Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
01aad69b
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
01aad69b
编写于
7月 14, 2020
作者:
B
barrierye
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
support profile
上级
3e847867
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
375 addition
and
19 deletion
+375
-19
java/examples/src/main/java/PaddleServingClientExample.java
java/examples/src/main/java/PaddleServingClientExample.java
+103
-8
java/pom.xml
java/pom.xml
+0
-1
java/src/main/java/io/paddle/serving/client/Client.java
java/src/main/java/io/paddle/serving/client/Client.java
+74
-7
java/src/main/proto/multi_lang_general_model_service.proto
java/src/main/proto/multi_lang_general_model_service.proto
+2
-1
python/examples/grpc_impl_example/imdb/get_data.sh
python/examples/grpc_impl_example/imdb/get_data.sh
+4
-0
python/examples/grpc_impl_example/imdb/imdb_reader.py
python/examples/grpc_impl_example/imdb/imdb_reader.py
+92
-0
python/examples/grpc_impl_example/imdb/test_multilang_ensemble_client.py
.../grpc_impl_example/imdb/test_multilang_ensemble_client.py
+41
-0
python/examples/grpc_impl_example/imdb/test_multilang_ensemble_server.py
.../grpc_impl_example/imdb/test_multilang_ensemble_server.py
+40
-0
python/paddle_serving_client/__init__.py
python/paddle_serving_client/__init__.py
+17
-2
python/paddle_serving_server/__init__.py
python/paddle_serving_server/__init__.py
+1
-0
python/paddle_serving_server_gpu/__init__.py
python/paddle_serving_server_gpu/__init__.py
+1
-0
未找到文件。
java/examples/src/main/java/PaddleServingClientExample.java
浏览文件 @
01aad69b
...
...
@@ -25,6 +25,10 @@ public class PaddleServingClientExample {
}
Map
<
String
,
INDArray
>
fetch_map
=
client
.
predict
(
feed_data
,
fetch
);
if
(
fetch_map
==
null
)
{
return
false
;
}
for
(
Map
.
Entry
<
String
,
INDArray
>
e
:
fetch_map
.
entrySet
())
{
System
.
out
.
println
(
"Key = "
+
e
.
getKey
()
+
", Value = "
+
e
.
getValue
());
}
...
...
@@ -56,6 +60,10 @@ public class PaddleServingClientExample {
}
Map
<
String
,
INDArray
>
fetch_map
=
client
.
predict
(
feed_batch
,
fetch
);
if
(
fetch_map
==
null
)
{
return
false
;
}
for
(
Map
.
Entry
<
String
,
INDArray
>
e
:
fetch_map
.
entrySet
())
{
System
.
out
.
println
(
"Key = "
+
e
.
getKey
()
+
", Value = "
+
e
.
getValue
());
}
...
...
@@ -113,6 +121,10 @@ public class PaddleServingClientExample {
Map
<
String
,
HashMap
<
String
,
INDArray
>>
fetch_map
=
client
.
ensemble_predict
(
feed_data
,
fetch
);
if
(
fetch_map
==
null
)
{
return
false
;
}
for
(
Map
.
Entry
<
String
,
HashMap
<
String
,
INDArray
>>
entry
:
fetch_map
.
entrySet
())
{
System
.
out
.
println
(
"Model = "
+
entry
.
getKey
());
HashMap
<
String
,
INDArray
>
tt
=
entry
.
getValue
();
...
...
@@ -145,14 +157,94 @@ public class PaddleServingClientExample {
return
false
;
}
Map
<
String
,
HashMap
<
String
,
INDArray
>>
fetch_map
=
client
.
ensemble_predict
(
feed_data
,
fetch
);
for
(
Map
.
Entry
<
String
,
HashMap
<
String
,
INDArray
>>
entry
:
fetch_map
.
entrySet
())
{
System
.
out
.
println
(
"Model = "
+
entry
.
getKey
());
HashMap
<
String
,
INDArray
>
tt
=
entry
.
getValue
();
for
(
Map
.
