Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
a003cd38
S
Serving
项目概览
PaddlePaddle
/
Serving
接近 2 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a003cd38
编写于
6月 12, 2020
作者:
M
MRXLT
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
support int32
上级
2db52803
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
168 addition
and
36 deletion
+168
-36
core/general-client/include/general_model.h
core/general-client/include/general_model.h
+23
-0
core/general-client/src/general_model.cpp
core/general-client/src/general_model.cpp
+66
-21
core/general-server/op/general_reader_op.cpp
core/general-server/op/general_reader_op.cpp
+22
-3
core/general-server/op/general_response_op.cpp
core/general-server/op/general_response_op.cpp
+21
-0
python/paddle_serving_client/__init__.py
python/paddle_serving_client/__init__.py
+29
-6
python/paddle_serving_client/io/__init__.py
python/paddle_serving_client/io/__init__.py
+7
-6
未找到文件。
core/general-client/include/general_model.h
浏览文件 @
a003cd38
...
@@ -49,6 +49,8 @@ class ModelRes {
...
@@ -49,6 +49,8 @@ class ModelRes {
res
.
_int64_value_map
.
end
());
res
.
_int64_value_map
.
end
());
_float_value_map
.
insert
(
res
.
_float_value_map
.
begin
(),
_float_value_map
.
insert
(
res
.
_float_value_map
.
begin
(),
res
.
_float_value_map
.
end
());
res
.
_float_value_map
.
end
());
_int32_value_map
.
insert
(
res
.
_int32_value_map
.
begin
(),
res
.
_int32_value_map
.
end
());
_shape_map
.
insert
(
res
.
_shape_map
.
begin
(),
res
.
_shape_map
.
end
());
_shape_map
.
insert
(
res
.
_shape_map
.
begin
(),
res
.
_shape_map
.
end
());
_lod_map
.
insert
(
res
.
_lod_map
.
begin
(),
res
.
_lod_map
.
end
());
_lod_map
.
insert
(
res
.
_lod_map
.
begin
(),
res
.
_lod_map
.
end
());
}
}
...
@@ -60,6 +62,9 @@ class ModelRes {
...
@@ -60,6 +62,9 @@ class ModelRes {
_float_value_map
.
insert
(
_float_value_map
.
insert
(
std
::
make_move_iterator
(
std
::
begin
(
res
.
_float_value_map
)),
std
::
make_move_iterator
(
std
::
begin
(
res
.
_float_value_map
)),
std
::
make_move_iterator
(
std
::
end
(
res
.
_float_value_map
)));
std
::
make_move_iterator
(
std
::
end
(
res
.
_float_value_map
)));
_int32_value_map
.
insert
(
std
::
make_move_iterator
(
std
::
begin
(
res
.
_int32_value_map
)),
std
::
make_move_iterator
(
std
::
end
(
res
.
_int32_value_map
)));
_shape_map
.
insert
(
std
::
make_move_iterator
(
std
::
begin
(
res
.
_shape_map
)),
_shape_map
.
insert
(
std
::
make_move_iterator
(
std
::
begin
(
res
.
_shape_map
)),
std
::
make_move_iterator
(
std
::
end
(
res
.
_shape_map
)));
std
::
make_move_iterator
(
std
::
end
(
res
.
_shape_map
)));
_lod_map
.
insert
(
std
::
make_move_iterator
(
std
::
begin
(
res
.
_lod_map
)),
_lod_map
.
insert
(
std
::
make_move_iterator
(
std
::
begin
(
res
.
_lod_map
)),
...
@@ -78,6 +83,12 @@ class ModelRes {
...
@@ -78,6 +83,12 @@ class ModelRes {
std
::
vector
<
float
>&&
get_float_by_name_with_rv
(
const
std
::
string
&
name
)
{
std
::
vector
<
float
>&&
get_float_by_name_with_rv
(
const
std
::
string
&
name
)
{
return
std
::
move
(
_float_value_map
[
name
]);
return
std
::
move
(
_float_value_map
[
name
]);
}
}
const
std
::
vector
<
int32_t
>&
get_int32_by_name
(
const
std
::
string
&
name
)
{
return
_int32_value_map
[
name
];
}
std
::
vector
<
int32_t
>&&
get_int32_by_name_with_rv
(
const
std
::
string
&
name
)
{
return
std
::
move
(
_int32_value_map
[
name
]);
}
const
std
::
vector
<
int
>&
get_shape_by_name
(
const
std
::
string
&
name
)
{
const
std
::
vector
<
int
>&
get_shape_by_name
(
const
std
::
string
&
name
)
{
return
_shape_map
[
name
];
return
_shape_map
[
name
];
}
}
...
@@ -103,6 +114,9 @@ class ModelRes {
...
@@ -103,6 +114,9 @@ class ModelRes {
_float_value_map
.
insert
(
_float_value_map
.
insert
(
std
::
make_move_iterator
(
std
::
begin
(
res
.
_float_value_map
)),
std
::
make_move_iterator
(
std
::
begin
(
res
.
_float_value_map
)),
std
::
make_move_iterator
(
std
::
end
(
res
.
_float_value_map
)));
std
::
make_move_iterator
(
std
::
end
(
res
.
_float_value_map
)));
_int32_value_map
.
insert
(
std
::
make_move_iterator
(
std
::
begin
(
res
.
_int32_value_map
)),
std
::
make_move_iterator
(
std
::
end
(
res
.
