framework.py 126.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
M
minqiyang 已提交
31
from .. import compat as cpt
32
from .proto import framework_pb2
P
peizhilin 已提交
33

34
from . import core
35
from . import unique_name
Y
Yu Yang 已提交
36

37
__all__ = [
38 39 40 41
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
42
    'name_scope',
S
sneaxiy 已提交
43 44 45
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
46
    'in_dygraph_mode',
C
chengduo 已提交
47
    'is_compiled_with_cuda',
48
]
Y
Yu Yang 已提交
49

Q
qiaolongfei 已提交
50 51 52 53
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
54 55
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
56 57
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
58 59


L
lujun 已提交
60
def in_dygraph_mode():
L
lujun 已提交
61 62 63 64 65 66 67 68 69
    """
    Check program status(tracer), Whether it runs in dygraph mode or not

    Returns:
        out (boolean): True if the program is running in dynamic graph mode

    Examples:
        .. code-block:: python

70
            import paddle.fluid as fluid
L
lujun 已提交
71 72 73 74
            if fluid.in_dygraph_mode():
                pass

    """
L
lujun 已提交
75
    return _dygraph_tracer_ is not None
76 77


L
lujun 已提交
78 79
def _dygraph_tracer():
    return _dygraph_tracer_
80

W
Wu Yi 已提交
81

M
minqiyang 已提交
82
def _current_expected_place():
L
lujun 已提交
83
    return _dygraph_current_expected_place_
M
minqiyang 已提交
84 85


S
sneaxiy 已提交
86
def _cpu_num():
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    if "CPU_NUM" not in os.environ.keys():
        sys.stderr.write(
            'The CPU_NUM is not specified, you should set CPU_NUM in '
            'the environment variable list, i.e export CPU_NUM=1. CPU_NUM '
            'indicates that how many CPUPlace are used in the current task.\n'
            '!!! The default number of CPUPlaces is 1.\n\n')
        os.environ['CPU_NUM'] = str(1)
    cpu_num = os.environ.get('CPU_NUM')
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
105 106


C
chengduo 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
122
def cuda_places(device_ids=None):
L
lujun 已提交
123
    """
S
add doc  
sneaxiy 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    Create a list of :code:`fluid.CUDAPlace` objects.

    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_gpus` would be checked first. If
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
    gpu places would be returned.  

    If :code:`device_ids` is not None, it should be the device
    ids of gpus. For example, if :code:`device_ids=[0,1,2]`, 
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
    Args: 
        device_ids (None|list(int)|tuple(int)): gpu device id list.

    Returns:
        out (list(fluid.CUDAPlace)): gpu place list.
L
lujun 已提交
143 144 145 146

    Examples:
        .. code-block:: python

147
            import paddle.fluid as fluid
L
lujun 已提交
148 149 150
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
151 152 153
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
154
        device_ids = _cuda_ids()
S
sneaxiy 已提交
155 156 157 158 159 160
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
161
    """
S
add doc  
sneaxiy 已提交
162 163 164 165
    Create a list of :code:`fluid.CPUPlace` objects.
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
166 167
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
S
add doc  
sneaxiy 已提交
168 169 170 171 172 173

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CPUPlace)): cpu place list.
L
lujun 已提交
174 175 176 177

    Examples:
        .. code-block:: python

178
            import paddle.fluid as fluid
L
lujun 已提交
179 180 181
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
182 183 184 185 186 187
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
188
    """
S
add doc  
sneaxiy 已提交
189 190 191 192 193 194 195 196 197 198 199 200
    Create a list of :code:`fluid.CUDAPinnedPlace` objects.

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CUDAPinnedPlace)): cuda pinned place list.
L
lujun 已提交
201 202 203 204

    Examples:
        .. code-block:: python

205
            import paddle.fluid as fluid
L
lujun 已提交
206 207 208 209 210
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
211 212 213 214 215 216 217
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
244
@signature_safe_contextmanager
245 246 247 248 249 250 251 252 253 254 255 256
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
257

258
          import paddle.fluid as fluid
259 260 261 262 263 264 265 266 267 268 269
          with fluid.name_scope("s1"):
              a = fluid.layers.data(name='data', shape=[1], dtype='int32')
              b = a + 1
              with fluid.name_scope("s2"):
                  c = b * 1
              with fluid.name_scope("s3"):
                  d = c / 1
          with fluid.name_scope("s1"):
              f = fluid.layers.pow(d, 2.0)
          with fluid.name_scope("s4"):
              g = f - 1
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
289 290 291
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
292 293 294 295


def grad_var_name(var_name):
    """
296 297
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
298 299 300
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
301

