__init__.py 13.6 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
# pylint: disable=doc-string-missing
G
guru4elephant 已提交
15

M
MRXLT 已提交
16 17
import paddle_serving_client
import os
18 19 20
from .proto import sdk_configure_pb2 as sdk
from .proto import general_model_config_pb2 as m_config
import google.protobuf.text_format
D
dongdaxiang 已提交
21 22
import numpy as np
import time
23
import sys
G
guru4elephant 已提交
24

G
guru4elephant 已提交
25 26 27
int_type = 0
float_type = 1

M
MRXLT 已提交
28

W
WangXi 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
class _NOPProfiler(object):
    def record(self, name):
        pass

    def print_profile(self):
        pass


class _TimeProfiler(object):
    def __init__(self):
        self.pid = os.getpid()
        self.print_head = 'PROFILE\tpid:{}\t'.format(self.pid)
        self.time_record = [self.print_head]

    def record(self, name):
        self.time_record.append('{}:{} '.format(
            name, int(round(time.time() * 1000000))))

    def print_profile(self):
        self.time_record.append('\n')
        sys.stderr.write(''.join(self.time_record))
        self.time_record = [self.print_head]


_is_profile = int(os.environ.get('FLAGS_profile_client', 0))
_Profiler = _TimeProfiler if _is_profile else _NOPProfiler


G
guru4elephant 已提交
57 58 59
class SDKConfig(object):
    def __init__(self):
        self.sdk_desc = sdk.SDKConf()
60 61 62
        self.tag_list = []
        self.cluster_list = []
        self.variant_weight_list = []
G
guru4elephant 已提交
63

64 65 66 67
    def add_server_variant(self, tag, cluster, variant_weight):
        self.tag_list.append(tag)
        self.cluster_list.append(cluster)
        self.variant_weight_list.append(variant_weight)
G
guru4elephant 已提交
68 69 70 71 72 73 74

    def gen_desc(self):
        predictor_desc = sdk.Predictor()
        predictor_desc.name = "general_model"
        predictor_desc.service_name = \
            "baidu.paddle_serving.predictor.general_model.GeneralModelService"
        predictor_desc.endpoint_router = "WeightedRandomRender"
75 76
        predictor_desc.weighted_random_render_conf.variant_weight_list = "|".join(
            self.variant_weight_list)
G
guru4elephant 已提交
77

78 79 80 81 82 83
        for idx, tag in enumerate(self.tag_list):
            variant_desc = sdk.VariantConf()
            variant_desc.tag = tag
            variant_desc.naming_conf.cluster = "list://{}".format(",".join(
                self.cluster_list[idx]))
            predictor_desc.variants.extend([variant_desc])
G
guru4elephant 已提交
84 85 86 87 88 89 90 91 92 93

        self.sdk_desc.predictors.extend([predictor_desc])
        self.sdk_desc.default_variant_conf.tag = "default"
        self.sdk_desc.default_variant_conf.connection_conf.connect_timeout_ms = 2000
        self.sdk_desc.default_variant_conf.connection_conf.rpc_timeout_ms = 20000
        self.sdk_desc.default_variant_conf.connection_conf.connect_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.max_connection_per_host = 100
        self.sdk_desc.default_variant_conf.connection_conf.hedge_request_timeout_ms = -1
        self.sdk_desc.default_variant_conf.connection_conf.hedge_fetch_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.connection_type = "pooled"
M
MRXLT 已提交
94

G
guru4elephant 已提交
95 96 97 98 99 100 101 102
        self.sdk_desc.default_variant_conf.naming_conf.cluster_filter_strategy = "Default"
        self.sdk_desc.default_variant_conf.naming_conf.load_balance_strategy = "la"

        self.sdk_desc.default_variant_conf.rpc_parameter.compress_type = 0
        self.sdk_desc.default_variant_conf.rpc_parameter.package_size = 20
        self.sdk_desc.default_variant_conf.rpc_parameter.protocol = "baidu_std"
        self.sdk_desc.default_variant_conf.rpc_parameter.max_channel_per_request = 3