_int32_value_map
)));
_shape_map
.
insert
(
std
::
make_move_iterator
(
std
::
begin
(
res
.
_shape_map
)),
_shape_map
.
insert
(
std
::
make_move_iterator
(
std
::
begin
(
res
.
_shape_map
)),
std
::
make_move_iterator
(
std
::
end
(
res
.
_shape_map
)));
std
::
make_move_iterator
(
std
::
end
(
res
.
_shape_map
)));
_lod_map
.
insert
(
std
::
make_move_iterator
(
std
::
begin
(
res
.
_lod_map
)),
_lod_map
.
insert
(
std
::
make_move_iterator
(
std
::
begin
(
res
.
_lod_map
)),
...
@@ -115,6 +129,7 @@ class ModelRes {
...
@@ -115,6 +129,7 @@ class ModelRes {
std
::
string
_engine_name
;
std
::
string
_engine_name
;
std
::
map
<
std
::
string
,
std
::
vector
<
int64_t
>>
_int64_value_map
;
std
::
map
<
std
::
string
,
std
::
vector
<
int64_t
>>
_int64_value_map
;
std
::
map
<
std
::
string
,
std
::
vector
<
float
>>
_float_value_map
;
std
::
map
<
std
::
string
,
std
::
vector
<
float
>>
_float_value_map
;
std
::
map
<
std
::
string
,
std
::
vector
<
int32_t
>>
_int32_value_map
;
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
_shape_map
;
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
_shape_map
;
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
_lod_map
;
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
_lod_map
;
};
};
...
@@ -145,6 +160,14 @@ class PredictorRes {
...
@@ -145,6 +160,14 @@ class PredictorRes {
const
std
::
string
&
name
)
{
const
std
::
string
&
name
)
{
return
std
::
move
(
_models
[
model_idx
].
get_float_by_name_with_rv
(
name
));
return
std
::
move
(
_models
[
model_idx
].
get_float_by_name_with_rv
(
name
));
}
}
const
std
::
vector
<
int32_t
>&
get_int32_by_name
(
const
int
model_idx
,
const
std
::
string
&
name
)
{
return
_models
[
model_idx
].
get_int32_by_name
(
name
);
}
std
::
vector
<
int32_t
>&&
get_int32_by_name_with_rv
(
const
int
model_idx
,
const
std
::
string
&
name
)
{
return
std
::
move
(
_models
[
model_idx
].
get_int32_by_name_with_rv
(
name
));
}
const
std
::
vector
<
int
>&
get_shape_by_name
(
const
int
model_idx
,
const
std
::
vector
<
int
>&
get_shape_by_name
(
const
int
model_idx
,
const
std
::
string
&
name
)
{
const
std
::
string
&
name
)
{
return
_models
[
model_idx
].
get_shape_by_name
(
name
);
return
_models
[
model_idx
].
get_shape_by_name
(
name
);
...
...
core/general-client/src/general_model.cpp
浏览文件 @
a003cd38
...
@@ -207,17 +207,28 @@ int PredictorClient::batch_predict(
...
@@ -207,17 +207,28 @@ int PredictorClient::batch_predict(
for
(
auto
&
name
:
int_feed_name
)
{
for
(
auto
&
name
:
int_feed_name
)
{
int
idx
=
_feed_name_to_idx
[
name
];
int
idx
=
_feed_name_to_idx
[
name
];
Tensor
*
tensor
=
tensor_vec
[
idx
];
Tensor
*
tensor
=
tensor_vec
[
idx
];
VLOG
(
2
)
<<
"prepare int feed "
<<
name
<<
" shape size "
if
(
_type
[
idx
]
==
0
)
{
<<
int_shape
[
vec_idx
].
size
();
VLOG
(
2
)
<<
"prepare int64 feed "
<<
name
<<
" shape size "
<<
int_shape
[
vec_idx
].
size
();
VLOG
(
3
)
<<
"feed var name "
<<
name
<<
" index "
<<
vec_idx
<<
"first data "
<<
int_feed
[
vec_idx
][
0
];
for
(
uint32_t
j
=
0
;
j
<
int_feed
[
vec_idx
].
size
();
++
j
)
{
tensor
->
add_int64_data
(
int_feed
[
vec_idx
][
j
]);
}
}
else
if
(
_type
[
idx
]
==
2
)
{
VLOG
(
2
)
<<
"prepare int32 feed "
<<
name
<<
" shape size "
<<
int_shape
[
vec_idx
].
size
();
VLOG
(
3
)
<<
"feed var name "
<<
name
<<
" index "
<<
vec_idx
<<
"first data "
<<
int32_t
(
int_feed
[
vec_idx
][
0
]);
for
(
uint32_t
j
=
0
;
j
<
int_feed
[
vec_idx
].
size
();
++
j
)
{
tensor
->
add_int_data
(
int32_t
(
int_feed
[
vec_idx
][
j
]));
}
}
for
(
uint32_t
j
=
0
;
j
<
int_shape
[
vec_idx
].
size
();
++
j
)
{
for
(
uint32_t
j
=
0
;
j
<
int_shape
[
vec_idx
].
size
();
++
j
)
{
tensor
->
add_shape
(
int_shape
[
vec_idx
][
j
]);
tensor
->
add_shape
(
int_shape
[
vec_idx
][
j
]);
}
}
tensor
->
set_elem_type
(
0
);
tensor
->
set_elem_type
(
_type
[
idx
]);
VLOG
(
3
)
<<
"feed var name "
<<
name
<<
" index "
<<
vec_idx
<<
"first data "
<<
int_feed
[
vec_idx
][
0
];
for
(
uint32_t
j
=
0
;
j
<
int_feed
[
vec_idx
].
size
();
++
j
)
{
tensor
->
add_int64_data
(
int_feed
[
vec_idx
][
j
]);
}
vec_idx
++
;
vec_idx
++
;
}
}
...