Entry
<
String
,
INDArray
>
e
:
tt
.
entrySet
())
{
System
.
out
.
println
(
"Key = "
+
e
.
getKey
()
+
", Value = "
+
e
.
getValue
());
}
Map
<
String
,
INDArray
>
fetch_map
=
client
.
predict
(
feed_data
,
fetch
);
if
(
fetch_map
==
null
)
{
return
false
;
}
for
(
Map
.
Entry
<
String
,
INDArray
>
e
:
fetch_map
.
entrySet
())
{
System
.
out
.
println
(
"Key = "
+
e
.
getKey
()
+
", Value = "
+
e
.
getValue
());
}
return
true
;
}
boolean
cube_local
()
{
long
[]
embedding_14
=
{
250644
};
long
[]
embedding_2
=
{
890346
};
long
[]
embedding_10
=
{
3939
};
long
[]
embedding_17
=
{
421122
};
long
[]
embedding_23
=
{
664215
};
long
[]
embedding_6
=
{
704846
};
float
[]
dense_input
=
{
0.0f
,
0.006633499170812604f
,
0.03f
,
0.0f
,
0.145078125f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
};
long
[]
embedding_24
=
{
269955
};
long
[]
embedding_12
=
{
295309
};
long
[]
embedding_7
=
{
437731
};
long
[]
embedding_3
=
{
990128
};
long
[]
embedding_1
=
{
7753
};
long
[]
embedding_4
=
{
286835
};
long
[]
embedding_8
=
{
27346
};
long
[]
embedding_9
=
{
636474
};
long
[]
embedding_18
=
{
880474
};
long
[]
embedding_16
=
{
681378
};
long
[]
embedding_22
=
{
410878
};
long
[]
embedding_13
=
{
255651
};
long
[]
embedding_5
=
{
25207
};
long
[]
embedding_11
=
{
10891
};
long
[]
embedding_20
=
{
238459
};
long
[]
embedding_21
=
{
26235
};
long
[]
embedding_15
=
{
691460
};
long
[]
embedding_25
=
{
544187
};
long
[]
embedding_19
=
{
537425
};
long
[]
embedding_0
=
{
737395
};
HashMap
<
String
,
INDArray
>
feed_data
=
new
HashMap
<
String
,
INDArray
>()
{{
put
(
"embedding_14.tmp_0"
,
Nd4j
.
createFromArray
(
embedding_14
));
put
(
"embedding_2.tmp_0"
,
Nd4j
.
createFromArray
(
embedding_2
));
put
(
"embedding_10.tmp_0"
,
Nd4j
.
createFromArray
(
embedding_10
));
put
(
"embedding_17.tmp_0"
,
Nd4j
.
createFromArray
(
embedding_17
));
put
(
"embedding_23.tmp_0"
,
Nd4j
.
createFromArray
(
embedding_23
));
put
(
"embedding_6.tmp_0"
,
Nd4j
.
createFromArray
(
embedding_6
));
put
(
"dense_input"
,
Nd4j
.
createFromArray
(
dense_input
));
put
(
"embedding_24.tmp_0"
,
Nd4j
.
createFromArray
(
embedding_24
));
put
(
"embedding_12.tmp_0"
,
Nd4j
.
createFromArray
(
embedding_12
));
put
(
"embedding_7.tmp_0"
,
Nd4j
.
createFromArray
(
embedding_7
));
put
(
"embedding_3.tmp_0"
,
Nd4j
.
createFromArray
(
embedding_3
));
put
(
"embedding_1.tmp_0"
,
Nd4j
.
createFromArray
(
embedding_1
));
put
(
"embedding_4.tmp_0"
,
Nd4j
.
createFromArray
(
embedding_4
));
put
(
"embedding_8.tmp_0"
,
Nd4j
.
createFromArray
(
embedding_8
));
put
(
"embedding_9.tmp_0"
,
Nd4j
.
createFromArray
(
embedding_9
));
put
(
"embedding_18.tmp_0"
,
Nd4j
.
createFromArray
(
embedding_18
));
put
(
"embedding_16.tmp_0"
,
Nd4j
.
createFromArray
(
embedding_16
));
put
(
"embedding_22.tmp_0"
,
Nd4j
.
