Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
5fe06996
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5fe06996
编写于
8月 07, 2020
作者:
B
barriery
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update grpc-impl
上级
ec846596
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
165 addition
and
46 deletion
+165
-46
core/configure/proto/multi_lang_general_model_service.proto
core/configure/proto/multi_lang_general_model_service.proto
+1
-0
java/src/main/java/io/paddle/serving/client/Client.java
java/src/main/java/io/paddle/serving/client/Client.java
+113
-18
java/src/main/proto/multi_lang_general_model_service.proto
java/src/main/proto/multi_lang_general_model_service.proto
+1
-0
python/paddle_serving_client/__init__.py
python/paddle_serving_client/__init__.py
+7
-4
python/paddle_serving_server/__init__.py
python/paddle_serving_server/__init__.py
+8
-4
python/paddle_serving_server_gpu/__init__.py
python/paddle_serving_server_gpu/__init__.py
+7
-3
python/pipeline/operator.py
python/pipeline/operator.py
+28
-17
未找到文件。
core/configure/proto/multi_lang_general_model_service.proto
浏览文件 @
5fe06996
...
...
@@ -37,6 +37,7 @@ message InferenceRequest {
repeated
string
feed_var_names
=
2
;
repeated
string
fetch_var_names
=
3
;
required
bool
is_python
=
4
[
default
=
false
];
required
uint64
log_id
=
5
[
default
=
0
];
};
message
InferenceResponse
{
...
...
java/src/main/java/io/paddle/serving/client/Client.java
浏览文件 @
5fe06996
...
...
@@ -192,14 +192,16 @@ public class Client {
private
InferenceRequest
_packInferenceRequest
(
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
)
throws
IllegalArgumentException
{
Iterable
<
String
>
fetch
,
long
log_id
)
throws
IllegalArgumentException
{
List
<
String
>
feed_var_names
=
new
ArrayList
<
String
>();
feed_var_names
.
addAll
(
feed_batch
.
get
(
0
).
keySet
());
InferenceRequest
.
Builder
req_builder
=
InferenceRequest
.
newBuilder
()
.
addAllFeedVarNames
(
feed_var_names
)
.
addAllFetchVarNames
(
fetch
)
.
setIsPython
(
false
);
.
setIsPython
(
false
)
.
setLogId
(
log_id
);
for
(
HashMap
<
String
,
INDArray
>
feed_data:
feed_batch
)
{
FeedInst
.
Builder
inst_builder
=
FeedInst
.
newBuilder
();
for
(
String
name:
feed_var_names
)
{
...
...
@@ -332,76 +334,151 @@ public class Client {
public
Map
<
String
,
INDArray
>
predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
)
{
return
predict
(
feed
,
fetch
,
false
);
return
predict
(
feed
,
fetch
,
false
,
0
);
}
public
Map
<
String
,
INDArray
>
predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
,
long
log_id
)
{
return
predict
(
feed
,
fetch
,
false
,
log_id
);
}
public
Map
<
String
,
HashMap
<
String
,
INDArray
>>
ensemble_predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
)
{
return
ensemble_predict
(
feed
,
fetch
,
false
);
return
ensemble_predict
(
feed
,
fetch
,
false
,
0
);
}
public
Map
<
String
,
HashMap
<
String
,
INDArray
>>
ensemble_predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
,
long
log_id
)
{
return
ensemble_predict
(
feed
,
fetch
,
false
,
log_id
);
}
public
PredictFuture
asyn_predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
)
{
return
asyn_predict
(
feed
,
fetch
,
false
);
return
asyn_predict
(
feed
,
fetch
,
false
,
0
);
}
public
PredictFuture
asyn_predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
,
long
log_id
)
{
return
asyn_predict
(
feed
,
fetch
,
false
,
log_id
);
}
public
Map
<
String
,
INDArray
>
predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
)
{
return
predict
(
feed
,
fetch
,
need_variant_tag
,
0
);
}
public
Map
<
String
,
INDArray
>
predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
,
long
log_id
)
{
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
=
new
ArrayList
<
HashMap
<
String
,
INDArray
>>();
feed_batch
.
