Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
ab645d8c
S
Serving
项目概览
PaddlePaddle
/
Serving
1 年多 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ab645d8c
编写于
4月 14, 2020
作者:
B
barrierye
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
get engine name in Client
上级
6797faff
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
197 addition
and
96 deletion
+197
-96
core/general-client/include/general_model.h
core/general-client/include/general_model.h
+26
-16
core/general-client/src/general_model.cpp
core/general-client/src/general_model.cpp
+32
-22
core/general-client/src/pybind_general_model.cpp
core/general-client/src/pybind_general_model.cpp
+3
-4
core/general-server/op/general_infer_op.cpp
core/general-server/op/general_infer_op.cpp
+7
-3
core/general-server/op/general_response_op.cpp
core/general-server/op/general_response_op.cpp
+19
-12
core/general-server/op/general_text_response_op.cpp
core/general-server/op/general_text_response_op.cpp
+7
-3
core/general-server/proto/general_model_service.proto
core/general-server/proto/general_model_service.proto
+1
-0
core/sdk-cpp/proto/general_model_service.proto
core/sdk-cpp/proto/general_model_service.proto
+1
-0
python/paddle_serving_client/__init__.py
python/paddle_serving_client/__init__.py
+14
-12
python/paddle_serving_server/__init__.py
python/paddle_serving_server/__init__.py
+87
-24
未找到文件。
core/general-client/include/general_model.h
浏览文件 @
ab645d8c
...
...
@@ -27,6 +27,9 @@
#include "core/sdk-cpp/general_model_service.pb.h"
#include "core/sdk-cpp/include/common.h"
#include "core/sdk-cpp/include/predictor_sdk.h"
#define BLOG(fmt, ...) \
printf( \
"[%s:%s]:%d " fmt "\n", __FILE__, __FUNCTION__, __LINE__, ##__VA_ARGS__)
using
baidu
::
paddle_serving
::
sdk_cpp
::
Predictor
;
using
baidu
::
paddle_serving
::
sdk_cpp
::
PredictorApi
;
...
...
@@ -42,8 +45,19 @@ namespace general_model {
class
ModelRes
{
public:
ModelRes
()
{}
ModelRes
(
const
ModelRes
&
res
)
{
_engine_name
=
res
.
_engine_name
;
_int64_map
.
insert
(
res
.
_int64_map
.
begin
(),
res
.
_int64_map
.
end
());
_float_map
.
insert
(
res
.
_float_map
.
begin
(),
res
.
_float_map
.
end
());
}
ModelRes
(
ModelRes
&&
res
)
{
_engine_name
=
std
::
move
(
res
.
_engine_name
);
_int64_map
.
insert
(
std
::
make_move_iterator
(
std
::
begin
(
res
.
_int64_map
)),
std
::
make_move_iterator
(
std
::
end
(
res
.
_int64_map
)));
_float_map
.
insert
(
std
::
make_move_iterator
(
std
::
begin
(
res
.
_float_map
)),
std
::
make_move_iterator
(
std
::
end
(
res
.
_float_map
)));
}
~
ModelRes
()
{}
public:
const
std
::
vector
<
std
::
vector
<
int64_t
>>&
get_int64_by_name
(
const
std
::
string
&
name
)
{
return
_int64_map
[
name
];
...
...
@@ -55,19 +69,18 @@ class ModelRes {
void
set_engine_name
(
const
std
::
string
&
engine_name
)
{
_engine_name
=
engine_name
;
}
const
std
::
string
&
engine_name
()
{
return
engine_name
;
}
ModelRes
&
operator
=
(
ModelRes
&&
res
)
{
std
::
cout
<<
"move ++++++++>"
;
const
std
::
string
&
engine_name
()
{
return
_engine_name
;
}
ModelRes
&
operator
=
(
ModelRes
&&
res
)
{
if
(
this
!=
&
res
)
{
_int64_map
=
res
.
_int64_map
;
_float_map
=
res
.
_float_map
;
res
.
_int64_map
=
nullptr
;
res
.
_float_map
=
nullptr
;
_engine_name
=
std
::
move
(
res
.
_engine_name
);
_int64_map
.
insert
(
std
::
make_move_iterator
(
std
::
begin
(
res
.
_int64_map
)),
std
::
make_move_iterator
(
std
::
end
(
res
.
_int64_map
)));
_float_map
.
insert
(
std
::
make_move_iterator
(
std
::
begin
(
res
.
_float_map
)),
std
::
make_move_iterator
(
std
::
end
(
res
.