createFromArray
(
embedding_22
));
put
(
"embedding_13.tmp_0"
,
Nd4j
.
createFromArray
(
embedding_13
));
put
(
"embedding_5.tmp_0"
,
Nd4j
.
createFromArray
(
embedding_5
));
put
(
"embedding_11.tmp_0"
,
Nd4j
.
createFromArray
(
embedding_11
));
put
(
"embedding_20.tmp_0"
,
Nd4j
.
createFromArray
(
embedding_20
));
put
(
"embedding_21.tmp_0"
,
Nd4j
.
createFromArray
(
embedding_21
));
put
(
"embedding_15.tmp_0"
,
Nd4j
.
createFromArray
(
embedding_15
));
put
(
"embedding_25.tmp_0"
,
Nd4j
.
createFromArray
(
embedding_25
));
put
(
"embedding_19.tmp_0"
,
Nd4j
.
createFromArray
(
embedding_19
));
put
(
"embedding_0.tmp_0"
,
Nd4j
.
createFromArray
(
embedding_0
));
}};
List
<
String
>
fetch
=
Arrays
.
asList
(
"prob"
);
Client
client
=
new
Client
();
List
<
String
>
endpoints
=
Arrays
.
asList
(
"localhost:9292"
);
boolean
succ
=
client
.
connect
(
endpoints
);
if
(
succ
!=
true
)
{
System
.
out
.
println
(
"connect failed."
);
return
false
;
}
Map
<
String
,
INDArray
>
fetch_map
=
client
.
predict
(
feed_data
,
fetch
);
if
(
fetch_map
==
null
)
{
return
false
;
}
for
(
Map
.
Entry
<
String
,
INDArray
>
e
:
fetch_map
.
entrySet
())
{
System
.
out
.
println
(
"Key = "
+
e
.
getKey
()
+
", Value = "
+
e
.
getValue
());
}
return
true
;
}
...
...
@@ -175,8 +267,11 @@ public class PaddleServingClientExample {
succ
=
e
.
asyn_predict
();
}
else
if
(
"batch_predict"
.
equals
(
arg
))
{
succ
=
e
.
batch_predict
();
}
else
if
(
"cube_local"
.
equals
(
arg
))
{
succ
=
e
.
cube_local
();
}
else
{
System
.
out
.
format
(
"%s not match: java -cp <jar> PaddleServingClientExample <exp>.\n"
,
arg
);
System
.
out
.
println
(
"<exp>: fit_a_line bert model_ensemble asyn_predict batch_predict cube_local."
);
}
}
...
...
java/pom.xml
浏览文件 @
01aad69b
...
...
@@ -151,7 +151,6 @@
<artifactId>
${nd4j.backend}
</artifactId>
<version>
${nd4j.version}
</version>
</dependency>
</dependencies>
<profiles>
...
...
java/src/main/java/io/paddle/serving/client/Client.java
浏览文件 @
01aad69b
...
...
@@ -2,6 +2,8 @@ package io.paddle.serving.client;
import
java.util.*
;
import
java.util.function.Function
;
import
java.lang.management.ManagementFactory
;
import
java.lang.management.RuntimeMXBean
;
import
io.grpc.ManagedChannel
;
import
io.grpc.ManagedChannelBuilder
;
...
...
@@ -17,6 +19,41 @@ import io.paddle.serving.grpc.*;
import
io.paddle.serving.configure.*
;
import
io.paddle.serving.client.PredictFuture
;
class
Profiler
{
int
pid_
;
String
print_head_
=
null
;
List
<
String
>
time_record_
=
null
;
boolean
enable_
=
false
;
Profiler
()
{
RuntimeMXBean
runtimeMXBean
=
ManagementFactory
.
getRuntimeMXBean
();
pid_
=
Integer
.
valueOf
(
runtimeMXBean
.
getName
().
split
(
"@"
)[
0
]).
intValue
();
print_head_
=
"\nPROFILE\tpid:"
+
pid_
+
"\t"
;
time_record_
=
new
ArrayList
<
String
>();
time_record_
.