302
def convert_np_dtype_to_dtype_(np_dtype):
303 304
    """
    Convert the data type in numpy to the data type in Paddle
305

306
    Args:
307
        np_dtype(np.dtype): the data type in numpy.
308

309 310
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
311 312

    """
313 314
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
315
        return core.VarDesc.VarType.FP32
316
    elif dtype == np.float64:
317
        return core.VarDesc.VarType.FP64
318
    elif dtype == np.float16:
319
        return core.VarDesc.VarType.FP16
320
    elif dtype == np.int32:
321
        return core.VarDesc.VarType.INT32
322
    elif dtype == np.int16:
323
        return core.VarDesc.VarType.INT16
324
    elif dtype == np.int64:
325
        return core.VarDesc.VarType.INT64
326
    elif dtype == np.bool:
327
        return core.VarDesc.VarType.BOOL
328 329
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
330 331
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
332 333
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
334
    else:
M
minqiyang 已提交
335
        raise ValueError("Not supported numpy dtype %s" % dtype)
336 337 338


def dtype_is_floating(dtype):
339 340 341
    """
    Check the data type is floating or not.
    Args:
342
        dtype(np.dtype|core.VarDesc.VarType): data type.
343 344 345 346 347
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
348
    if not isinstance(dtype, core.VarDesc.VarType):
349 350
        dtype = convert_np_dtype_to_dtype_(dtype)

351 352 353 354
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
355 356


Y
Yang Yang(Tony) 已提交
357
def _debug_string_(proto, throw_on_error=True):
358 359 360 361 362 363 364 365 366 367 368
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
369
    error_fields = list()
Y
Yang Yang(Tony) 已提交
370
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
371 372
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
373 374 375
    return proto.__str__()


X
Xin Pan 已提交
376
class Variable(object):
377
    """
378 379 380
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
381
    two variables in different blocks could have the same name.
382

383 384
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
385

386
    Most of a Variable's member variables can be setted to be None. It mean
387
    it is not available or will be specified later.
388 389

    Args:
390
        block(Block): The block that the variable belongs to.
391 392
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
393 394
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
395
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
396
            Some kinds of variable do not contain shape, just set it to None.
397 398 399
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
400
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
401
            series data.
402
            Default: None
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

420
            import paddle.fluid as fluid
421 422 423 424 425
            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
426 427
    """

Y
Yu Yang 已提交
428 429
    def __init__(self,
                 block,
Y
Yu Yang 已提交
430
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
431 432 433 434
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
435
                 capacity=None,
Q
QI JUN 已提交
436
                 persistable=None,
F
fengjiayi 已提交
437
                 error_clip=None,
Y
Yu Yang 已提交
438
                 stop_gradient=False,
F
fengjiayi 已提交
439
                 is_data=False,
Y
Yu Yang 已提交
440
                 **kwargs):
Y
Yu Yang 已提交
441 442
        self.block = block
        if name is None:
Y
Yu Yang 已提交
443
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
444

Y
Yu Yang 已提交
445
        if dtype is not None:
446
            if not isinstance(dtype, core.VarDesc.VarType):
447
                dtype = convert_np_dtype_to_dtype_(dtype)
448

L
lujun 已提交
449
        if in_dygraph_mode():
M
minqiyang 已提交
450
            # record vars in tracer rather than blocks
M
minqiyang 已提交
451 452
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
453 454 455
                self._ivar = core.VarBase(
                    name, dtype if dtype else core.VarDesc.VarType.FP32,
                    list(shape) if shape else [],
X
fix  
Xin Pan 已提交
456 457
                    _current_expected_place(), stop_gradient, True
                    if persistable else False)
M
minqiyang 已提交
458
            if persistable:
L
lujun 已提交
459
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
460
            self.op = None
M
minqiyang 已提交
461
        else:
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
534
            self.block.vars[name] = self
535
            self.op = None
536
            self._stop_gradient = stop_gradient
537
            self.is_data = is_data
Y
Yu Yang 已提交
538

539
    def numpy(self):
M
minqiyang 已提交
540
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
541
        return np.array(new_ivar.value().get_tensor())
542

543 544
    def backward(self, backward_strategy=None):
        from .dygraph import BackwardStrategy
545
        if backward_strategy is None:
546 547
            backward_strategy = BackwardStrategy()
            backward_strategy.sort_sum_gradient = False
548 549 550

        self._ivar._run_backward(backward_strategy)
        _dygraph_tracer()._clear_ops()
551

552
    def gradient(self):
553 554
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
555

556
    def clear_gradient(self):
X
Xin Pan 已提交
557
        self._ivar._clear_gradient()
X
Xin Pan 已提交
558

559
    def __str__(self):
Y
Yang Yang(Tony) 已提交
560 561
        return self.to_string(True)

F
update  
fengjiayi 已提交
562
    def to_string(self, throw_on_error, with_details=False):
563 564 565 566
        """
        Get debug string.