add
(
feed
);
return
predict
(
feed_batch
,
fetch
,
need_variant_tag
);
return
predict
(
feed_batch
,
fetch
,
need_variant_tag
,
log_id
);
}
public
Map
<
String
,
HashMap
<
String
,
INDArray
>>
ensemble_predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
)
{
return
ensemble_predict
(
feed
,
fetch
,
need_variant_tag
,
0
);
}
public
Map
<
String
,
HashMap
<
String
,
INDArray
>>
ensemble_predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
,
long
log_id
)
{
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
=
new
ArrayList
<
HashMap
<
String
,
INDArray
>>();
feed_batch
.
add
(
feed
);
return
ensemble_predict
(
feed_batch
,
fetch
,
need_variant_tag
);
return
ensemble_predict
(
feed_batch
,
fetch
,
need_variant_tag
,
log_id
);
}
public
PredictFuture
asyn_predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
)
{
return
asyn_predict
(
feed
,
fetch
,
need_variant_tag
,
0
);
}
public
PredictFuture
asyn_predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
,
long
log_id
)
{
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
=
new
ArrayList
<
HashMap
<
String
,
INDArray
>>();
feed_batch
.
add
(
feed
);
return
asyn_predict
(
feed_batch
,
fetch
,
need_variant_tag
);
return
asyn_predict
(
feed_batch
,
fetch
,
need_variant_tag
,
log_id
);
}
public
Map
<
String
,
INDArray
>
predict
(
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
)
{
return
predict
(
feed_batch
,
fetch
,
false
);
return
predict
(
feed_batch
,
fetch
,
false
,
0
);
}
public
Map
<
String
,
INDArray
>
predict
(
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
,
long
log_id
)
{
return
predict
(
feed_batch
,
fetch
,
false
,
log_id
);
}
public
Map
<
String
,
HashMap
<
String
,
INDArray
>>
ensemble_predict
(
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
)
{
return
ensemble_predict
(
feed_batch
,
fetch
,
false
);
return
ensemble_predict
(
feed_batch
,
fetch
,
false
,
0
);
}
public
Map
<
String
,
HashMap
<
String
,
INDArray
>>
ensemble_predict
(
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
,
long
log_id
)
{
return
ensemble_predict
(
feed_batch
,
fetch
,
false
,
log_id
);
}
public
PredictFuture
asyn_predict
(
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
)
{
return
asyn_predict
(
feed_batch
,
fetch
,
false
);
return
asyn_predict
(
feed_batch
,
fetch
,
false
,
0
);
}
public
PredictFuture
asyn_predict
(
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
,
long
log_id
)
{
return
asyn_predict
(
feed_batch
,
fetch
,
false
,
log_id
);
}
public
Map
<
String
,
INDArray
>
predict
(
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
)
{
return
predict
(
feed_batch
,
fetch
,
need_variant_tag
,
0
);
}
public
Map
<
String
,
INDArray
>
predict
(
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
,
long
log_id
)
{
try
{
profiler_
.
record
(
"java_prepro_0"
);
InferenceRequest
req
=
_packInferenceRequest
(
feed_batch
,
fetch
);
InferenceRequest
req
=
_packInferenceRequest
(
feed_batch
,
fetch
,
log_id
);
profiler_
.
record
(
"java_prepro_1"
);
profiler_
.
record
(
"java_client_infer_0"
);
...
...
@@ -415,7 +492,7 @@ public class Client {
=
new
ArrayList
<
Map
.
Entry
<
String
,
HashMap
<
String
,
INDArray
>>>(
ensemble_result
.
entrySet
());
if
(
list
.
size
()
!=
1
)
{
System
.
out
.
format
(
"
predict failed
: please use ensemble_predict impl.\n"
);
System
.
out
.
format
(
"
Failed to predict
: please use ensemble_predict impl.\n"
);
return
null
;
}
profiler_
.
record
(
"java_postpro_1"
);
...
...
@@ -423,7 +500,7 @@ public class Client {
return
list
.
get
(
0
).
getValue
();
}
catch
(
StatusRuntimeException
e
)
{
System
.
out
.
format
(
"
predict failed
: %s\n"
,
e
.
toString
());
System
.
out
.
format
(
"
Failed to predict
: %s\n"
,
e
.
toString
());
return
null
;
}
}
...
...