G
guru4elephant 已提交
103
        return self.sdk_desc
G
guru4elephant 已提交
104

G
guru4elephant 已提交
105 106 107 108 109 110

class Client(object):
    def __init__(self):
        self.feed_names_ = []
        self.fetch_names_ = []
        self.client_handle_ = None
111
        self.result_handle_ = None
M
MRXLT 已提交
112
        self.feed_shapes_ = {}
G
guru4elephant 已提交
113
        self.feed_types_ = {}
G
guru4elephant 已提交
114
        self.feed_names_to_idx_ = {}
M
MRXLT 已提交
115
        self.rpath()
M
MRXLT 已提交
116
        self.pid = os.getpid()
B
barrierye 已提交
117
        self.predictor_sdk_ = None
G
guru4elephant 已提交
118 119
        self.producers = []
        self.consumer = None
W
WangXi 已提交
120
        self.profile_ = _Profiler()
M
MRXLT 已提交
121 122 123 124 125

    def rpath(self):
        lib_path = os.path.dirname(paddle_serving_client.__file__)
        client_path = os.path.join(lib_path, 'serving_client.so')
        lib_path = os.path.join(lib_path, 'lib')
M
MRXLT 已提交
126
        os.system('patchelf --set-rpath {} {}'.format(lib_path, client_path))
M
MRXLT 已提交
127

G
guru4elephant 已提交
128
    def load_client_config(self, path):
M
MRXLT 已提交
129
        from .serving_client import PredictorClient
130
        from .serving_client import PredictorRes
131 132 133 134 135
        model_conf = m_config.GeneralModelConfig()
        f = open(path, 'r')
        model_conf = google.protobuf.text_format.Merge(
            str(f.read()), model_conf)

G
guru4elephant 已提交
136 137 138 139
        # load configuraion here
        # get feed vars, fetch vars
        # get feed shapes, feed types
        # map feed names to index
140
        self.result_handle_ = PredictorRes()
G
guru4elephant 已提交
141 142
        self.client_handle_ = PredictorClient()
        self.client_handle_.init(path)
M
bug fix  
MRXLT 已提交
143 144
        if "FLAGS_max_body_size" not in os.environ:
            os.environ["FLAGS_max_body_size"] = str(512 * 1024 * 1024)
M
MRXLT 已提交
145
        read_env_flags = ["profile_client", "profile_server", "max_body_size"]
M
MRXLT 已提交
146 147
        self.client_handle_.init_gflags([sys.argv[
            0]] + ["--tryfromenv=" + ",".join(read_env_flags)])
148 149
        self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
        self.fetch_names_ = [var.alias_name for var in model_conf.fetch_var]
G
guru4elephant 已提交
150
        self.feed_names_to_idx_ = {}
G
guru4elephant 已提交
151 152
        self.fetch_names_to_type_ = {}
        self.fetch_names_to_idx_ = {}
M
MRXLT 已提交
153
        self.lod_tensor_set = set()
M
MRXLT 已提交
154
        self.feed_tensor_len = {}
155

156 157 158
        for i, var in enumerate(model_conf.feed_var):
            self.feed_names_to_idx_[var.alias_name] = i
            self.feed_types_[var.alias_name] = var.feed_type
M
MRXLT 已提交
159
            self.feed_shapes_[var.alias_name] = var.shape
M
MRXLT 已提交
160

M
MRXLT 已提交
161 162
            if var.is_lod_tensor:
                self.lod_tensor_set.add(var.alias_name)
M
MRXLT 已提交
163 164 165 166 167
            else:
                counter = 1
                for dim in self.feed_shapes_[var.alias_name]:
                    counter *= dim
                self.feed_tensor_len[var.alias_name] = counter
G
guru4elephant 已提交
168 169 170
        for i, var in enumerate(model_conf.fetch_var):
            self.fetch_names_to_idx_[var.alias_name] = i
            self.fetch_names_to_type_[var.alias_name] = var.fetch_type
171 172
            if var.is_lod_tensor:
                self.lod_tensor_set.add(var.alias_name)
G
guru4elephant 已提交
173 174
        return

175
    def add_variant(self, tag, cluster, variant_weight):
B
barrierye 已提交
176 177
        if self.predictor_sdk_ is None:
            self.predictor_sdk_ = SDKConfig()
178 179 180
        self.predictor_sdk_.add_server_variant(tag, cluster,
                                               str(variant_weight))