_float_map
)));
}
return
*
this
;
}
public:
std
::
string
_engine_name
;
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
vector
<
int64_t
>>>
_int64_map
;
...
...
@@ -82,7 +95,7 @@ class PredictorRes {
public:
void
clear
()
{
_models
.
clear
();
_engine_names
.
clear
();
_engine_names
.
clear
();
}
const
std
::
vector
<
std
::
vector
<
int64_t
>>&
get_int64_by_name
(
const
int
model_idx
,
const
std
::
string
&
name
)
{
...
...
@@ -94,16 +107,13 @@ class PredictorRes {
}
void
add_model_res
(
ModelRes
&&
res
)
{
_engine_names
.
push_back
(
res
.
engine_name
());
_models
.
emplace_back
(
res
);
_models
.
emplace_back
(
std
::
move
(
res
)
);
}
void
set_variant_tag
(
const
std
::
string
&
variant_tag
)
{
_variant_tag
=
variant_tag
;
}
const
std
::
string
&
variant_tag
()
{
return
_variant_tag
;
}
int
model_num
()
{
return
_models
.
size
();}
const
std
::
vector
<
std
::
string
>&
get_engine_names
()
{
return
_engine_names
;
}
const
std
::
vector
<
std
::
string
>&
get_engine_names
()
{
return
_engine_names
;
}
private:
std
::
vector
<
ModelRes
>
_models
;
...
...
core/general-client/src/general_model.cpp
浏览文件 @
ab645d8c
...
...
@@ -219,35 +219,39 @@ int PredictorClient::predict(const std::vector<std::vector<float>> &float_feed,
postprocess_start
=
client_infer_end
;
// multi-model output
uint32_t
model_num
=
res
.
outputs_size
();
predict_res
.
_models
.
resize
(
model_num
);
//
predict_res._models.resize(model_num);
for
(
uint32_t
m_idx
=
0
;
m_idx
<
model_num
;
++
m_idx
)
{
VLOG
(
2
)
<<
"process model output index: "
<<
m_idx
;
auto
output
=
res
.
outputs
(
m_idx
);
ModelRes
model
;
model
.
set_engine_name
(
output
.
engine_name
());
for
(
auto
&
name
:
fetch_name
)
{
int
idx
=
_fetch_name_to_idx
[
name
];
VLOG
(
2
)
<<
"fetch name: "
<<
name
;
if
(
_fetch_name_to_type
[
name
]
==
0
)
{
int
len
=
output
.
insts
(
0
).
tensor_array
(
idx
).
int64_data_size
();
VLOG
(
2
)
<<
"fetch tensor : "
<<
name
<<
" type: int64 len : "
<<
len
;
predict_res
.
_models
[
m_idx
]
.
_int64_map
[
name
].
resize
(
1
);
predict_res
.
_models
[
m_idx
]
.
_int64_map
[
name
][
0
].
resize
(
len
);
model
.
_int64_map
[
name
].
resize
(
1
);
model
.
_int64_map
[
name
][
0
].
resize
(
len
);
for
(
int
i
=
0
;
i
<
len
;
++
i
)
{
predict_res
.
_models
[
m_idx
]
.
_int64_map
[
name
][
0
][
i
]
=
model
.
_int64_map
[
name
][
0
][
i
]
=
output
.
insts
(
0
).
tensor_array
(
idx
).
int64_data
(
i
);
}
}
else
if
(
_fetch_name_to_type
[
name
]
==
1
)
{
int
len
=
output
.
insts
(
0
).
tensor_array
(
idx
).
float_data_size
();
VLOG
(
2
)
<<
"fetch tensor : "
<<
name
<<
" type: float32 len : "
<<
len
;
predict_res
.
_models
[
m_idx
].
_float_map
[
name
].
resize
(
1
);
predict_res
.
_models
[
m_idx
].
_float_map
[
name
][
0
].
resize
(
len
);
VLOG
(
2
)
<<
"fetch tensor : "
<<
name
<<
" type: float32 len : "
<<
len
;
model
.
_float_map
[
name
].
resize
(
1
);
model
.
_float_map
[
name
][
0
].
resize
(
len
);
for
(
int
i
=
0
;
i
<
len
;
++
i
)
{
predict_res
.
_models
[
m_idx
]
.
_float_map
[
name
][
0
][
i
]
=
model
.
