
                        int_feed_names.append(key)
D
dongdaxiang 已提交
262
                        if isinstance(feed_i[key], np.ndarray):
263 264 265
                            if key in self.lod_tensor_set:
                                raise ValueError(
                                    "LodTensor var can not be ndarray type.")
266
                            int_shape.append(list(feed_i[key].shape))
D
dongdaxiang 已提交
267 268
                        else:
                            int_shape.append(self.feed_shapes_[key])
D
dongdaxiang 已提交
269
                    if isinstance(feed_i[key], np.ndarray):
270 271 272
                        if key in self.lod_tensor_set:
                            raise ValueError(
                                "LodTensor var can not be ndarray type.")
M
MRXLT 已提交
273 274
                        #int_slot.append(np.reshape(feed_i[key], (-1)).tolist())
                        int_slot.append(feed_i[key])
M
MRXLT 已提交
275
                        self.has_numpy_input = True
D
dongdaxiang 已提交
276 277
                    else:
                        int_slot.append(feed_i[key])
M
MRXLT 已提交
278
                        self.all_numpy_input = False
M
MRXLT 已提交
279
                elif self.feed_types_[key] == float_type:
G
guru4elephant 已提交
280
                    if i == 0:
M
MRXLT 已提交
281
                        float_feed_names.append(key)
D
dongdaxiang 已提交
282
                        if isinstance(feed_i[key], np.ndarray):
283 284 285
                            if key in self.lod_tensor_set:
                                raise ValueError(
                                    "LodTensor var can not be ndarray type.")
286
                            float_shape.append(list(feed_i[key].shape))
D
dongdaxiang 已提交
287 288
                        else:
                            float_shape.append(self.feed_shapes_[key])
D
dongdaxiang 已提交
289
                    if isinstance(feed_i[key], np.ndarray):
290 291 292
                        if key in self.lod_tensor_set:
                            raise ValueError(
                                "LodTensor var can not be ndarray type.")
M
MRXLT 已提交
293 294
                        #float_slot.append(np.reshape(feed_i[key], (-1)).tolist())
                        float_slot.append(feed_i[key])
M
MRXLT 已提交
295
                        self.has_numpy_input = True
D
dongdaxiang 已提交
296 297
                    else:
                        float_slot.append(feed_i[key])
M
MRXLT 已提交
298
                        self.all_numpy_input = False
M
MRXLT 已提交
299 300 301
            int_slot_batch.append(int_slot)
            float_slot_batch.append(float_slot)

W
WangXi 已提交
302 303 304
        self.profile_.record('py_prepro_1')
        self.profile_.record('py_client_infer_0')

M
MRXLT 已提交
305
        result_batch = self.result_handle_
M
MRXLT 已提交
306
        if self.all_numpy_input:
M
MRXLT 已提交
307 308 309
            res = self.client_handle_.numpy_predict(
                float_slot_batch, float_feed_names, float_shape, int_slot_batch,
                int_feed_names, int_shape, fetch_names, result_batch, self.pid)
M
MRXLT 已提交
310
        elif self.has_numpy_input == False:
M
MRXLT 已提交
311 312 313
            res = self.client_handle_.batch_predict(
                float_slot_batch, float_feed_names, float_shape, int_slot_batch,
                int_feed_names, int_shape, fetch_names, result_batch, self.pid)
M
MRXLT 已提交
314 315 316 317
        else:
            raise SystemExit(
                "Please make sure the inputs are all in list type or all in numpy.array type"
            )
M
MRXLT 已提交
318

W
WangXi 已提交
319 320 321
        self.profile_.record('py_client_infer_1')
        self.profile_.record('py_postpro_0')

322 323 324
        if res == -1:
            return None

B
barrierye 已提交
325
        multi_result_map = []
B
barrierye 已提交
326 327
        model_engine_names = result_batch.get_engine_names()
        for mi, engine_name in enumerate(model_engine_names):
B
barrierye 已提交
328
            result_map = {}
B
barrierye 已提交
329
            # result map needs to be a numpy array
B
barrierye 已提交
330 331
            for i, name in enumerate(fetch_names):
                if self.fetch_names_to_type_[name] == int_type:
B
barrierye 已提交
332
                    # result_map[name] will be py::array(numpy array)
B
barrierye 已提交
333
                    result_map[name] = result_batch.get_int64_by_name(mi, name)
B
barrierye 已提交
334 335 336
                    shape = result_batch.get_shape(mi, name)
                    result_map[name].shape = shape
                    if name in self.lod_tensor_set:
M
MRXLT 已提交
337 338
                        result_map["{}.lod".format(name)] = np.array(
                            result_batch.get_lod(mi, name))
B
barrierye 已提交
339
                elif self.fetch_names_to_type_[name] == float_type:
B
barrierye 已提交
340
                    result_map[name] = result_batch.get_float_by_name(mi, name)
B
barrierye 已提交
341 342 343
                    shape = result_batch.get_shape(mi, name)
                    result_map[name].shape = shape
                    if name in self.lod_tensor_set:
M
MRXLT 已提交
344 345
                        result_map["{}.lod".format(name)] = np.array(
                            result_batch.get_lod(mi, name))
B
barrierye 已提交
346
            multi_result_map.append(result_map)
B
barrierye 已提交
347 348
        ret = None
        if len(model_engine_names) == 1:
B
barrierye 已提交
349 350
            # If only one model result is returned, the format of ret is result_map
            ret = multi_result_map[0]
G
guru4elephant 已提交
351
        else:
B
barrierye 已提交
352 353 354 355 356 357
            # If multiple model results are returned, the format of ret is {name: result_map}
            ret = {
                engine_name: multi_result_map[mi]
                for mi, engine_name in enumerate(model_engine_names)
            }

W
WangXi 已提交
358 359 360
        self.profile_.record('py_postpro_1')
        self.profile_.print_profile()

B
barrierye 已提交
361
        # When using the A/B test, the tag of variant needs to be returned
B
barrierye 已提交
362 363 364
        return ret if not need_variant_tag else [
            ret, self.result_handle_.variant_tag()
        ]
B
barrierye 已提交
365

366 367
    def release(self):
        self.client_handle_.destroy_predictor()
G
guru4elephant 已提交
368
        self.client_handle_ = None