B
barrierye 已提交
181
    def connect(self, endpoints=None):
G
guru4elephant 已提交
182 183 184
        # check whether current endpoint is available
        # init from client config
        # create predictor here
B
barrierye 已提交
185 186 187 188 189 190 191
        if endpoints is None:
            if self.predictor_sdk_ is None:
                raise SystemExit(
                    "You must set the endpoints parameter or use add_variant function to create a variant."
                )
        else:
            if self.predictor_sdk_ is None:
192
                self.add_variant('default_tag_{}'.format(id(self)), endpoints,
193
                                 100)
B
barrierye 已提交
194 195
            else:
                print(
196
                    "parameter endpoints({}) will not take effect, because you use the add_variant function.".
B
barrierye 已提交
197
                    format(endpoints))
198
        sdk_desc = self.predictor_sdk_.gen_desc()
M
MRXLT 已提交
199 200
        self.client_handle_.create_predictor_by_desc(sdk_desc.SerializeToString(
        ))
G
guru4elephant 已提交
201 202 203 204 205 206 207

    def get_feed_names(self):
        return self.feed_names_

    def get_fetch_names(self):
        return self.fetch_names_

M
MRXLT 已提交
208 209 210
    def shape_check(self, feed, key):
        if key in self.lod_tensor_set:
            return
M
MRXLT 已提交
211
        if len(feed[key]) != self.feed_tensor_len[key]:
M
MRXLT 已提交
212 213 214
            raise SystemExit("The shape of feed tensor {} not match.".format(
                key))

215
    def predict(self, feed=None, fetch=None, need_variant_tag=False):
W
WangXi 已提交
216 217
        self.profile_.record('py_prepro_0')

G
guru4elephant 已提交
218 219 220
        if feed is None or fetch is None:
            raise ValueError("You should specify feed and fetch for prediction")

221 222 223 224 225 226
        fetch_list = []
        if isinstance(fetch, str):
            fetch_list = [fetch]
        elif isinstance(fetch, list):
            fetch_list = fetch
        else:
M
MRXLT 已提交
227
            raise ValueError("Fetch only accepts string and list of string")
228 229 230 231 232 233 234

        feed_batch = []
        if isinstance(feed, dict):
            feed_batch.append(feed)
        elif isinstance(feed, list):
            feed_batch = feed
        else:
M
MRXLT 已提交
235
            raise ValueError("Feed only accepts dict and list of dict")
G
guru4elephant 已提交
236

M
MRXLT 已提交
237 238 239 240
        int_slot_batch = []
        float_slot_batch = []
        int_feed_names = []
        float_feed_names = []
D
dongdaxiang 已提交
241 242
        int_shape = []
        float_shape = []
M
MRXLT 已提交
243
        fetch_names = []
M
MRXLT 已提交
244
        counter = 0
M
MRXLT 已提交
245
        batch_size = len(feed_batch)
246 247 248 249 250 251 252

        for key in fetch_list:
            if key in self.fetch_names_:
                fetch_names.append(key)

        if len(fetch_names) == 0:
            raise ValueError(
M
MRXLT 已提交
253
                "Fetch names should not be empty or out of saved fetch list.")
254 255
            return {}

G
guru4elephant 已提交
256
        for i, feed_i in enumerate(feed_batch):
M
MRXLT 已提交
257 258
            int_slot = []
            float_slot = []
259
            for key in feed_i:
M
MRXLT 已提交
260
                if key not in self.feed_names_:
M
MRXLT 已提交
261
                    raise ValueError("Wrong feed name: {}.".format(key))
262 263
                if not isinstance(feed_i[key], np.ndarray):
                    self.shape_check(feed_i, key)
M
MRXLT 已提交
264
                if self.feed_types_[key] == int_type:
G
guru4elephant 已提交
265
                    if i == 0:
M
MRXLT 已提交
266
                        int_feed_names.append(key)
D
dongdaxiang 已提交
267
                        if isinstance(feed_i[key], np.ndarray):
268
                            int_shape.append(list(feed_i[key].shape))
D
dongdaxiang 已提交
269 270
                        else:
                            int_shape.append(self.feed_shapes_[key])
D
dongdaxiang 已提交
271
                    if isinstance(feed_i[key], np.ndarray):
272
                        int_slot.append(np.reshape(feed_i[key], (-1)).tolist())
D
dongdaxiang 已提交
273 274
                    else:
                        int_slot.append(feed_i[key])
M
MRXLT 已提交
275
                elif self.feed_types_[key] == float_type:
G
guru4elephant 已提交
276
                    if i == 0:
M
MRXLT 已提交
277
                        float_feed_names.append(key)
D
dongdaxiang 已提交
278
                        if isinstance(feed_i[key], np.ndarray):
279
                            float_shape.append(list(feed_i[key].shape))
D
dongdaxiang 已提交
280 281
                        else:
                            float_shape.append(self.feed_shapes_[key])
D
dongdaxiang 已提交
282
                    if isinstance(feed_i[key], np.ndarray):
283 284
                        float_slot.append(
                            np.reshape(feed_i[key], (-1)).tolist())
D
dongdaxiang 已提交
285 286
                    else:
                        float_slot.append(feed_i[key])
M
MRXLT 已提交
287 288 289
            int_slot_batch.append(int_slot)
            float_slot_batch.append(float_slot)