_float_map
[
name
][
0
][
i
]
=
output
.
insts
(
0
).
tensor_array
(
idx
).
float_data
(
i
);
}
}
//TODO
//
TODO
postprocess_end
=
timeline
.
TimeStampUS
();
}
predict_res
.
add_model_res
(
std
::
move
(
model
));
}
}
...
...
@@ -259,7 +263,7 @@ int PredictorClient::predict(const std::vector<std::vector<float>> &float_feed,
<<
"prepro_1:"
<<
preprocess_end
<<
" "
<<
"client_infer_0:"
<<
client_infer_start
<<
" "
<<
"client_infer_1:"
<<
client_infer_end
<<
" "
;
//TODO: multi-model
//
TODO: multi-model
if
(
FLAGS_profile_server
)
{
int
op_num
=
res
.
profile_time_size
()
/
2
;
for
(
int
i
=
0
;
i
<
op_num
;
++
i
)
{
...
...
@@ -303,7 +307,7 @@ int PredictorClient::batch_predict(
for
(
auto
&
name
:
fetch_name
)
{
req
.
add_fetch_var_names
(
name
);
}
for
(
int
bi
=
0
;
bi
<
batch_size
;
bi
++
)
{
VLOG
(
2
)
<<
"prepare batch "
<<
bi
;
std
::
vector
<
Tensor
*>
tensor_vec
;
...
...
@@ -382,13 +386,15 @@ int PredictorClient::batch_predict(
postprocess_start
=
client_infer_end
;
uint32_t
model_num
=
res
.
outputs_size
();
predict_res_batch
.
_models
.
resize
(
model_num
);
//
predict_res_batch._models.resize(model_num);
for
(
uint32_t
m_idx
=
0
;
m_idx
<
model_num
;
++
m_idx
)
{
VLOG
(
2
)
<<
"process model output index: "
<<
m_idx
;
auto
output
=
res
.
outputs
(
m_idx
);
ModelRes
model
;
model
.
set_engine_name
(
output
.
engine_name
());
for
(
auto
&
name
:
fetch_name
)
{
predict_res_batch
.
_models
[
m_idx
]
.
_int64_map
[
name
].
resize
(
batch_size
);
predict_res_batch
.
_models
[
m_idx
]
.
_float_map
[
name
].
resize
(
batch_size
);
model
.
_int64_map
[
name
].
resize
(
batch_size
);
model
.
_float_map
[
name
].
resize
(
batch_size
);
}
VLOG
(
2
)
<<
"response batch size "
<<
output
.
insts_size
();
VLOG
(
2
)
<<
"response var nmae "
<<
output
.
insts
(
0
).
tensor_array_size
();
...
...
@@ -398,29 +404,33 @@ int PredictorClient::batch_predict(
int
len
=
output
.
insts
(
bi
).
tensor_array
(
idx
).
data_size
();
if
(
_fetch_name_to_type
[
name
]
==
0
)
{
int
len
=
output
.
insts
(
bi
).
tensor_array
(
idx
).
int64_data_size
();
VLOG
(
2
)
<<
"fetch tensor : "
<<
name
<<
" type: int64 len : "
<<
len
;
predict_res_batch
.
_models
[
m_idx
].
_int64_map
[
name
][
bi
].
resize
(
len
);
VLOG
(
2
)
<<
"fetch name "
<<
name
<<
" index "
<<
idx
<<
" first data "
VLOG
(
2
)
<<
"fetch tensor : "
<<
name
<<
" type: int64 len : "
<<
len
;
model
.
_int64_map
[
name
][
bi
].
resize
(
len
);
VLOG
(
2
)
<<
"fetch name "
<<
name
<<
" index "
<<
idx
<<
" first data "
<<
output
.
insts
(
bi
).
tensor_array
(
idx
).
int64_data
(
0
);
for
(
int
i
=
0
;
i
<
len
;
++
i
)
{
predict_res_batch
.
_models
[
m_idx
]
.
_int64_map
[
name
][
bi
][
i
]
=
model
.
_int64_map
[
name
][
bi
][
i
]
=
output
.
insts
(
bi
).
tensor_array
(
idx
).
int64_data
(
i
);
}
}
else
if
(
_fetch_name_to_type
[
name
]
==
1
)
{
int
len
=
output
.
insts
(
bi
).
tensor_array
(
idx
).
float_data_size
();
VLOG
(
2
)
<<
"fetch tensor : "
<<
name
<<
" type: float32 len : "
<<
len
;
predict_res_batch
.
_models
[
m_idx
].