@@ -432,9 +509,18 @@ public class Client {
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
)
{
return
ensemble_predict
(
feed_batch
,
fetch
,
need_variant_tag
,
0
);
}
public
Map
<
String
,
HashMap
<
String
,
INDArray
>>
ensemble_predict
(
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
,
long
log_id
)
{
try
{
profiler_
.
record
(
"java_prepro_0"
);
InferenceRequest
req
=
_packInferenceRequest
(
feed_batch
,
fetch
);
InferenceRequest
req
=
_packInferenceRequest
(
feed_batch
,
fetch
,
log_id
);
profiler_
.
record
(
"java_prepro_1"
);
profiler_
.
record
(
"java_client_infer_0"
);
...
...
@@ -449,7 +535,7 @@ public class Client {
return
ensemble_result
;
}
catch
(
StatusRuntimeException
e
)
{
System
.
out
.
format
(
"
predict failed
: %s\n"
,
e
.
toString
());
System
.
out
.
format
(
"
Failed to predict
: %s\n"
,
e
.
toString
());
return
null
;
}
}
...
...
@@ -458,7 +544,16 @@ public class Client {
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
)
{
InferenceRequest
req
=
_packInferenceRequest
(
feed_batch
,
fetch
);
return
asyn_predict
(
feed_batch
,
fetch
,
need_variant_tag
,
0
);
}
public
PredictFuture
asyn_predict
(
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
,
long
log_id
)
{
InferenceRequest
req
=
_packInferenceRequest
(
feed_batch
,
fetch
,
log_id
);
ListenableFuture
<
InferenceResponse
>
future
=
futureStub_
.
inference
(
req
);
PredictFuture
predict_future
=
new
PredictFuture
(
future
,
(
InferenceResponse
resp
)
->
{
...
...
java/src/main/proto/multi_lang_general_model_service.proto
浏览文件 @
5fe06996
...
...
@@ -37,6 +37,7 @@ message InferenceRequest {
repeated
string
feed_var_names
=
2
;
repeated
string
fetch_var_names
=
3
;
required
bool
is_python
=
4
[
default
=
false
];
required
uint64
log_id
=
5
[
default
=
0
];
};
message
InferenceResponse
{
...
...
python/paddle_serving_client/__init__.py
浏览文件 @
5fe06996
...
...
@@ -466,10 +466,11 @@ class MultiLangClient(object):
if
var
.
is_lod_tensor
:
self
.
lod_tensor_set_
.
add
(
var
.
alias_name
)
def
_pack_inference_request
(
self
,
feed
,
fetch
,
is_python
):
def
_pack_inference_request
(
self
,
feed
,
fetch
,
is_python
,
log_id
):
req
=
multi_lang_general_model_service_pb2
.
InferenceRequest
()
req
.
fetch_var_names
.
extend
(
fetch
)
req
.
is_python
=
is_python
req
.
log_id
=
log_id
feed_batch
=
None
if
isinstance
(
feed
,
dict
):
feed_batch
=
[
feed
]
...
...
@@ -602,12 +603,13 @@ class MultiLangClient(object):
fetch
,
need_variant_tag
=
False
,
asyn
=
False
,
is_python
=
True
):
is_python
=
True
,
log_id
=
0
):
if
not
asyn
:
try
:
self
.
profile_
.
record
(
'py_prepro_0'
)
req
=
self
.
_pack_inference_request
(
feed
,
fetch
,
is_python
=
is_python
)
feed
,
fetch
,
is_python
=
is_python
,
log_id
=
log_id
)
self
.
profile_
.
record
(
'py_prepro_1'
)
self
.
profile_
.
record
(
'py_client_infer_0'
)
...
...
@@ -626,7 +628,8 @@ class MultiLangClient(object):
except
grpc
.
RpcError
as
e
:
return
{
"serving_status_code"
:
e
.
code
()}
else
:
req
=
self
.
_pack_inference_request
(
feed
,
fetch
,
is_python
=
is_python
)
req
=
self
.
_pack_inference_request
(
feed
,
fetch
,
is_python
=
is_python
,
log_id
=
log_id
)
call_future
=
self
.
stub_
.
Inference
.
future
(
req
,
timeout
=
self
.
rpc_timeout_s_
)
return
MultiLangPredictFuture
(
...
...
python/paddle_serving_server/__init__.py
浏览文件 @
5fe06996
...
...