@@ -284,7 +295,7 @@ int PredictorClient::batch_predict(
...
@@ -284,7 +295,7 @@ int PredictorClient::batch_predict(
for
(
auto
&
name
:
fetch_name
)
{
for
(
auto
&
name
:
fetch_name
)
{
// int idx = _fetch_name_to_idx[name];
// int idx = _fetch_name_to_idx[name];
if
(
_fetch_name_to_type
[
name
]
==
0
)
{
if
(
_fetch_name_to_type
[
name
]
==
0
)
{
VLOG
(
2
)
<<
"fe
rch var "
<<
name
<<
"type int
"
;
VLOG
(
2
)
<<
"fe
tch var "
<<
name
<<
" type int64
"
;
model
.
_int64_value_map
[
name
].
resize
(
model
.
_int64_value_map
[
name
].
resize
(
output
.
insts
(
0
).
tensor_array
(
idx
).
int64_data_size
());
output
.
insts
(
0
).
tensor_array
(
idx
).
int64_data_size
());
int
size
=
output
.
insts
(
0
).
tensor_array
(
idx
).
int64_data_size
();
int
size
=
output
.
insts
(
0
).
tensor_array
(
idx
).
int64_data_size
();
...
@@ -292,8 +303,8 @@ int PredictorClient::batch_predict(
...
@@ -292,8 +303,8 @@ int PredictorClient::batch_predict(
model
.
_int64_value_map
[
name
][
i
]
=
model
.
_int64_value_map
[
name
][
i
]
=
output
.
insts
(
0
).
tensor_array
(
idx
).
int64_data
(
i
);
output
.
insts
(
0
).
tensor_array
(
idx
).
int64_data
(
i
);
}
}
}
else
{
}
else
if
(
_fetch_name_to_type
[
name
]
==
1
)
{
VLOG
(
2
)
<<
"fetch var "
<<
name
<<
"type float"
;
VLOG
(
2
)
<<
"fetch var "
<<
name
<<
"
type float"
;
model
.
_float_value_map
[
name
].
resize
(
model
.
_float_value_map
[
name
].
resize
(
output
.
insts
(
0
).
tensor_array
(
idx
).
float_data_size
());
output
.
insts
(
0
).
tensor_array
(
idx
).
float_data_size
());
int
size
=
output
.
insts
(
0
).
tensor_array
(
idx
).
float_data_size
();
int
size
=
output
.
insts
(
0
).
tensor_array
(
idx
).
float_data_size
();
...
@@ -301,7 +312,10 @@ int PredictorClient::batch_predict(
...
@@ -301,7 +312,10 @@ int PredictorClient::batch_predict(
model
.
_float_value_map
[
name
][
i
]
=
model
.
_float_value_map
[
name
][
i
]
=
output
.
insts
(
0
).
tensor_array
(
idx
).
float_data
(
i
);
output
.
insts
(
0
).
tensor_array
(
idx
).
float_data
(
i
);
}
}
}
else
if
(
_fetch_name_to_type
[
name
]
==
2
)
{
VLOG
(
2
)
<<
"fetch var "
<<
name
<<
" type int32"
;
}
}
idx
+=
1
;
idx
+=
1
;
}
}
predict_res_batch
.
add_model_res
(
std
::
move
(
model
));
predict_res_batch
.
add_model_res
(
std
::
move
(
model
));
...
@@ -448,12 +462,19 @@ int PredictorClient::numpy_predict(
...
@@ -448,12 +462,19 @@ int PredictorClient::numpy_predict(
for
(
auto
&
name
:
int_feed_name
)
{
for
(
auto
&
name
:
int_feed_name
)
{
int
idx
=
_feed_name_to_idx
[
name
];
int
idx
=
_feed_name_to_idx
[
name
];
Tensor
*
tensor
=
tensor_vec
[
idx
];
Tensor
*
tensor
=
tensor_vec
[
idx
];
VLOG
(
2
)
<<
"prepare int feed "
<<
name
<<
" shape size "
<<
int_shape
[
vec_idx
].
size
();
for
(
uint32_t
j
=
0
;
j
<
int_shape
[
vec_idx
].
size
();
++
j
)
{
for
(
uint32_t
j
=
0
;
j
<
int_shape
[
vec_idx
].
size
();
++
j
)
{
tensor
->
add_shape
(
int_shape
[
vec_idx
][
j
]);
tensor
->
add_shape
(
int_shape
[
vec_idx
][
j
]);
}
}
tensor
->
set_elem_type
(
0
);
tensor
->
set_elem_type
(
_type
[
idx
]);
if
(
_type
[
idx
]
==
0
)
{
VLOG
(
2
)
<<
"prepare int feed "
<<
name
<<
" shape size "
<<
int_shape
[
vec_idx
].
size
();
}
else
{
VLOG
(
2
)
<<
"prepare int32 feed "
<<
name
<<
" shape size "
<<
int_shape
[
vec_idx
].
size
();
}
const
int
int_shape_size
=
int_shape
[
vec_idx
].
size
();
const
int
int_shape_size
=
int_shape
[
vec_idx
].
size
();
switch
(
int_shape_size
)
{
switch
(
int_shape_size
)
{
...