_float_map
[
name
][
bi
].
resize
(
len
);
VLOG
(
2
)
<<
"fetch name "
<<
name
<<
" index "
<<
idx
<<
" first data "
model
.
_float_map
[
name
][
bi
].
resize
(
len
);
VLOG
(
2
)
<<
"fetch name "
<<
name
<<
" index "
<<
idx
<<
" first data "
<<
output
.
insts
(
bi
).
tensor_array
(
idx
).
float_data
(
0
);
for
(
int
i
=
0
;
i
<
len
;
++
i
)
{
predict_res_batch
.
_models
[
m_idx
]
.
_float_map
[
name
][
bi
][
i
]
=
model
.
_float_map
[
name
][
bi
][
i
]
=
output
.
insts
(
bi
).
tensor_array
(
idx
).
float_data
(
i
);
}
}
idx
+=
1
;
}
}
predict_res_batch
.
add_model_res
(
std
::
move
(
model
));
postprocess_end
=
timeline
.
TimeStampUS
();
}
}
...
...
@@ -433,7 +443,7 @@ int PredictorClient::batch_predict(
<<
"prepro_1:"
<<
preprocess_end
<<
" "
<<
"client_infer_0:"
<<
client_infer_start
<<
" "
<<
"client_infer_1:"
<<
client_infer_end
<<
" "
;
//TODO: multi-models
//
TODO: multi-models
if
(
FLAGS_profile_server
)
{
int
op_num
=
res
.
profile_time_size
()
/
2
;
for
(
int
i
=
0
;
i
<
op_num
;
++
i
)
{
...
...
core/general-client/src/pybind_general_model.cpp
浏览文件 @
ab645d8c
...
...
@@ -40,10 +40,9 @@ PYBIND11_MODULE(serving_client, m) {
return
self
.
get_float_by_name
(
model_idx
,
name
);
},
py
::
return_value_policy
::
reference
)
.
def
(
"variant_tag"
,
[](
PredictorRes
&
self
)
{
return
self
.
variant_tag
();
})
.
def
(
"model_num"
,
[](
PredictorRes
&
self
)
{
return
self
.
model_num
();
});
.
def
(
"variant_tag"
,
[](
PredictorRes
&
self
)
{
return
self
.
variant_tag
();
})
.
def
(
"get_engine_names"
,
[](
PredictorRes
&
self
)
{
return
self
.
get_engine_names
();
});
py
::
class_
<
PredictorClient
>
(
m
,
"PredictorClient"
,
py
::
buffer_protocol
())
.
def
(
py
::
init
())
...
...
core/general-server/op/general_infer_op.cpp
浏览文件 @
ab645d8c
...
...
@@ -37,8 +37,11 @@ using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
int
GeneralInferOp
::
inference
()
{
VLOG
(
2
)
<<
"Going to run inference"
;
const
std
::
vector
<
std
::
string
>
pre_node_names
=
pre_names
();
if
(
pre_node_names
.
size
()
!=
1
)
{
LOG
(
ERROR
)
<<
"This op("
<<
op_name
()
<<
") can only have one predecessor op, but received "
<<
pre_node_names
.
size
();
LOG
(
ERROR
)
<<
"This op("
<<
op_name
()
<<
") can only have one predecessor op, but received "
<<
pre_node_names
.
size
();
return
-
1
;
}
const
std
::
string
pre_name
=
pre_node_names
[
0
];
...
...
@@ -65,8 +68,9 @@ int GeneralInferOp::inference() {
int64_t
start
=
timeline
.
TimeStampUS
();
timeline
.
Start
();
if
(
InferManager
::
instance
().
infer
(
GENERAL_MODEL_NAME
,
in
,
out
,
batch_size
))
{
LOG
(
ERROR
)
<<
"Failed do infer in fluid model: "
<<
GENERAL_MODEL_NAME
;
if
(
InferManager
::
instance
().
infer
(
engine_name
().
c_str
(),
in
,
out
,
batch_size
))
{
LOG
(
ERROR
)
<<
"Failed do infer in fluid model: "
<<
engine_name
().
c_str
();
return
-
1
;
}
...
...
core/general-server/op/general_response_op.cpp
浏览文件 @
ab645d8c
...
...
@@ -40,7 +40,7 @@ using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
int
GeneralResponseOp
::
inference
()
{
const
std
::
vector
<
std
::
string
>
pre_node_names
=
pre_names
();
VLOG
(
2
)
<<
"pre node names size: "
<<
pre_node_names
.
size
();
const
Request
*
req
=
dynamic_cast
<
const
Request
*>
(
get_request_message
());
// response inst with only fetch_var_names
Response
*
res
=
mutable_data
<
Response
>
();
...
