__init__.py 11.6 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
# pylint: disable=doc-string-missing
G
guru4elephant 已提交
15

M
MRXLT 已提交
16 17
import paddle_serving_client
import os
18 19 20
from .proto import sdk_configure_pb2 as sdk
from .proto import general_model_config_pb2 as m_config
import google.protobuf.text_format
D
dongdaxiang 已提交
21 22
import numpy as np
import time
23
import sys
G
guru4elephant 已提交
24

G
guru4elephant 已提交
25 26 27
int_type = 0
float_type = 1

M
MRXLT 已提交
28

G
guru4elephant 已提交
29 30 31
class SDKConfig(object):
    def __init__(self):
        self.sdk_desc = sdk.SDKConf()
32 33 34
        self.tag_list = []
        self.cluster_list = []
        self.variant_weight_list = []
G
guru4elephant 已提交
35

36 37 38 39
    def add_server_variant(self, tag, cluster, variant_weight):
        self.tag_list.append(tag)
        self.cluster_list.append(cluster)
        self.variant_weight_list.append(variant_weight)
G
guru4elephant 已提交
40 41 42 43 44 45 46

    def gen_desc(self):
        predictor_desc = sdk.Predictor()
        predictor_desc.name = "general_model"
        predictor_desc.service_name = \
            "baidu.paddle_serving.predictor.general_model.GeneralModelService"
        predictor_desc.endpoint_router = "WeightedRandomRender"
47 48
        predictor_desc.weighted_random_render_conf.variant_weight_list = "|".join(
            self.variant_weight_list)
G
guru4elephant 已提交
49

50 51 52 53 54 55
        for idx, tag in enumerate(self.tag_list):
            variant_desc = sdk.VariantConf()
            variant_desc.tag = tag
            variant_desc.naming_conf.cluster = "list://{}".format(",".join(
                self.cluster_list[idx]))
            predictor_desc.variants.extend([variant_desc])
G
guru4elephant 已提交
56 57 58 59 60 61 62 63 64 65

        self.sdk_desc.predictors.extend([predictor_desc])
        self.sdk_desc.default_variant_conf.tag = "default"
        self.sdk_desc.default_variant_conf.connection_conf.connect_timeout_ms = 2000
        self.sdk_desc.default_variant_conf.connection_conf.rpc_timeout_ms = 20000
        self.sdk_desc.default_variant_conf.connection_conf.connect_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.max_connection_per_host = 100
        self.sdk_desc.default_variant_conf.connection_conf.hedge_request_timeout_ms = -1
        self.sdk_desc.default_variant_conf.connection_conf.hedge_fetch_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.connection_type = "pooled"
M
MRXLT 已提交
66

G
guru4elephant 已提交
67 68 69 70 71 72 73 74
        self.sdk_desc.default_variant_conf.naming_conf.cluster_filter_strategy = "Default"
        self.sdk_desc.default_variant_conf.naming_conf.load_balance_strategy = "la"

        self.sdk_desc.default_variant_conf.rpc_parameter.compress_type = 0
        self.sdk_desc.default_variant_conf.rpc_parameter.package_size = 20
        self.sdk_desc.default_variant_conf.rpc_parameter.protocol = "baidu_std"
        self.sdk_desc.default_variant_conf.rpc_parameter.max_channel_per_request = 3

G
guru4elephant 已提交
75
        return self.sdk_desc
G
guru4elephant 已提交
76

G
guru4elephant 已提交
77 78 79 80 81 82

class Client(object):
    def __init__(self):
        self.feed_names_ = []
        self.fetch_names_ = []
        self.client_handle_ = None
83
        self.result_handle_ = None
M
MRXLT 已提交
84
        self.feed_shapes_ = {}
G
guru4elephant 已提交
85
        self.feed_types_ = {}
G
guru4elephant 已提交
86
        self.feed_names_to_idx_ = {}
M
MRXLT 已提交
87
        self.rpath()
M
MRXLT 已提交
88
        self.pid = os.getpid()
B
barrierye 已提交
89
        self.predictor_sdk_ = None
G
guru4elephant 已提交
90 91
        self.producers = []
        self.consumer = None
M
MRXLT 已提交
92 93 94 95 96

    def rpath(self):
        lib_path = os.path.dirname(paddle_serving_client.__file__)
        client_path = os.path.join(lib_path, 'serving_client.so')
        lib_path = os.path.join(lib_path, 'lib')
M
MRXLT 已提交
97
        os.system('patchelf --set-rpath {} {}'.format(lib_path, client_path))
M
MRXLT 已提交
98

G
guru4elephant 已提交
99
    def load_client_config(self, path):
M
MRXLT 已提交
100
        from .serving_client import PredictorClient
101
        from .serving_client import PredictorRes
102 103 104 105 106
        model_conf = m_config.GeneralModelConfig()
        f = open(path, 'r')
        model_conf = google.protobuf.text_format.Merge(
            str(f.read()), model_conf)