add
(
print_head_
);
}
void
record
(
String
name
)
{
if
(
enable_
)
{
long
ctime
=
System
.
currentTimeMillis
()
*
1000
;
time_record_
.
add
(
name
+
":"
+
String
.
valueOf
(
ctime
)
+
" "
);
}
}
void
printProfile
()
{
if
(
enable_
)
{
String
profile_str
=
String
.
join
(
""
,
time_record_
);
System
.
out
.
println
(
profile_str
);
time_record_
=
new
ArrayList
<
String
>();
time_record_
.
add
(
print_head_
);
}
}
void
enable
(
boolean
flag
)
{
enable_
=
flag
;
}
}
public
class
Client
{
private
ManagedChannel
channel_
;
private
MultiLangGeneralModelServiceGrpc
.
MultiLangGeneralModelServiceBlockingStub
blockingStub_
;
...
...
@@ -29,6 +66,7 @@ public class Client {
private
Map
<
String
,
Integer
>
fetchTypes_
;
private
Set
<
String
>
lodTensorSet_
;
private
Map
<
String
,
Integer
>
feedTensorLen_
;
private
Profiler
profiler_
;
public
Client
()
{
channel_
=
null
;
...
...
@@ -43,9 +81,17 @@ public class Client {
fetchTypes_
=
null
;
lodTensorSet_
=
null
;
feedTensorLen_
=
null
;
profiler_
=
new
Profiler
();
boolean
is_profile
=
false
;
String
FLAGS_profile_client
=
System
.
getenv
(
"FLAGS_profile_client"
);
if
(
FLAGS_profile_client
!=
null
&&
FLAGS_profile_client
.
equals
(
"1"
))
{
is_profile
=
true
;
}
profiler_
.
enable
(
is_profile
);
}
public
B
oolean
setRpcTimeoutMs
(
int
rpc_timeout
)
throws
NullPointerException
{
public
b
oolean
setRpcTimeoutMs
(
int
rpc_timeout
)
throws
NullPointerException
{
if
(
futureStub_
==
null
||
blockingStub_
==
null
)
{
throw
new
NullPointerException
(
"set timeout must be set after connect."
);
}
...
...
@@ -63,7 +109,7 @@ public class Client {
return
resp
.
getErrCode
()
==
0
;
}
public
B
oolean
connect
(
List
<
String
>
endpoints
)
{
public
b
oolean
connect
(
List
<
String
>
endpoints
)
{
// TODO
//String target = "ipv4:" + String.join(",", endpoints);
String
target
=
endpoints
.
get
(
0
);
...
...
@@ -164,7 +210,7 @@ public class Client {
INDArray
flattened_list
=
variable
.
reshape
(
flattened_shape
);
int
v_type
=
feedTypes_
.
get
(
name
);
NdIndexIterator
iter
=
new
NdIndexIterator
(
flattened_list
.
shape
());
//System.out.format("name: %s, type: %d\n", name, v_type);
//System.out.format("
[A]
name: %s, type: %d\n", name, v_type);
if
(
v_type
==
0
)
{
// int64
while
(
iter
.
hasNext
())
{
long
[]
next_index
=
iter
.
next
();
...
...
@@ -355,9 +401,16 @@ public class Client {
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
)
{
InferenceRequest
req
=
_packInferenceRequest
(
feed_batch
,
fetch
);
try
{
profiler_
.
record
(
"java_prepro_0"
);
InferenceRequest
req
=
_packInferenceRequest
(
feed_batch
,
fetch
);
profiler_
.
record
(
"java_prepro_1"
);
profiler_
.
record
(
"java_client_infer_0"
);
InferenceResponse
resp
=
blockingStub_
.
inference
(
req
);
profiler_
.
record
(
"java_client_infer_1"
);
profiler_
.
record
(
"java_postpro_0"
);
Map
<
String
,
HashMap
<
String
,
INDArray
>>
ensemble_result
=
_unpackInferenceResponse
(
resp
,
fetch
,
need_variant_tag
);
List
<
Map
.
Entry
<
String
,
HashMap
<
String
,
INDArray
>>>
list
...
...