...
@@ -67,13 +67,14 @@ int GeneralResponseOp::inference() {
const
GeneralBlob
*
input_blob
;
for
(
uint32_t
pi
=
0
;
pi
<
pre_node_names
.
size
();
++
pi
)
{
VLOG
(
2
)
<<
"pre names["
<<
pi
<<
"]: "
<<
pre_node_names
[
pi
]
<<
" ("
const
std
::
string
&
pre_name
=
pre_node_names
[
pi
];
VLOG
(
2
)
<<
"pre names["
<<
pi
<<
"]: "
<<
pre_name
<<
" ("
<<
pre_node_names
.
size
()
<<
")"
;
input_blob
=
get_depend_argument
<
GeneralBlob
>
(
pre_node_names
[
pi
]);
fprintf
(
stderr
,
"input(%s) blob address %x
\n
"
,
pre_node_names
[
pi
].
c_str
(),
input_blob
);
input_blob
=
get_depend_argument
<
GeneralBlob
>
(
pre_name
);
// fprintf(stderr, "input(%s) blob address %x\n", pre_names.c_str(),
// input_blob);
if
(
!
input_blob
)
{
LOG
(
ERROR
)
<<
"Failed mutable depended argument, op: "
<<
pre_n
ode_names
[
pi
]
;
LOG
(
ERROR
)
<<
"Failed mutable depended argument, op: "
<<
pre_n
ame
;
return
-
1
;
}
...
...
@@ -82,6 +83,8 @@ int GeneralResponseOp::inference() {
VLOG
(
2
)
<<
"input batch size: "
<<
batch_size
;
ModelOutput
*
output
=
res
->
add_outputs
();
output
->
set_engine_name
(
pre_name
);
// To get the order of model return values
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
FetchInst
*
fetch_inst
=
output
->
add_insts
();
for
(
auto
&
idx
:
fetch_index
)
{
...
...
@@ -114,7 +117,8 @@ int GeneralResponseOp::inference() {
for
(
int
k
=
in
->
at
(
idx
).
lod
[
0
][
j
];
k
<
in
->
at
(
idx
).
lod
[
0
][
j
+
1
];
k
++
)
{
FetchInst
*
fetch_p
=
output
->
mutable_insts
(
j
);
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
add_int64_data
(
data_ptr
[
k
]);
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
add_int64_data
(
data_ptr
[
k
]);
}
}
}
else
{
...
...
@@ -130,7 +134,8 @@ int GeneralResponseOp::inference() {
}
else
{
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
FetchInst
*
fetch_p
=
output
->
mutable_insts
(
j
);
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
add_int64_data
(
data_ptr
[
0
]);
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
add_int64_data
(
data_ptr
[
0
]);
}
}
}
...
...
@@ -142,7 +147,8 @@ int GeneralResponseOp::inference() {
for
(
int
k
=
in
->
at
(
idx
).
lod
[
0
][
j
];
k
<
in
->
at
(
idx
).
lod
[
0
][
j
+
1
];
k
++
)
{
FetchInst
*
fetch_p
=
output
->
mutable_insts
(
j
);
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
add_float_data
(
data_ptr
[
k
]);
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
add_float_data
(
data_ptr
[
k
]);
}
}
}
else
{
...
...
@@ -158,7 +164,8 @@ int GeneralResponseOp::inference() {
}
else
{
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
FetchInst
*
fetch_p
=
output
->
mutable_insts
(
j
);
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
add_float_data
(
data_ptr
[
0
]);
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
add_float_data
(
data_ptr
[
0
]);
}
}
}
...
...
@@ -169,10 +176,10 @@ int GeneralResponseOp::inference() {
if
(
req
->
profile_server
())
{
int64_t
end
=
timeline
.
TimeStampUS
();
for
(
uint32_t
i
=
0
;
i
<
pre_node_names
.
size
();
++
i
)
{
for
(
uint32_t
i
=
0
;
i
<
pre_node_names
.
size
();
++
i
)
{
input_blob
=
get_depend_argument
<
GeneralBlob
>
(
pre_node_names
[
i
]);
VLOG
(
2
)
<<
"p size for input blob: "
<<
input_blob
->
p_size
;
ModelOutput
*
output
=
res
->
mutable_outputs
(
i
);
ModelOutput
*
output
=
res
->
mutable_outputs
(
i
);
for
(
int
i
=
0
;
i
<
input_blob
->
p_size
;
++
i
)
{
output
->
add_profile_time
(
input_blob
->
time_stamp
[
i
]);
}
...