@@ -502,6 +502,7 @@ class MultiLangServerServiceServicer(multi_lang_general_model_service_pb2_grpc.
feed_names
=
list
(
request
.
feed_var_names
)
fetch_names
=
list
(
request
.
fetch_var_names
)
is_python
=
request
.
is_python
log_id
=
request
.
log_id
feed_batch
=
[]
for
feed_inst
in
request
.
insts
:
feed_dict
=
{}
...
...
@@ -530,7 +531,7 @@ class MultiLangServerServiceServicer(multi_lang_general_model_service_pb2_grpc.
data
.
shape
=
list
(
feed_inst
.
tensor_array
[
idx
].
shape
)
feed_dict
[
name
]
=
data
feed_batch
.
append
(
feed_dict
)
return
feed_batch
,
fetch_names
,
is_python
return
feed_batch
,
fetch_names
,
is_python
,
log_id
def
_pack_inference_response
(
self
,
ret
,
fetch_names
,
is_python
):
resp
=
multi_lang_general_model_service_pb2
.
InferenceResponse
()
...
...
@@ -583,10 +584,13 @@ class MultiLangServerServiceServicer(multi_lang_general_model_service_pb2_grpc.
return
resp
def
Inference
(
self
,
request
,
context
):
feed_dict
,
fetch_names
,
is_python
=
self
.
_unpack_inference_request
(
request
)
feed_dict
,
fetch_names
,
is_python
,
log_id
=
\
self
.
_unpack_inference_request
(
request
)
ret
=
self
.
bclient_
.
predict
(
feed
=
feed_dict
,
fetch
=
fetch_names
,
need_variant_tag
=
True
)
feed
=
feed_dict
,
fetch
=
fetch_names
,
need_variant_tag
=
True
,
log_id
=
log_id
)
return
self
.
_pack_inference_response
(
ret
,
fetch_names
,
is_python
)
def
GetClientConfig
(
self
,
request
,
context
):
...
...
python/paddle_serving_server_gpu/__init__.py
浏览文件 @
5fe06996
...
...
@@ -556,6 +556,7 @@ class MultiLangServerServiceServicer(multi_lang_general_model_service_pb2_grpc.
feed_names
=
list
(
request
.
feed_var_names
)
fetch_names
=
list
(
request
.
fetch_var_names
)
is_python
=
request
.
is_python
log_id
=
request
.
log_id
feed_batch
=
[]
for
feed_inst
in
request
.
insts
:
feed_dict
=
{}
...
...
@@ -637,10 +638,13 @@ class MultiLangServerServiceServicer(multi_lang_general_model_service_pb2_grpc.
return
resp
def
Inference
(
self
,
request
,
context
):
feed_dict
,
fetch_names
,
is_python
=
self
.
_unpack_inference_request
(
request
)
feed_dict
,
fetch_names
,
is_python
,
log_id
\
=
self
.
_unpack_inference_request
(
request
)
ret
=
self
.
bclient_
.
predict
(
feed
=
feed_dict
,
fetch
=
fetch_names
,
need_variant_tag
=
True
)
feed
=
feed_dict
,
fetch
=
fetch_names
,
need_variant_tag
=
True
,
log_id
=
log_id
)
return
self
.
_pack_inference_response
(
ret
,
fetch_names
,
is_python
)
def
GetClientConfig
(
self
,
request
,
context
):
...
...
python/pipeline/operator.py
浏览文件 @
5fe06996
...
...
@@ -199,7 +199,7 @@ class Op(object):
(
_
,
input_dict
),
=
input_dicts
.
items
()
return
input_dict
def
process
(
self
,
feed_batch
):
def
process
(
self
,
feed_batch
,
typical_logid
):
err
,
err_info
=
ChannelData
.
check_batch_npdata
(
feed_batch
)
if
err
!=
0
:
_LOGGER
.
critical
(
...
...
@@ -207,7 +207,7 @@ class Op(object):
"preprocess func."
.
format
(
err_info
)))
os
.
_exit
(
-
1
)
call_result
=
self
.
client
.
predict
(
feed
=
feed_batch
,
fetch
=
self
.
_fetch_names
)
feed
=
feed_batch
,
fetch
=
self
.
_fetch_names
,
log_id
=
typical_logid
)
if
isinstance
(
self
.
client
,
MultiLangClient
):
if
call_result
is
None
or
call_result
[
"serving_status_code"
]
!=
0
:
return
None
...
...