@@ -367,6 +420,9 @@ public class Client {
System
.
out
.
format
(
"grpc failed: please use ensemble_predict impl.\n"
);
return
null
;
}
profiler_
.
record
(
"java_postpro_1"
);
profiler_
.
printProfile
();
return
list
.
get
(
0
).
getValue
();
}
catch
(
StatusRuntimeException
e
)
{
System
.
out
.
format
(
"grpc failed: %s\n"
,
e
.
toString
());
...
...
@@ -378,11 +434,22 @@ public class Client {
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
)
{
InferenceRequest
req
=
_packInferenceRequest
(
feed_batch
,
fetch
);
try
{
profiler_
.
record
(
"java_prepro_0"
);
InferenceRequest
req
=
_packInferenceRequest
(
feed_batch
,
fetch
);
profiler_
.
record
(
"java_prepro_1"
);
profiler_
.
record
(
"java_client_infer_0"
);
InferenceResponse
resp
=
blockingStub_
.
inference
(
req
);
return
_unpackInferenceResponse
(
resp
,
fetch
,
need_variant_tag
);
profiler_
.
record
(
"java_client_infer_1"
);
profiler_
.
record
(
"java_postpro_0"
);
Map
<
String
,
HashMap
<
String
,
INDArray
>>
ensemble_result
=
_unpackInferenceResponse
(
resp
,
fetch
,
need_variant_tag
);
profiler_
.
record
(
"java_postpro_1"
);
profiler_
.
printProfile
();
return
ensemble_result
;
}
catch
(
StatusRuntimeException
e
)
{
System
.
out
.
format
(
"grpc failed: %s\n"
,
e
.
toString
());
return
null
;
...
...
java/src/main/proto/multi_lang_general_model_service.proto
浏览文件 @
01aad69b
// Copyright (c) 20
20
PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 20
19
PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
...
...
@@ -43,6 +43,7 @@ message InferenceResponse {
repeated
ModelOutput
outputs
=
1
;
optional
string
tag
=
2
;
required
int32
err_code
=
3
;
optional
string
profile
=
4
;
};
message
ModelOutput
{
...
...
python/examples/grpc_impl_example/imdb/get_data.sh
0 → 100644
浏览文件 @
01aad69b
wget
--no-check-certificate
https://fleet.bj.bcebos.com/text_classification_data.tar.gz
wget
--no-check-certificate
https://paddle-serving.bj.bcebos.com/imdb-demo/imdb_model.tar.gz
tar
-zxvf
text_classification_data.tar.gz
tar
-zxvf
imdb_model.tar.gz
python/examples/grpc_impl_example/imdb/imdb_reader.py
0 → 100644
浏览文件 @
01aad69b
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import
sys
import
os
import
paddle
import
re
import
paddle.fluid.incubate.data_generator
as
dg
py_version
=
sys
.
version_info
[
0
]
class
IMDBDataset
(
dg
.
MultiSlotDataGenerator
):
def
load_resource
(
self
,
dictfile
):
self
.
_vocab
=
{}
wid
=
0
if
py_version
==
2
:
with
open
(
dictfile
)
as
f
:
for
line
in
f
:
self
.
_vocab
[
line
.
strip
()]
=
wid
wid
+=
1
else
:
with
open
(
dictfile
,
encoding
=
"utf-8"
)
as
f
:
for
line
in
f
:
self
.
_vocab
[
line
.
strip
()]
=
wid
wid
+=
1
self
.
_unk_id
=
len
(
self
.
_vocab
)
self
.
_pattern
=
re
.
compile
(
r
'(;|,|\.|\?|!|\s|\(|\))'
)
self
.
return_value
=
(
"words"
,
[
1
,
2
,
3
,
4
,
5
,
6
]),
(
"label"
,
[
0
])
def
get_words_only
(
self
,
line
):
sent
=
line
.
lower
().
replace
(
"<br />"
,
" "
).
strip
()
words
=
[
x
for
x
in
self
.
_pattern
.
split
(
sent
)
if
x
and
x
!=
" "
]
feas
=
[
self
.
_vocab
[
x
]
if
x
in
self
.