...
core/general-server/op/general_text_response_op.cpp
浏览文件 @
ab645d8c
...
...
@@ -37,9 +37,11 @@ using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
int
GeneralTextResponseOp
::
inference
()
{
VLOG
(
2
)
<<
"Going to run inference"
;
//TODO: multi-predecessor
const
std
::
vector
<
std
::
string
>
pre_node_names
=
pre_names
();
if
(
pre_node_names
.
size
()
!=
1
)
{
LOG
(
ERROR
)
<<
"This op("
<<
op_name
()
<<
") can only have one predecessor op, but received "
<<
pre_node_names
.
size
();
LOG
(
ERROR
)
<<
"This op("
<<
op_name
()
<<
") can only have one predecessor op, but received "
<<
pre_node_names
.
size
();
return
-
1
;
}
const
std
::
string
pre_name
=
pre_node_names
[
0
];
...
...
@@ -51,6 +53,8 @@ int GeneralTextResponseOp::inference() {
return
-
1
;
}
// TODO: multi-predecessor
/*
const TensorVector *in = &input_blob->tensor_vector;
int batch_size = input_blob->GetBatchSize();
...
...
@@ -133,7 +137,7 @@ int GeneralTextResponseOp::inference() {
res->add_profile_time(start);
res->add_profile_time(end);
}
*/
return
0
;
}
DEFINE_OP
(
GeneralTextResponseOp
);
...
...
core/general-server/proto/general_model_service.proto
浏览文件 @
ab645d8c
...
...
@@ -46,6 +46,7 @@ message Response {
message
ModelOutput
{
repeated
FetchInst
insts
=
1
;
repeated
int64
profile_time
=
2
;
optional
string
engine_name
=
3
;
}
service
GeneralModelService
{
...
...
core/sdk-cpp/proto/general_model_service.proto
浏览文件 @
ab645d8c
...
...
@@ -46,6 +46,7 @@ message Response {
message
ModelOutput
{
repeated
FetchInst
insts
=
1
;
repeated
int64
profile_time
=
2
;
optional
string
engine_name
=
3
;
}
service
GeneralModelService
{
...
...
python/paddle_serving_client/__init__.py
浏览文件 @
ab645d8c
...
...
@@ -247,8 +247,8 @@ class Client(object):
return
None
multi_result_map_batch
=
[]
model_
num
=
result_batch
.
model_num
()
for
mi
in
range
(
model_num
):
model_
engine_names
=
result_batch
.
get_engine_names
()
for
mi
,
engine_name
in
enumerate
(
model_engine_names
):
result_map_batch
=
[]
result_map
=
{}
for
i
,
name
in
enumerate
(
fetch_names
):
...
...
@@ -263,21 +263,23 @@ class Client(object):
result_map_batch
.
append
(
single_result
)
multi_result_map_batch
.
append
(
result_map_batch
)
if
model_num
==
1
:
ret
=
None
if
len
(
model_engine_names
)
==
1
:
if
batch_size
==
1
:
return
[
multi_result_map_batch
[
0
][
0
],
self
.
result_handle_
.
variant_tag
()
]
if
need_variant_tag
else
multi_result_map_batch
[
0
][
0
]
ret
=
multi_result_map_batch
[
0
][
0
]
else
:
return
[
multi_result_map_batch
[
0
],
self
.
result_handle_
.
variant_tag
()
]
if
need_variant_tag
else
multi_result_map_batch
[
0
]
ret
=
multi_result_map_batch
[
0
]
else
:
ret
=
{}
if
batch_size
==
1
:
multi_result_map
=
[
result_map_batch
[
0
]
for
result_map_batch
in
multi_result_map_batch
]
return
[
multi_result_map
,
self
.
result_handle_
.
variant_tag
()
]
if
need_variant_tag
else
multi_result_map
for
mi
,
result_map_batch
in
enumerate
(
multi_result_map_batch
):
ret
[
model_engine_names
[
mi
]]
=
result_map_batch
[
0
]
else
:
return
[
multi_result_map_batch
,
self
.
result_handle_
.
variant_tag
()
]
if
need_variant_tag
else
multi_result_map_batch
for
mi
,
result_map_batch
in
enumerate
(
multi_result_map_batch
):
ret
[
model_engine_names
[
mi
]]
=
result_map_batch
return
[
ret
,
self
.
result_handle_
.
variant_tag
()
]
if
need_variant_tag
else
ret
def
release
(
self
):
self
.
client_handle_
.
destroy_predictor
()
self
.
client_handle_
=
None
python/paddle_serving_server/__init__.py
浏览文件 @
ab645d8c
...