@@ -463,7 +484,11 @@ int PredictorClient::numpy_predict(
...
@@ -463,7 +484,11 @@ int PredictorClient::numpy_predict(
for
(
ssize_t
j
=
0
;
j
<
int_array
.
shape
(
1
);
j
++
)
{
for
(
ssize_t
j
=
0
;
j
<
int_array
.
shape
(
1
);
j
++
)
{
for
(
ssize_t
k
=
0
;
k
<
int_array
.
shape
(
2
);
k
++
)
{
for
(
ssize_t
k
=
0
;
k
<
int_array
.
shape
(
2
);
k
++
)
{
for
(
ssize_t
l
=
0
;
k
<
int_array
.
shape
(
3
);
l
++
)
{
for
(
ssize_t
l
=
0
;
k
<
int_array
.
shape
(
3
);
l
++
)
{
tensor
->
add_int64_data
(
int_array
(
i
,
j
,
k
,
l
));
if
(
_type
[
idx
]
==
0
)
{
tensor
->
add_int64_data
(
int_array
(
i
,
j
,
k
,
l
));
}
else
{
tensor
->
add_int_data
(
int_array
(
i
,
j
,
k
,
l
));
}
}
}
}
}
}
}
...
@@ -475,7 +500,11 @@ int PredictorClient::numpy_predict(
...
@@ -475,7 +500,11 @@ int PredictorClient::numpy_predict(
for
(
ssize_t
i
=
0
;
i
<
int_array
.
shape
(
0
);
i
++
)
{
for
(
ssize_t
i
=
0
;
i
<
int_array
.
shape
(
0
);
i
++
)
{
for
(
ssize_t
j
=
0
;
j
<
int_array
.
shape
(
1
);
j
++
)
{
for
(
ssize_t
j
=
0
;
j
<
int_array
.
shape
(
1
);
j
++
)
{
for
(
ssize_t
k
=
0
;
k
<
int_array
.
shape
(
2
);
k
++
)
{
for
(
ssize_t
k
=
0
;
k
<
int_array
.
shape
(
2
);
k
++
)
{
tensor
->
add_int64_data
(
int_array
(
i
,
j
,
k
));
if
(
_type
[
idx
]
==
0
)
{
tensor
->
add_int64_data
(
int_array
(
i
,
j
,
k
));
}
else
{
tensor
->
add_int_data
(
int_array
(
i
,
j
,
k
));
}
}
}
}
}
}
}
...
@@ -485,7 +514,11 @@ int PredictorClient::numpy_predict(
...
@@ -485,7 +514,11 @@ int PredictorClient::numpy_predict(
auto
int_array
=
int_feed
[
vec_idx
].
unchecked
<
2
>
();
auto
int_array
=
int_feed
[
vec_idx
].
unchecked
<
2
>
();
for
(
ssize_t
i
=
0
;
i
<
int_array
.
shape
(
0
);
i
++
)
{
for
(
ssize_t
i
=
0
;
i
<
int_array
.
shape
(
0
);
i
++
)
{
for
(
ssize_t
j
=
0
;
j
<
int_array
.
shape
(
1
);
j
++
)
{
for
(
ssize_t
j
=
0
;
j
<
int_array
.
shape
(
1
);
j
++
)
{
tensor
->
add_int64_data
(
int_array
(
i
,
j
));
if
(
_type
[
idx
]
==
0
)
{
tensor
->
add_int64_data
(
int_array
(
i
,
j
));
}
else
{
tensor
->
add_int_data
(
int_array
(
i
,
j
));
}
}
}
}
}
break
;
break
;
...
@@ -493,7 +526,11 @@ int PredictorClient::numpy_predict(
...
@@ -493,7 +526,11 @@ int PredictorClient::numpy_predict(
case
1
:
{
case
1
:
{
auto
int_array
=
int_feed
[
vec_idx
].
unchecked
<
1
>
();
auto
int_array
=
int_feed
[
vec_idx
].
unchecked
<
1
>
();
for
(
ssize_t
i
=
0
;
i
<
int_array
.
shape
(
0
);
i
++
)
{
for
(
ssize_t
i
=
0
;
i
<
int_array
.
shape
(
0
);
i
++
)
{
tensor
->
add_int64_data
(
int_array
(
i
));
if
(
_type
[
idx
]
==
0
)
{
tensor
->
add_int64_data
(
int_array
(
i
));
}
else
{
tensor
->
add_int_data
(
int_array
(
i
));
}
}
}
break
;
break
;
}
}
...
@@ -563,7 +600,7 @@ int PredictorClient::numpy_predict(
...
@@ -563,7 +600,7 @@ int PredictorClient::numpy_predict(
for
(
auto
&
name
:
fetch_name
)
{
for
(
auto
&
name
:
fetch_name
)
{
// int idx = _fetch_name_to_idx[name];
// int idx = _fetch_name_to_idx[name];
if
(
_fetch_name_to_type
[
name
]
==
0
)
{
if
(
_fetch_name_to_type
[
name
]
==
0
)
{
VLOG
(
2
)
<<
"ferch var "
<<
name
<<
"type int"
;
VLOG
(
2
)
<<
"ferch var "
<<
name
<<
"type int
64
"
;
model
.
_int64_value_map
[
name
].
resize
(
model
.