_vocab
else
self
.
_unk_id
for
x
in
words
]
return
feas
def
get_words_and_label
(
self
,
line
):
send
=
'|'
.
join
(
line
.
split
(
'|'
)[:
-
1
]).
lower
().
replace
(
"<br />"
,
" "
).
strip
()
label
=
[
int
(
line
.
split
(
'|'
)[
-
1
])]
words
=
[
x
for
x
in
self
.
_pattern
.
split
(
send
)
if
x
and
x
!=
" "
]
feas
=
[
self
.
_vocab
[
x
]
if
x
in
self
.
_vocab
else
self
.
_unk_id
for
x
in
words
]
return
feas
,
label
def
infer_reader
(
self
,
infer_filelist
,
batch
,
buf_size
):
def
local_iter
():
for
fname
in
infer_filelist
:
with
open
(
fname
,
"r"
)
as
fin
:
for
line
in
fin
:
feas
,
label
=
self
.
get_words_and_label
(
line
)
yield
feas
,
label
import
paddle
batch_iter
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
local_iter
,
buf_size
=
buf_size
),
batch_size
=
batch
)
return
batch_iter
def
generate_sample
(
self
,
line
):
def
memory_iter
():
for
i
in
range
(
1000
):
yield
self
.
return_value
def
data_iter
():
feas
,
label
=
self
.
get_words_and_label
(
line
)
yield
(
"words"
,
feas
),
(
"label"
,
label
)
return
data_iter
if
__name__
==
"__main__"
:
imdb
=
IMDBDataset
()
imdb
.
load_resource
(
"imdb.vocab"
)
imdb
.
run_from_stdin
()
python/examples/grpc_impl_example/imdb/test_multilang_ensemble_client.py
0 → 100644
浏览文件 @
01aad69b
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from
paddle_serving_client
import
MultiLangClient
from
imdb_reader
import
IMDBDataset
client
=
MultiLangClient
()
# If you have more than one model, make sure that the input
# and output of more than one model are the same.
client
.
connect
([
"127.0.0.1:9393"
])
# you can define any english sentence or dataset here
# This example reuses imdb reader in training, you
# can define your own data preprocessing easily.
imdb_dataset
=
IMDBDataset
()
imdb_dataset
.
load_resource
(
'imdb.vocab'
)
for
i
in
range
(
3
):
line
=
'i am very sad | 0'
word_ids
,
label
=
imdb_dataset
.
get_words_and_label
(
line
)
print
(
type
(
word_ids
[
0
]))
print
(
word_ids
)
feed
=
{
"words"
:
word_ids
}
fetch
=
[
"prediction"
]
fetch_maps
=
client
.
predict
(
feed
=
feed
,
fetch
=
fetch
)
for
model
,
fetch_map
in
fetch_maps
.
items
():
if
model
==
"serving_status_code"
:
continue
print
(
"step: {}, model: {}, res: {}"
.
format
(
i
,
model
,
fetch_map
))
python/examples/grpc_impl_example/imdb/test_multilang_ensemble_server.py
0 → 100644
浏览文件 @
01aad69b
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from
paddle_serving_server
import
OpMaker
from
paddle_serving_server
import
OpGraphMaker
from
paddle_serving_server
import
MultiLangServer
op_maker
=
OpMaker
()
read_op
=
op_maker
.
create
(
'general_reader'
)
cnn_infer_op
=
op_maker
.
create
(
'general_infer'
,
engine_name
=
'cnn'
,
inputs
=
[
read_op
])
bow_infer_op
=
op_maker
.
create
(
'general_infer'
,
engine_name
=
'bow'
,
inputs
=
[
read_op
])
response_op
=
op_maker
.
create
(
'general_response'
,
inputs
=
[
cnn_infer_op
,
bow_infer_op
])
op_graph_maker
=
OpGraphMaker
()
op_graph_maker
.
add_op
(
read_op
)
op_graph_maker
.
add_op
(
cnn_infer_op
)
op_graph_maker
.
add_op
(
bow_infer_op
)
op_graph_maker
.
add_op
(
response_op
)
server
=
MultiLangServer
()
server
.
set_op_graph
(
op_graph_maker
.
get_op_graph
())
model_config
=
{
cnn_infer_op
:
'imdb_cnn_model'
,
bow_infer_op
:
'imdb_bow_model'
}
server
.
load_model_config
(
model_config
)
server
.
prepare_server
(
workdir
=
"work_dir1"
,
port
=
9393
,
device
=
"cpu"
)
server
.
run_server
()
python/paddle_serving_client/__init__.py
浏览文件 @
01aad69b
...