...
@@ -21,6 +21,7 @@ import socket
import
paddle_serving_server
as
paddle_serving_server
from
.version
import
serving_server_version
from
contextlib
import
closing
import
collections
class
OpMaker
(
object
):
...
...
@@ -36,18 +37,37 @@ class OpMaker(object):
"general_dist_kv_quant_infer"
:
"GeneralDistKVQuantInferOp"
,
"general_copy"
:
"GeneralCopyOp"
}
self
.
node_name_suffix_
=
collections
.
defaultdict
(
int
)
# currently, inputs and outputs are not used
# when we have OpGraphMaker, inputs and outputs are necessary
def
create
(
self
,
node_type
,
nod
e_name
=
None
,
inputs
=
[],
outputs
=
[]):
def
create
(
self
,
node_type
,
engin
e_name
=
None
,
inputs
=
[],
outputs
=
[]):
if
node_type
not
in
self
.
op_dict
:
raise
Exception
(
"Op type {} is not supported right now"
.
format
(
node_type
))
node
=
server_sdk
.
DAGNode
()
node
.
name
=
node_name
if
node_name
is
not
None
else
"{}_op"
.
format
(
node_type
)
# node.name will be used as the infer engine name
if
engine_name
:
node
.
name
=
engine_name
else
:
node
.
name
=
'{}_{}'
.
format
(
node_type
,
self
.
node_name_suffix_
[
node_type
])
self
.
node_name_suffix_
[
node_type
]
+=
1
node
.
type
=
self
.
op_dict
[
node_type
]
return
node
if
inputs
:
for
dep_node_str
in
inputs
:
dep_node
=
server_sdk
.
DAGNode
()
google
.
protobuf
.
text_format
.
Parse
(
dep_node_str
,
dep_node
)
dep
=
server_sdk
.
DAGNodeDependency
()
dep
.
name
=
dep_node
.
name
dep
.
mode
=
"RO"
node
.
dependencies
.
extend
([
dep
])
# Because the return value will be used as the key value of the
# dict, and the proto object is variable which cannot be hashed,
# so it is processed into a string. This has little effect on
# overall efficiency.
return
google
.
protobuf
.
text_format
.
MessageToString
(
node
)
class
OpSeqMaker
(
object
):
...
...
@@ -56,19 +76,25 @@ class OpSeqMaker(object):
self
.
workflow
.
name
=
"workflow1"
self
.
workflow
.
workflow_type
=
"Sequence"
def
add_op
(
self
,
node
,
dependent_nodes
=
None
):
if
dependent_nodes
is
None
:
if
len
(
self
.
workflow
.
nodes
)
>=
1
:
def
add_op
(
self
,
node_str
):
node
=
server_sdk
.
DAGNode
()
google
.
protobuf
.
text_format
.
Parse
(
node_str
,
node
)
if
len
(
node
.
dependencies
)
>
1
:
raise
Exception
(
'Set more than one predecessor for op in OpSeqMaker is not allowed.'
)
if
len
(
self
.
workflow
.
nodes
)
>=
1
:
if
len
(
node
.
dependencies
)
==
0
:
dep
=
server_sdk
.
DAGNodeDependency
()
dep
.
name
=
self
.
workflow
.
nodes
[
-
1
].
name
dep
.
mode
=
"RO"
node
.
dependencies
.
extend
([
dep
])
else
:
for
dep_node
in
dependent_nodes
:
dep
=
server_sdk
.
DAGNodeDependency
()
dep
.
name
=
dep_node
.
name
dep
.
mode
=
"RO"
node
.
dependencies
.
extend
([
dep
]
)
elif
len
(
node
.
dependencies
)
==
1
:
if
node
.
dependencies
[
0
].
name
!=
self
.
workflow
.
nodes
[
-
1
].
name
:
raise
Exception
(
'You must add op in order in OpSeqMaker. The previous op is {}, but the current op is followed by {}.'
.
format
(
node
.
dependencies
[
0
].
name
,
self
.
workflow
.
nodes
[
-
1
].
name
)
)
self
.
workflow
.
nodes
.
extend
([
node
])
def
get_op_sequence
(
self
):
...