_int64_value_map
[
name
].
resize
(
output
.
insts
(
0
).
tensor_array
(
idx
).
int64_data_size
());
output
.
insts
(
0
).
tensor_array
(
idx
).
int64_data_size
());
int
size
=
output
.
insts
(
0
).
tensor_array
(
idx
).
int64_data_size
();
int
size
=
output
.
insts
(
0
).
tensor_array
(
idx
).
int64_data_size
();
...
@@ -571,7 +608,7 @@ int PredictorClient::numpy_predict(
...
@@ -571,7 +608,7 @@ int PredictorClient::numpy_predict(
model
.
_int64_value_map
[
name
][
i
]
=
model
.
_int64_value_map
[
name
][
i
]
=
output
.
insts
(
0
).
tensor_array
(
idx
).
int64_data
(
i
);
output
.
insts
(
0
).
tensor_array
(
idx
).
int64_data
(
i
);
}
}
}
else
{
}
else
if
(
_fetch_name_to_type
[
name
]
==
1
)
{
VLOG
(
2
)
<<
"fetch var "
<<
name
<<
"type float"
;
VLOG
(
2
)
<<
"fetch var "
<<
name
<<
"type float"
;
model
.
_float_value_map
[
name
].
resize
(
model
.
_float_value_map
[
name
].
resize
(
output
.
insts
(
0
).
tensor_array
(
idx
).
float_data_size
());
output
.
insts
(
0
).
tensor_array
(
idx
).
float_data_size
());
...
@@ -580,6 +617,15 @@ int PredictorClient::numpy_predict(
...
@@ -580,6 +617,15 @@ int PredictorClient::numpy_predict(
model
.
_float_value_map
[
name
][
i
]
=
model
.
_float_value_map
[
name
][
i
]
=
output
.
insts
(
0
).
tensor_array
(
idx
).
float_data
(
i
);
output
.
insts
(
0
).
tensor_array
(
idx
).
float_data
(
i
);
}
}
}
else
if
(
_fetch_name_to_type
[
name
]
==
2
)
{
VLOG
(
2
)
<<
"fetch var "
<<
name
<<
"type int32"
;
model
.
_int32_value_map
[
name
].
resize
(
output
.
insts
(
0
).
tensor_array
(
idx
).
int_data_size
());
int
size
=
output
.
insts
(
0
).
tensor_array
(
idx
).
int_data_size
();
for
(
int
i
=
0
;
i
<
size
;
++
i
)
{
model
.
_int64_value_map
[
name
][
i
]
=
output
.
insts
(
0
).
tensor_array
(
idx
).
int_data
(
i
);
}
}
}
idx
+=
1
;
idx
+=
1
;
}
}
...
@@ -613,7 +659,6 @@ int PredictorClient::numpy_predict(
...
@@ -613,7 +659,6 @@ int PredictorClient::numpy_predict(
_api
.
thrd_clear
();
_api
.
thrd_clear
();
return
0
;
return
0
;
}
}
}
// namespace general_model
}
// namespace general_model
}
// namespace paddle_serving
}
// namespace paddle_serving
}
// namespace baidu
}
// namespace baidu
core/general-server/op/general_reader_op.cpp
浏览文件 @
a003cd38
...
@@ -126,9 +126,12 @@ int GeneralReaderOp::inference() {
...
@@ -126,9 +126,12 @@ int GeneralReaderOp::inference() {
if
(
elem_type
[
i
]
==
0
)
{
// int64
if
(
elem_type
[
i
]
==
0
)
{
// int64
elem_size
[
i
]
=
sizeof
(
int64_t
);
elem_size
[
i
]
=
sizeof
(
int64_t
);
lod_tensor
.
dtype
=
paddle
::
PaddleDType
::
INT64
;
lod_tensor
.
dtype
=
paddle
::
PaddleDType
::
INT64
;
}
else
{
}
else
if
(
elem_type
[
i
]
==
1
)
{
elem_size
[
i
]
=
sizeof
(
float
);
elem_size
[
i
]
=
sizeof
(
float
);
lod_tensor
.
dtype
=
paddle
::
PaddleDType
::
FLOAT32
;
lod_tensor
.
dtype
=
paddle
::
PaddleDType
::
FLOAT32
;
}
else
if
(
elem_type
[
i
]
==
2
)
{
elem_size
[
i
]
=
sizeof
(
int32_t
);
lod_tensor
.
dtype
=
paddle
::
PaddleDType
::
INT32
;
}
}
if
(
model_config
->
_is_lod_feed
[
i
])
{
if
(
model_config
->
_is_lod_feed
[
i
])
{
...
@@ -159,8 +162,10 @@ int GeneralReaderOp::inference() {
...
@@ -159,8 +162,10 @@ int GeneralReaderOp::inference() {
int
data_len
=
0
;
int
data_len
=
0
;
if
(
tensor
.
int64_data_size
()
>
0
)
{
if
(
tensor
.
int64_data_size
()
>
0
)
{
data_len
=
tensor
.
int64_data_size
();
data_len
=
tensor
.
int64_data_size
();
}
else
{
}
else
if
(
tensor
.
float_data_size
()
>
0
)
{
data_len
=
tensor
.
float_data_size
();
data_len
=
tensor
.
float_data_size
();
}
else
if
(
tensor
.
int_data_size
()
>
0
)
{
data_len
=
tensor
.
int_data_size
();
}
}
VLOG
(
2
)
<<
"tensor size for var["
<<
i
<<
"]: "
<<
data_len
;
VLOG
(
2
)
<<
"tensor size for var["
<<
i
<<
"]: "
<<
data_len
;
tensor_size
+=
data_len
;
tensor_size
+=
data_len
;
...