G
guru4elephant 已提交
107 108 109 110
        # load configuraion here
        # get feed vars, fetch vars
        # get feed shapes, feed types
        # map feed names to index
111
        self.result_handle_ = PredictorRes()
G
guru4elephant 已提交
112 113
        self.client_handle_ = PredictorClient()
        self.client_handle_.init(path)
114
        read_env_flags = ["profile_client", "profile_server"]
M
MRXLT 已提交
115 116
        self.client_handle_.init_gflags([sys.argv[
            0]] + ["--tryfromenv=" + ",".join(read_env_flags)])
117 118
        self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
        self.fetch_names_ = [var.alias_name for var in model_conf.fetch_var]
G
guru4elephant 已提交
119
        self.feed_names_to_idx_ = {}
G
guru4elephant 已提交
120 121
        self.fetch_names_to_type_ = {}
        self.fetch_names_to_idx_ = {}
M
MRXLT 已提交
122
        self.lod_tensor_set = set()
M
MRXLT 已提交
123
        self.feed_tensor_len = {}
124

125 126 127
        for i, var in enumerate(model_conf.feed_var):
            self.feed_names_to_idx_[var.alias_name] = i
            self.feed_types_[var.alias_name] = var.feed_type
M
MRXLT 已提交
128
            self.feed_shapes_[var.alias_name] = var.shape
M
MRXLT 已提交
129

M
MRXLT 已提交
130 131
            if var.is_lod_tensor:
                self.lod_tensor_set.add(var.alias_name)
M
MRXLT 已提交
132 133 134 135 136
            else:
                counter = 1
                for dim in self.feed_shapes_[var.alias_name]:
                    counter *= dim
                self.feed_tensor_len[var.alias_name] = counter
G
guru4elephant 已提交
137 138 139
        for i, var in enumerate(model_conf.fetch_var):
            self.fetch_names_to_idx_[var.alias_name] = i
            self.fetch_names_to_type_[var.alias_name] = var.fetch_type
140 141
            if var.is_lod_tensor:
                self.lod_tensor_set.add(var.alias_name)
G
guru4elephant 已提交
142 143
        return

144
    def add_variant(self, tag, cluster, variant_weight):
B
barrierye 已提交
145 146
        if self.predictor_sdk_ is None:
            self.predictor_sdk_ = SDKConfig()
147 148 149
        self.predictor_sdk_.add_server_variant(tag, cluster,
                                               str(variant_weight))

B
barrierye 已提交
150
    def connect(self, endpoints=None):
G
guru4elephant 已提交
151 152 153
        # check whether current endpoint is available
        # init from client config
        # create predictor here
B
barrierye 已提交
154 155 156 157 158 159 160
        if endpoints is None:
            if self.predictor_sdk_ is None:
                raise SystemExit(
                    "You must set the endpoints parameter or use add_variant function to create a variant."
                )
        else:
            if self.predictor_sdk_ is None:
161
                self.add_variant('default_tag_{}'.format(id(self)), endpoints,
162
                                 100)
B
barrierye 已提交
163 164
            else:
                print(
165
                    "parameter endpoints({}) will not take effect, because you use the add_variant function.".
B
barrierye 已提交
166
                    format(endpoints))
167
        sdk_desc = self.predictor_sdk_.gen_desc()
M
MRXLT 已提交
168 169
        self.client_handle_.create_predictor_by_desc(sdk_desc.SerializeToString(
        ))
G
guru4elephant 已提交
170 171 172 173 174 175 176

    def get_feed_names(self):
        return self.feed_names_

    def get_fetch_names(self):
        return self.fetch_names_

M
MRXLT 已提交
177 178 179
    def shape_check(self, feed, key):
        if key in self.lod_tensor_set:
            return
M
MRXLT 已提交
180
        if len(feed[key]) != self.feed_tensor_len[key]:
M
MRXLT 已提交
181 182 183
            raise SystemExit("The shape of feed tensor {} not match.".format(
                key))

184
    def predict(self, feed=None, fetch=None, need_variant_tag=False):
G
guru4elephant 已提交
185 186 187
        if feed is None or fetch is None:
            raise ValueError("You should specify feed and fetch for prediction")

188 189 190 191 192 193
        fetch_list = []
        if isinstance(fetch, str):
            fetch_list = [fetch]
        elif isinstance(fetch, list):
            fetch_list = fetch
        else:
M
MRXLT 已提交
194
            raise ValueError("Fetch only accepts string and list of string")
195 196 197 198 199 200 201

        feed_batch = []
        if isinstance(feed, dict):
            feed_batch.append(feed)
        elif isinstance(feed, list):
            feed_batch = feed
        else:
M
MRXLT 已提交
202
            raise ValueError("Feed only accepts dict and list of dict")
G
guru4elephant 已提交
203