...
@@ -77,6 +103,24 @@ class OpSeqMaker(object):
return
workflow_conf
class
OpGraphMaker
(
object
):
def
__init__
(
self
):
self
.
workflow
=
server_sdk
.
Workflow
()
self
.
workflow
.
name
=
"workflow1"
# Currently, SDK only supports "Sequence"
self
.
workflow
.
workflow_type
=
"Sequence"
def
add_op
(
self
,
node_str
):
node
=
server_sdk
.
DAGNode
()
google
.
protobuf
.
text_format
.
Parse
(
node_str
,
node
)
self
.
workflow
.
nodes
.
extend
([
node
])
def
get_op_graph
(
self
):
workflow_conf
=
server_sdk
.
WorkflowConf
()
workflow_conf
.
workflows
.
extend
([
self
.
workflow
])
return
workflow_conf
class
Server
(
object
):
def
__init__
(
self
):
self
.
server_handle_
=
None
...
...
@@ -100,7 +144,7 @@ class Server(object):
self
.
cur_path
=
os
.
getcwd
()
self
.
use_local_bin
=
False
self
.
mkl_flag
=
False
self
.
model_config_paths
=
None
self
.
model_config_paths
=
None
# for multi-model in a workflow
def
set_max_concurrency
(
self
,
concurrency
):
self
.
max_concurrency
=
concurrency
...
...
@@ -117,6 +161,9 @@ class Server(object):
def
set_op_sequence
(
self
,
op_seq
):
self
.
workflow_conf
=
op_seq
def
set_op_graph
(
self
,
op_graph
):
self
.
workflow_conf
=
op_graph
def
set_memory_optimize
(
self
,
flag
=
False
):
self
.
memory_optimization
=
flag
...
...
@@ -129,12 +176,6 @@ class Server(object):
if
self
.
model_toolkit_conf
==
None
:
self
.
model_toolkit_conf
=
server_sdk
.
ModelToolkitConf
()
if
isinstance
(
model_config_paths
,
str
):
model_config_paths
=
{
"general_infer_op"
:
model_config_paths
}
elif
not
isinstance
(
model_config_paths
,
dict
):
raise
Exception
(
"model_config_paths can not be {}"
.
format
(
type
(
model_config_paths
)))
for
engine_name
,
model_config_path
in
model_config_paths
.
items
():
engine
=
server_sdk
.
EngineDesc
()
engine
.
name
=
engine_name
...
...
@@ -188,11 +229,33 @@ class Server(object):
fout
.
write
(
str
(
pb_obj
))
def
load_model_config
(
self
,
model_config_paths
):
self
.
model_config_paths
=
model_config_paths
path
=
model_config_paths
.
items
()[
0
][
1
]
self
.
model_config_path
=
path
# At present, Serving needs to configure the model path in
# the resource.prototxt file to determine the input and output
# format of the workflow. To ensure that the input and output
# of multiple models are the same
workflow_oi_config_path
=
None
if
isinstance
(
model_config_paths
,
str
):
# the default engine name is "general_infer"
self
.
model_config_paths
=
{
"general_infer_0"
:
model_config_paths
}
workflow_oi_config_path
=
self
.
model_config_paths
[
"general_infer_0"
]
elif
isinstance
(
model_config_paths
,
dict
):
self
.
model_config_paths
=
{}
for
node_str
,
path
in
model_config_paths
.
items
():
node
=
server_sdk
.
DAGNode
()
google
.
protobuf
.
text_format
.
Parse
(
node_str
,
node
)
self
.
model_config_paths
[
node
.
name
]
=
path
print
(
"You have specified multiple model paths, please ensure "
"that the input and output of multiple models are the same."
)
workflow_oi_config_path
=
self
.
model_config_paths
.
items
()[
0
][
1
]
else
:
raise
Exception
(
"The type of model_config_paths must be str or "
"dict({op: model_path}), not {}."
.
format
(
type
(
model_config_paths
)))
self
.
model_conf
=
m_config
.
GeneralModelConfig
()
f
=
open
(
"{}/serving_server_conf.prototxt"
.
format
(
path
),
'r'
)
f
=
open
(
"{}/serving_server_conf.prototxt"
.
format
(
workflow_oi_config_path
),
'r'
)
self
.
model_conf
=
google
.
protobuf
.
text_format
.
Merge
(
str
(
f
.
read
()),
self
.
model_conf
)
# check config here
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录