@@ -210,7 +215,7 @@ int GeneralReaderOp::inference() {
...
@@ -210,7 +215,7 @@ int GeneralReaderOp::inference() {
offset
+=
capacity
[
i
];
offset
+=
capacity
[
i
];
}
}
}
}
}
else
{
}
else
if
(
elem_type
[
i
]
==
1
)
{
float
*
dst_ptr
=
static_cast
<
float
*>
(
out
->
at
(
i
).
data
.
data
());
float
*
dst_ptr
=
static_cast
<
float
*>
(
out
->
at
(
i
).
data
.
data
());
int
offset
=
0
;
int
offset
=
0
;
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
...
@@ -224,6 +229,20 @@ int GeneralReaderOp::inference() {
...
@@ -224,6 +229,20 @@ int GeneralReaderOp::inference() {
offset
+=
capacity
[
i
];
offset
+=
capacity
[
i
];
}
}
}
}
}
else
if
(
elem_type
[
i
]
==
2
)
{
int32_t
*
dst_ptr
=
static_cast
<
int32_t
*>
(
out
->
at
(
i
).
data
.
data
());
int
offset
=
0
;
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
int
elem_num
=
req
->
insts
(
j
).
tensor_array
(
i
).
int_data_size
();
for
(
int
k
=
0
;
k
<
elem_num
;
++
k
)
{
dst_ptr
[
offset
+
k
]
=
req
->
insts
(
j
).
tensor_array
(
i
).
int_data
(
k
);
}
if
(
out
->
at
(
i
).
lod
.
size
()
==
1
)
{
offset
=
out
->
at
(
i
).
lod
[
0
][
j
+
1
];
}
else
{
offset
+=
capacity
[
i
];
}
}
}
}
}
}
...
...
core/general-server/op/general_response_op.cpp
浏览文件 @
a003cd38
...
@@ -157,6 +157,27 @@ int GeneralResponseOp::inference() {
...
@@ -157,6 +157,27 @@ int GeneralResponseOp::inference() {
}
}
VLOG
(
2
)
<<
"fetch var ["
<<
model_config
->
_fetch_name
[
idx
]
<<
"] ready"
;
VLOG
(
2
)
<<
"fetch var ["
<<
model_config
->
_fetch_name
[
idx
]
<<
"] ready"
;
var_idx
++
;
var_idx
++
;
}
else
if
(
in
->
at
(
idx
).
dtype
==
paddle
::
PaddleDType
::
INT32
)
{
VLOG
(
2
)
<<
"Prepare float var ["
<<
model_config
->
_fetch_name
[
idx
]
<<
"]."
;
int32_t
*
data_ptr
=
static_cast
<
int32_t
*>
(
in
->
at
(
idx
).
data
.
data
());
if
(
model_config
->
_is_lod_fetch
[
idx
])
{
FetchInst
*
fetch_p
=
output
->
mutable_insts
(
0
);
for
(
int
j
=
0
;
j
<
in
->
at
(
idx
).
lod
[
0
].
size
();
++
j
)
{
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
add_lod
(
in
->
at
(
idx
).
lod
[
0
][
j
]);
}
for
(
int
j
=
0
;
j
<
cap
;
++
j
)
{
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
add_int_data
(
data_ptr
[
j
]);
}
}
else
{
FetchInst
*
fetch_p
=
output
->
mutable_insts
(
0
);
for
(
int
j
=
0
;
j
<
cap
;
++
j
)
{
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
add_int_data
(
data_ptr
[
j
]);
}
}
VLOG
(
2
)
<<
"fetch var ["
<<
model_config
->
_fetch_name
[
idx
]
<<
"] ready"
;
var_idx
++
;
}
}
}
}
}
}
...
...
python/paddle_serving_client/__init__.py
浏览文件 @
a003cd38
...
@@ -28,8 +28,11 @@ sys.path.append(
...
@@ -28,8 +28,11 @@ sys.path.append(
os
.
path
.
join
(
os
.
path
.
abspath
(
os
.
path
.
dirname
(
__file__
)),
'proto'
))
os
.
path
.
join
(
os
.
path
.
abspath
(
os
.
path
.
dirname
(
__file__
)),
'proto'
))
from
.proto
import
multi_lang_general_model_service_pb2_grpc
from
.proto
import
multi_lang_general_model_service_pb2_grpc
int_type
=
0
int64_type
=
0
float_type
=
1
float32_type
=
1
int32_type
=
2
int_type
=
set
([
int64_type
,
int32_type
])
float_type
=
set
([
float32_type
])
class
_NOPProfiler
(
object
):
class
_NOPProfiler
(
object
):
...
@@ -279,7 +282,7 @@ class Client(object):
...
@@ -279,7 +282,7 @@ class Client(object):
raise
ValueError
(
"Wrong feed name: {}."
.
format
(
key
))
raise
ValueError
(
"Wrong feed name: {}."