@@ -330,53 +330,64 @@ class Op(object):
err_channeldata_dict
=
{}
if
self
.
with_serving
:
data_ids
=
preped_data_dict
.
keys
()
typical_logid
=
data_ids
[
0
]
if
len
(
data_ids
)
!=
1
:
for
data_id
in
data_ids
:
_LOGGER
.
info
(
"(logid={}) During access to PaddleServingService,"
" we selected logid={} (batch: {}) as a representative"
" for logging."
.
format
(
data_id
,
typical_logid
,
data_ids
))
feed_batch
=
[
preped_data_dict
[
data_id
]
for
data_id
in
data_ids
]
midped_batch
=
None
ecode
=
ChannelDataEcode
.
OK
.
value
if
self
.
_timeout
<=
0
:
try
:
midped_batch
=
self
.
process
(
feed_batch
)
midped_batch
=
self
.
process
(
feed_batch
,
typical_logid
)
except
Exception
as
e
:
ecode
=
ChannelDataEcode
.
UNKNOW
.
value
error_info
=
"{} Failed to process(batch: {}): {}"
.
format
(
op_info_prefix
,
data_ids
,
e
)
error_info
=
"
(logid={})
{} Failed to process(batch: {}): {}"
.
format
(
typical_logid
,
op_info_prefix
,
data_ids
,
e
)
_LOGGER
.
error
(
error_info
,
exc_info
=
True
)
else
:
for
i
in
range
(
self
.
_retry
):
try
:
midped_batch
=
func_timeout
.
func_timeout
(
self
.
_timeout
,
self
.
process
,
args
=
(
feed_batch
,
))
self
.
_timeout
,
self
.
process
,
args
=
(
feed_batch
,
typical_logid
))
except
func_timeout
.
FunctionTimedOut
as
e
:
if
i
+
1
>=
self
.
_retry
:
ecode
=
ChannelDataEcode
.
TIMEOUT
.
value
error_info
=
"{} Failed to process(batch: {}): "
\
error_info
=
"
(logid={})
{} Failed to process(batch: {}): "
\
"exceeded retry count."
.
format
(
op_info_prefix
,
data_ids
)
typical_logid
,
op_info_prefix
,
data_ids
)
_LOGGER
.
error
(
error_info
)
else
:
_LOGGER
.
warning
(
"{} Failed to process(batch: {}): timeout, and retrying({}/{})"
.
format
(
op_info_prefix
,
data_ids
,
i
+
1
,
self
.
_retry
))
"(logid={}) {} Failed to process(batch: {}): timeout,"
" and retrying({}/{})..."
.
format
(
typical_logid
,
op_info_prefix
,
data_ids
,
i
+
1
,
self
.
_retry
))
except
Exception
as
e
:
ecode
=
ChannelDataEcode
.
UNKNOW
.
value
error_info
=
"{} Failed to process(batch: {}): {}"
.
format
(
op_info_prefix
,
data_ids
,
e
)
error_info
=
"
(logid={})
{} Failed to process(batch: {}): {}"
.
format
(
typical_logid
,
op_info_prefix
,
data_ids
,
e
)
_LOGGER
.
error
(
error_info
,
exc_info
=
True
)
break
else
:
break
if
ecode
!=
ChannelDataEcode
.
OK
.
value
:
for
data_id
in
data_ids
:
_LOGGER
.
error
(
"(logid={}) {}"
.
format
(
data_id
,
error_info
))
err_channeldata_dict
[
data_id
]
=
ChannelData
(
ecode
=
ecode
,
error_info
=
error_info
,
data_id
=
data_id
)
elif
midped_batch
is
None
:
# op client return None
error_info
=
"{} Failed to predict, please check if PaddleServingService"
\
" is working properly."
.
format
(
op_info_prefix
)
error_info
=
"(logid={}) {} Failed to predict, please check if "
\
"PaddleServingService is working properly."
.
format
(
typical_logid
,
op_info_prefix
)
_LOGGER
.
error
(
error_info
)
for
data_id
in
data_ids
:
_LOGGER
.
error
(
"(logid={}) {}"
.
format
(
data_id
,
error_info
))
err_channeldata_dict
[
data_id
]
=
ChannelData
(
ecode
=
ChannelDataEcode
.
CLIENT_ERROR
.
value
,
error_info
=
error_info
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录