        Args:
567 568
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
569
            with_details(bool): more details about variables and parameters
570 571
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
572

573 574
        Returns:
            str: The debug string.
575
        """
L
lujun 已提交
576
        if in_dygraph_mode():
L
lujun 已提交
577
            # TODO(panyx0718): add more dygraph debug info.
578 579 580
            return 'name %s, dtype: %s shape: %s %s' % (
                self.name, self.dtype, self.shape,
                str(self._ivar.value().get_tensor()))
581

F
update  
fengjiayi 已提交
582 583
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
584
        protostr = self.desc.serialize_to_string()
585
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
586 587 588 589
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
590 591
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
592
        return res_str
593 594 595

    __repr__ = __str__

596
    def set_desc(self, input):
597 598 599 600 601 602 603 604 605
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
606 607
        self.desc = input

608
    @property
609
    def stop_gradient(self):
L
lujun 已提交
610
        if in_dygraph_mode():
M
minqiyang 已提交
611 612
            return self._ivar.stop_gradient
        else:
613
            return self._stop_gradient
614

615 616
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
617
        if in_dygraph_mode():
M
minqiyang 已提交
618
            self._ivar.stop_gradient = s
619
        else:
620
            self._stop_gradient = s
621

622 623
    @property
    def persistable(self):
L
lujun 已提交
624
        if in_dygraph_mode():
625 626 627
            return self._ivar.persistable
        else:
            return self.desc.persistable()
628

Y
Yu Yang 已提交
629 630
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
631
        if in_dygraph_mode():
632 633 634
            return self._ivar.persistable
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
635

Y
Yu Yang 已提交
636 637
    @property
    def name(self):
L
lujun 已提交
638
        if in_dygraph_mode():
639 640 641
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
642

T
typhoonzero 已提交
643 644
    @name.setter
    def name(self, new_name):
L
lujun 已提交
645
        if in_dygraph_mode():
646 647 648
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
649

Y
Yu Yang 已提交
650 651 652
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
653
        if in_dygraph_mode():
654 655 656
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
657 658

    @property
F
fengjiayi 已提交
659
    def dtype(self):
L
lujun 已提交
660
        if in_dygraph_mode():
661 662 663
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
664 665 666

    @property
    def lod_level(self):
L
lujun 已提交
667
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
668 669
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
670
        return self.desc.lod_level()
Y
Yu Yang 已提交
671

Y
Yu Yang 已提交
672 673
    @property
    def type(self):
L
lujun 已提交
674
        if in_dygraph_mode():
675 676 677
            return self._ivar.dtype
        else:
            return self.desc.type()
Y
Yu Yang 已提交
678

W
Wu Yi 已提交
679
    def _set_error_clip(self, error_clip):
680 681 682 683 684 685 686 687 688
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
689 690
        self.error_clip = error_clip

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
778
    def _cloneVar(self, copy=False):
779 780
        if not copy:
            return self.block.create_var(
781 782
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
783 784 785 786
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
787
        new_var = self._cloneVar()
788 789 790 791 792 793 794 795 796 797
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
798
        new_var = self._cloneVar()
799 800 801 802 803 804 805 806 807 808
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
809
                return self._cloneVar(True)
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
828
                return self._cloneVar(True)
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
            index = int(item)
            if (index > 0 and index >= self.shape[axis])\
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880

        if not isinstance(item, tuple):
            item = [item]

        decrease_axis = []
        slice_axis = []
        slice_start = []
        slice_end = []
        reverse_axis = []

        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
                step = slice_item.step if slice_item.step else 1

                assert (step == 1 or step == -1)

                if step == -1:
                    reverse_axis.append(dim)
                    assert (start is None and end is None)

                if start is None and end is None:
                    continue

                if start is None:
                    start = 0

                if end is None:
                    end = 10000000

                slice_axis.append(dim)
                slice_start.append(start)
                slice_end.append(end)
881
            else:
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
                # int
                decrease_axis.append(dim)
                slice_axis.append(dim)
                slice_start.append(slice_item)
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

        out = self
        if len(slice_axis) > 0:
            # append slice_op here

            slice_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice"),
                dtype=self.dtype)

            self.block.append_op(
                type="slice",
                inputs={'Input': [out]},
                outputs={'Out': [slice_out_var]},
                attrs={
                    'axes': slice_axis,
                    'starts': slice_start,
                    'ends': slice_end,
                    'decrease_axis': decrease_axis
                })

            out = slice_out_var

        if len(reverse_axis) > 0:
            reverse_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice_reverse"),
                dtype=self.dtype)
            self.block.append_op(
                type="reverse",
                inputs={'X': out},
                outputs={'Out': [reverse_out_var]},
                attrs={'axis': reverse_axis})

            out = reverse_out_var

        return out
925

Y
Yu Yang 已提交
926

F
fengjiayi 已提交
927 928 929
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
930