.
format
(
key
))
#if not isinstance(feed_i[key], np.ndarray):
#if not isinstance(feed_i[key], np.ndarray):
self
.
shape_check
(
feed_i
,
key
)
self
.
shape_check
(
feed_i
,
key
)
if
self
.
feed_types_
[
key
]
==
int_type
:
if
self
.
feed_types_
[
key
]
in
int_type
:
if
i
==
0
:
if
i
==
0
:
int_feed_names
.
append
(
key
)
int_feed_names
.
append
(
key
)
if
isinstance
(
feed_i
[
key
],
np
.
ndarray
):
if
isinstance
(
feed_i
[
key
],
np
.
ndarray
):
...
@@ -292,7 +295,7 @@ class Client(object):
...
@@ -292,7 +295,7 @@ class Client(object):
else
:
else
:
int_slot
.
append
(
feed_i
[
key
])
int_slot
.
append
(
feed_i
[
key
])
self
.
all_numpy_input
=
False
self
.
all_numpy_input
=
False
elif
self
.
feed_types_
[
key
]
==
float_type
:
elif
self
.
feed_types_
[
key
]
in
float_type
:
if
i
==
0
:
if
i
==
0
:
float_feed_names
.
append
(
key
)
float_feed_names
.
append
(
key
)
if
isinstance
(
feed_i
[
key
],
np
.
ndarray
):
if
isinstance
(
feed_i
[
key
],
np
.
ndarray
):
...
@@ -339,7 +342,7 @@ class Client(object):
...
@@ -339,7 +342,7 @@ class Client(object):
result_map
=
{}
result_map
=
{}
# result map needs to be a numpy array
# result map needs to be a numpy array
for
i
,
name
in
enumerate
(
fetch_names
):
for
i
,
name
in
enumerate
(
fetch_names
):
if
self
.
fetch_names_to_type_
[
name
]
==
int_type
:
if
self
.
fetch_names_to_type_
[
name
]
==
int
64
_type
:
# result_map[name] will be py::array(numpy array)
# result_map[name] will be py::array(numpy array)
result_map
[
name
]
=
result_batch_handle
.
get_int64_by_name
(
result_map
[
name
]
=
result_batch_handle
.
get_int64_by_name
(
mi
,
name
)
mi
,
name
)
...
@@ -348,7 +351,7 @@ class Client(object):
...
@@ -348,7 +351,7 @@ class Client(object):
if
name
in
self
.
lod_tensor_set
:
if
name
in
self
.
lod_tensor_set
:
result_map
[
"{}.lod"
.
format
(
result_map
[
"{}.lod"
.
format
(
name
)]
=
result_batch_handle
.
get_lod
(
mi
,
name
)
name
)]
=
result_batch_handle
.
get_lod
(
mi
,
name
)
elif
self
.
fetch_names_to_type_
[
name
]
==
float_type
:
elif
self
.
fetch_names_to_type_
[
name
]
==
float
32
_type
:
result_map
[
name
]
=
result_batch_handle
.
get_float_by_name
(
result_map
[
name
]
=
result_batch_handle
.
get_float_by_name
(
mi
,
name
)
mi
,
name
)
shape
=
result_batch_handle
.
get_shape
(
mi
,
name
)
shape
=
result_batch_handle
.
get_shape
(
mi
,
name
)
...
@@ -356,6 +359,16 @@ class Client(object):
...
@@ -356,6 +359,16 @@ class Client(object):
if
name
in
self
.
lod_tensor_set
:
if
name
in
self
.
lod_tensor_set
:
result_map
[
"{}.lod"
.
format
(
result_map
[
"{}.lod"
.
format
(
name
)]
=
result_batch_handle
.
get_lod
(
mi
,
name
)
name
)]
=
result_batch_handle
.
get_lod
(
mi
,
name
)
elif
self
.
fetch_names_to_type_
[
name
]
==
int32_type
:
# result_map[name] will be py::array(numpy array)
result_map
[
name
]
=
result_batch_handle
.
get_int32_by_name
(
mi
,
name
)
shape
=
result_batch_handle
.
get_shape
(
mi
,
name
)
result_map
[
name
].
shape
=
shape
if
name
in
self
.
lod_tensor_set
:
result_map
[
"{}.lod"
.
format
(
name
)]
=
result_batch_handle
.
get_lod
(
mi
,
name
)
multi_result_map
.
append
(
result_map
)
multi_result_map
.
append
(
result_map
)
ret
=
None
ret
=
None
if
len
(
model_engine_names
)
==
1
:
if
len
(
model_engine_names
)
==
1
:
...
@@ -454,6 +467,8 @@ class MultiLangClient(object):
...
@@ -454,6 +467,8 @@ class MultiLangClient(object):
data
=
np
.
array
(
var
,
dtype
=
"int64"
)
data
=
np
.
array
(
var
,
dtype
=
"int64"
)
elif
v_type
==
1
:
# float32
elif
v_type
==
1
:
# float32
data
=
np
.
array
(
var
,
dtype
=
"float32"
)
data
=
np
.
array
(
var
,
dtype
=
"float32"
)
elif
v_type
==
2
:
#int32
data
=
np
.
array
(
var
,
dtype
=
"int32"
)
else
:
else
:
raise
Exception
(
"error type."
)
raise
Exception
(
"error type."
)
else
:
else
:
...
@@ -472,6 +487,11 @@ class MultiLangClient(object):
...
@@ -472,6 +487,11 @@ class MultiLangClient(object):
tensor
.
float_data
.
extend
(
var
.
reshape
(
-
1
).
tolist
())
tensor
.
float_data
.
extend
(
var
.
reshape
(
-
1
).
tolist
())
else
:
else
:
tensor
.
float_data
.
extend
(
self
.