M
MRXLT 已提交
204 205 206 207
        int_slot_batch = []
        float_slot_batch = []
        int_feed_names = []
        float_feed_names = []
D
dongdaxiang 已提交
208 209
        int_shape = []
        float_shape = []
M
MRXLT 已提交
210
        fetch_names = []
M
MRXLT 已提交
211
        counter = 0
M
MRXLT 已提交
212
        batch_size = len(feed_batch)
213 214 215 216 217 218 219

        for key in fetch_list:
            if key in self.fetch_names_:
                fetch_names.append(key)

        if len(fetch_names) == 0:
            raise ValueError(
M
MRXLT 已提交
220
                "Fetch names should not be empty or out of saved fetch list.")
221 222
            return {}

G
guru4elephant 已提交
223
        for i, feed_i in enumerate(feed_batch):
M
MRXLT 已提交
224 225
            int_slot = []
            float_slot = []
D
dongdaxiang 已提交
226 227
            int_shape = []
            float_shape = []
228
            for key in feed_i:
M
MRXLT 已提交
229
                if key not in self.feed_names_:
M
MRXLT 已提交
230
                    raise ValueError("Wrong feed name: {}.".format(key))
231 232
                if not isinstance(feed_i[key], np.ndarray):
                    self.shape_check(feed_i, key)
M
MRXLT 已提交
233
                if self.feed_types_[key] == int_type:
G
guru4elephant 已提交
234
                    if i == 0:
M
MRXLT 已提交
235
                        int_feed_names.append(key)
D
dongdaxiang 已提交
236
                        if isinstance(feed_i[key], np.ndarray):
237
                            int_shape.append(list(feed_i[key].shape))
D
dongdaxiang 已提交
238 239
                        else:
                            int_shape.append(self.feed_shapes_[key])
D
dongdaxiang 已提交
240
                    if isinstance(feed_i[key], np.ndarray):
241
                        int_slot.append(np.reshape(feed_i[key], (-1)).tolist())
D
dongdaxiang 已提交
242 243
                    else:
                        int_slot.append(feed_i[key])
M
MRXLT 已提交
244
                elif self.feed_types_[key] == float_type:
G
guru4elephant 已提交
245
                    if i == 0:
M
MRXLT 已提交
246
                        float_feed_names.append(key)
D
dongdaxiang 已提交
247
                        if isinstance(feed_i[key], np.ndarray):
248
                            float_shape.append(list(feed_i[key].shape))
D
dongdaxiang 已提交
249 250
                        else:
                            float_shape.append(self.feed_shapes_[key])
D
dongdaxiang 已提交
251
                    if isinstance(feed_i[key], np.ndarray):
252 253
                        float_slot.append(
                            np.reshape(feed_i[key], (-1)).tolist())
D
dongdaxiang 已提交
254 255
                    else:
                        float_slot.append(feed_i[key])
M
MRXLT 已提交
256 257 258
            int_slot_batch.append(int_slot)
            float_slot_batch.append(float_slot)

M
MRXLT 已提交
259
        result_batch = self.result_handle_
M
MRXLT 已提交
260
        res = self.client_handle_.batch_predict(
261 262
            float_slot_batch, float_feed_names, float_shape, int_slot_batch,
            int_feed_names, int_shape, fetch_names, result_batch, self.pid)
M
MRXLT 已提交
263

264 265 266
        if res == -1:
            return None

M
MRXLT 已提交
267
        result_map_batch = []
M
MRXLT 已提交
268
        result_map = {}
269
        # result map needs to be a numpy array
M
MRXLT 已提交
270 271 272
        for i, name in enumerate(fetch_names):
            if self.fetch_names_to_type_[name] == int_type:
                result_map[name] = result_batch.get_int64_by_name(name)
273 274 275 276 277 278
                shape = result_batch.get_shape(name)
                result_map[name] = np.array(result_map[name])
                result_map[name].shape = shape
                if name in self.lod_tensor_set:
                    result_map["{}.lod".format(name)] = result_batch.get_lod(
                        name)
M
MRXLT 已提交
279 280
            elif self.fetch_names_to_type_[name] == float_type:
                result_map[name] = result_batch.get_float_by_name(name)
281 282 283 284 285 286 287 288
                shape = result_batch.get_shape(name)
                result_map[name] = np.array(result_map[name])
                result_map[name].shape = shape
                if name in self.lod_tensor_set:
                    result_map["{}.lod".format(name)] = result_batch.get_lod(
                        name)

        return result_map
289 290 291

    def release(self):
        self.client_handle_.destroy_predictor()
G
guru4elephant 已提交
292
        self.client_handle_ = None