W
WangXi 已提交
290 291 292
        self.profile_.record('py_prepro_1')
        self.profile_.record('py_client_infer_0')

M
MRXLT 已提交
293
        result_batch = self.result_handle_
M
MRXLT 已提交
294
        res = self.client_handle_.batch_predict(
295 296
            float_slot_batch, float_feed_names, float_shape, int_slot_batch,
            int_feed_names, int_shape, fetch_names, result_batch, self.pid)
M
MRXLT 已提交
297

W
WangXi 已提交
298 299 300
        self.profile_.record('py_client_infer_1')
        self.profile_.record('py_postpro_0')

301 302 303
        if res == -1:
            return None

B
barrierye 已提交
304
        multi_result_map = []
B
barrierye 已提交
305 306
        model_engine_names = result_batch.get_engine_names()
        for mi, engine_name in enumerate(model_engine_names):
B
barrierye 已提交
307
            result_map = {}
B
barrierye 已提交
308
            # result map needs to be a numpy array
B
barrierye 已提交
309 310
            for i, name in enumerate(fetch_names):
                if self.fetch_names_to_type_[name] == int_type:
B
barrierye 已提交
311
                    result_map[name] = result_batch.get_int64_by_name(mi, name)
B
barrierye 已提交
312
                    shape = result_batch.get_shape(mi, name)
W
WangXi 已提交
313
                    result_map[name] = np.array(result_map[name], dtype='int64')
B
barrierye 已提交
314 315 316 317
                    result_map[name].shape = shape
                    if name in self.lod_tensor_set:
                        result_map["{}.lod".format(
                            name)] = result_batch.get_lod(mi, name)
B
barrierye 已提交
318
                elif self.fetch_names_to_type_[name] == float_type:
B
barrierye 已提交
319
                    result_map[name] = result_batch.get_float_by_name(mi, name)
B
barrierye 已提交
320
                    shape = result_batch.get_shape(mi, name)
W
WangXi 已提交
321 322
                    result_map[name] = np.array(
                        result_map[name], dtype='float32')
B
barrierye 已提交
323 324 325 326 327
                    result_map[name].shape = shape
                    if name in self.lod_tensor_set:
                        result_map["{}.lod".format(
                            name)] = result_batch.get_lod(mi, name)
            multi_result_map.append(result_map)
B
barrierye 已提交
328

B
barrierye 已提交
329 330
        ret = None
        if len(model_engine_names) == 1:
B
barrierye 已提交
331 332
            # If only one model result is returned, the format of ret is result_map
            ret = multi_result_map[0]
G
guru4elephant 已提交
333
        else:
B
barrierye 已提交
334 335 336 337 338 339
            # If multiple model results are returned, the format of ret is {name: result_map}
            ret = {
                engine_name: multi_result_map[mi]
                for mi, engine_name in enumerate(model_engine_names)
            }

W
WangXi 已提交
340 341 342
        self.profile_.record('py_postpro_1')
        self.profile_.print_profile()

B
barrierye 已提交
343
        # When using the A/B test, the tag of variant needs to be returned
B
barrierye 已提交
344 345 346
        return ret if not need_variant_tag else [
            ret, self.result_handle_.variant_tag()
        ]
B
barrierye 已提交
347

348 349
    def release(self):
        self.client_handle_.destroy_predictor()
G
guru4elephant 已提交
350
        self.client_handle_ = None