_flatten_list
(
var
))
tensor
.
float_data
.
extend
(
self
.
_flatten_list
(
var
))
elif
v_type
==
2
:
#int32
if
isinstance
(
car
,
np
.
array
):
tensor
.
int_data
.
extend
(
var
.
reshape
(
-
1
).
tolist
())
else
:
tensor
.
int_data
.
extend
(
self
.
_flatten_list
(
var
))
else
:
else
:
raise
Exception
(
"error type."
)
raise
Exception
(
"error type."
)
if
isinstance
(
var
,
np
.
ndarray
):
if
isinstance
(
var
,
np
.
ndarray
):
...
@@ -503,6 +523,9 @@ class MultiLangClient(object):
...
@@ -503,6 +523,9 @@ class MultiLangClient(object):
elif
v_type
==
1
:
# float32
elif
v_type
==
1
:
# float32
result_map
[
name
]
=
np
.
array
(
result_map
[
name
]
=
np
.
array
(
list
(
var
.
float_data
),
dtype
=
"float32"
)
list
(
var
.
float_data
),
dtype
=
"float32"
)
elif
v_type
==
2
:
# int32
result_map
[
name
]
=
np
.
array
(
list
(
var
.
int_data
),
dtype
=
"int32"
)
else
:
else
:
raise
Exception
(
"error type."
)
raise
Exception
(
"error type."
)
result_map
[
name
].
shape
=
list
(
var
.
shape
)
result_map
[
name
].
shape
=
list
(
var
.
shape
)
...
...
python/paddle_serving_client/io/__init__.py
浏览文件 @
a003cd38
...
@@ -48,16 +48,18 @@ def save_model(server_model_folder,
...
@@ -48,16 +48,18 @@ def save_model(server_model_folder,
config
=
model_conf
.
GeneralModelConfig
()
config
=
model_conf
.
GeneralModelConfig
()
#int64 = 0; float32 = 1; int32 = 2;
for
key
in
feed_var_dict
:
for
key
in
feed_var_dict
:
feed_var
=
model_conf
.
FeedVar
()
feed_var
=
model_conf
.
FeedVar
()
feed_var
.
alias_name
=
key
feed_var
.
alias_name
=
key
feed_var
.
name
=
feed_var_dict
[
key
].
name
feed_var
.
name
=
feed_var_dict
[
key
].
name
feed_var
.
is_lod_tensor
=
feed_var_dict
[
key
].
lod_level
>=
1
feed_var
.
is_lod_tensor
=
feed_var_dict
[
key
].
lod_level
>=
1
if
feed_var_dict
[
key
].
dtype
==
core
.
VarDesc
.
VarType
.
INT32
or
\
if
feed_var_dict
[
key
].
dtype
==
core
.
VarDesc
.
VarType
.
INT64
:
feed_var_dict
[
key
].
dtype
==
core
.
VarDesc
.
VarType
.
INT64
:
feed_var
.
feed_type
=
0
feed_var
.
feed_type
=
0
if
feed_var_dict
[
key
].
dtype
==
core
.
VarDesc
.
VarType
.
FP32
:
if
feed_var_dict
[
key
].
dtype
==
core
.
VarDesc
.
VarType
.
FP32
:
feed_var
.
feed_type
=
1
feed_var
.
feed_type
=
1
if
feed_var_dict
[
key
].
dtype
==
core
.
VarDesc
.
VarType
.
INT32
:
feed_var
.
feed_type
=
2
if
feed_var
.
is_lod_tensor
:
if
feed_var
.
is_lod_tensor
:
feed_var
.
shape
.
extend
([
-
1
])
feed_var
.
shape
.
extend
([
-
1
])
else
:
else
:
...
@@ -73,13 +75,12 @@ def save_model(server_model_folder,
...
@@ -73,13 +75,12 @@ def save_model(server_model_folder,
fetch_var
.
alias_name
=
key
fetch_var
.
alias_name
=
key
fetch_var
.
name
=
fetch_var_dict
[
key
].
name
fetch_var
.
name
=
fetch_var_dict
[
key
].
name
fetch_var
.
is_lod_tensor
=
fetch_var_dict
[
key
].
lod_level
>=
1
fetch_var
.
is_lod_tensor
=
fetch_var_dict
[
key
].
lod_level
>=
1
if
fetch_var_dict
[
key
].
dtype
==
core
.
VarDesc
.
VarType
.
INT32
or
\
if
fetch_var_dict
[
key
].
dtype
==
core
.
VarDesc
.
VarType
.
INT64
:
fetch_var_dict
[
key
].
dtype
==
core
.
VarDesc
.
VarType
.
INT64
:
fetch_var
.
fetch_type
=
0
fetch_var
.
fetch_type
=
0
if
fetch_var_dict
[
key
].
dtype
==
core
.
VarDesc
.
VarType
.
FP32
:
if
fetch_var_dict
[
key
].
dtype
==
core
.
VarDesc
.
VarType
.
FP32
:
fetch_var
.
fetch_type
=
1
fetch_var
.
fetch_type
=
1
if
fetch_var_dict
[
key
].
dtype
==
core
.
VarDesc
.
VarType
.
INT32
:
fetch_var
.
fetch_type
=
2
if
fetch_var
.
is_lod_tensor
:
if
fetch_var
.
is_lod_tensor
:
fetch_var
.
shape
.
extend
([
-
1
])
fetch_var
.
shape
.
extend
([
-
1
])
else
:
else
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录