...
@@ -135,6 +135,7 @@ class Client(object):
self
.
rpc_timeout_ms
=
20000
from
.serving_client
import
PredictorRes
self
.
predictorres_constructor
=
PredictorRes
self
.
write_profile_into_fetch_map_
=
False
# only for grpc impl
def
load_client_config
(
self
,
path
):
from
.serving_client
import
PredictorClient
...
...
@@ -399,6 +400,7 @@ class MultiLangClient(object):
self
.
channel_
=
None
self
.
stub_
=
None
self
.
rpc_timeout_s_
=
2
self
.
profile_
=
_Profiler
()
def
add_variant
(
self
,
tag
,
cluster
,
variant_weight
):
# TODO
...
...
@@ -582,6 +584,7 @@ class MultiLangClient(object):
ret
=
list
(
multi_result_map
.
values
())[
0
]
else
:
ret
=
multi_result_map
ret
[
"serving_status_code"
]
=
0
return
ret
if
not
need_variant_tag
else
[
ret
,
tag
]
...
...
@@ -601,18 +604,30 @@ class MultiLangClient(object):
need_variant_tag
=
False
,
asyn
=
False
,
is_python
=
True
):
req
=
self
.
_pack_inference_request
(
feed
,
fetch
,
is_python
=
is_python
)
if
not
asyn
:
try
:
self
.
profile_
.
record
(
'py_prepro_0'
)
req
=
self
.
_pack_inference_request
(
feed
,
fetch
,
is_python
=
is_python
)
self
.
profile_
.
record
(
'py_prepro_1'
)
self
.
profile_
.
record
(
'py_client_infer_0'
)
resp
=
self
.
stub_
.
Inference
(
req
,
timeout
=
self
.
rpc_timeout_s_
)
return
self
.
_unpack_inference_response
(
self
.
profile_
.
record
(
'py_client_infer_1'
)
self
.
profile_
.
record
(
'py_postpro_0'
)
ret
=
self
.
_unpack_inference_response
(
resp
,
fetch
,
is_python
=
is_python
,
need_variant_tag
=
need_variant_tag
)
self
.
profile_
.
record
(
'py_postpro_1'
)
self
.
profile_
.
print_profile
()
return
ret
except
grpc
.
RpcError
as
e
:
return
{
"serving_status_code"
:
e
.
code
()}
else
:
req
=
self
.
_pack_inference_request
(
feed
,
fetch
,
is_python
=
is_python
)
call_future
=
self
.
stub_
.
Inference
.
future
(
req
,
timeout
=
self
.
rpc_timeout_s_
)
return
MultiLangPredictFuture
(
...
...
python/paddle_serving_server/__init__.py
浏览文件 @
01aad69b
...
...
@@ -540,6 +540,7 @@ class MultiLangServerServiceServicer(multi_lang_general_model_service_pb2_grpc.
results
,
tag
=
ret
resp
.
tag
=
tag
resp
.
err_code
=
0
if
not
self
.
is_multi_model_
:
results
=
{
'general_infer_0'
:
results
}
for
model_name
,
model_result
in
results
.
items
():
...
...
python/paddle_serving_server_gpu/__init__.py
浏览文件 @
01aad69b
...
...
@@ -587,6 +587,7 @@ class MultiLangServerServiceServicer(multi_lang_general_model_service_pb2_grpc.
results
,
tag
=
ret
resp
.
tag
=
tag
resp
.
err_code
=
0
if
not
self
.
is_multi_model_
:
results
=
{
'general_infer_0'
:
results
}
for
model_name
,
model_result
in
results
.
items
():
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录