931 932
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
933 934 935 936
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
937
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
938 939 940 941 942
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
943 944 945 946
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
947 948 949 950 951 952 953 954 955
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
956
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
957 958 959 960 961 962
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
963 964 965 966 967 968 969 970
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
971 972
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
973 974
        return self.op_proto_map[type]

975 976 977 978
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
979
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
980 981
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
982 983
        }

F
fengjiayi 已提交
984

X
Xin Pan 已提交
985
class Operator(object):
986
    """
987 988 989 990 991 992 993
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
994
        type(str): The type of operator. Default None.
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1015
        Block.append_op or Block._prepend_op instead.
1016 1017 1018 1019

    Examples:
        .. code-block:: python

1020
            import paddle.fluid as fluid
1021 1022 1023 1024 1025 1026
            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1027
    """
1028
    OP_WITHOUT_KERNEL_SET = {
1029 1030 1031
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
        'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id'
1032
    }
1033

Y
Yu Yang 已提交
1034 1035
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1036
                 desc,
Y
Yu Yang 已提交
1037 1038 1039
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1040
                 attrs=None):
L
lujun 已提交
1041
        if in_dygraph_mode():
1042 1043
            if type is None:
                raise ValueError(
1044
                    "`type` to initialized an Operator can not be None.")
1045
            self.iop = core.OpBase(type)
M
minqiyang 已提交
1046
            self.previous_ops = []
M
minqiyang 已提交
1047

M
minqiyang 已提交
1048
            self.attrs = attrs if attrs else {}
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1063
                )] = self.block.program._op_role
1064 1065 1066

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1067 1068
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1069 1070 1071 1072 1073 1074 1075 1076

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1077
                    "`type` to initialized an Operator can not be None.")
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1109
                        for index, arg in enumerate(in_args):
1110 1111 1112 1113
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1114
                            elif isinstance(arg, Variable):
1115
                                in_arg_names.append(cpt.to_text(arg.name))
1116 1117 1118 1119
                            else:
                                raise ValueError(
                                    "not suprt args type , should be[ string_type, binary_type, Varibale]"
                                )
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1146
                        if not in_dygraph_mode():
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1166
    def _has_kernel(self, op_type):
1167 1168
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1169
    def to_string(self, throw_on_error):
1170
        """
1171 1172
        Get debug string.

1173
        Args:
1174 1175
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1176

1177 1178
        Returns:
            str: The debug string.
1179 1180

        """
1181
        protostr = self.desc.serialize_to_string()
1182
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1183 1184 1185 1186
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1187 1188 1189

    __repr__ = __str__

F
fengjiayi 已提交
1190 1191
    @property
    def type(self):
L
lujun 已提交
1192
        if in_dygraph_mode():
1193 1194 1195
            return self.iop.type
        else:
            return self.desc.type()
F
fengjiayi 已提交
1196 1197

    def input(self, name):
1198
        """
1199
        Get the input arguments according to the input parameter name.
1200

1201 1202
        Args:
            name(str): The input parameter name.
1203

1204 1205 1206
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1207
        """
F
fengjiayi 已提交
1208 1209
        return self.desc.input(name)

W
Wu Yi 已提交
1210
    def _rename_input(self, old_name, new_name):
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1221
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1222

W
Wu Yi 已提交
1223
    def _rename_output(self, old_name, new_name):
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1234
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1235

F
fengjiayi 已提交
1236 1237 1238 1239
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1240 1241 1242 1243 1244 1245 1246 1247
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1248
    def output(self, name):
1249
        """
1250
        Get output arguments by the output parameter name.
1251

1252 1253
        Args:
            name(str): The output parameter name.
1254

1255 1256 1257
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1258
        """
F
fengjiayi 已提交
1259 1260 1261 1262 1263 1264
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1265 1266 1267 1268 1269 1270 1271 1272
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1273
    def has_attr(self, name):
1274
        """
1275 1276
        Whether this Operator has the attribute with name or not.

1277
        Args:
1278
            name(str): the attribute name.
1279

1280 1281
        Returns:
            bool: True if has this attribute.
1282 1283

        """
F
fengjiayi 已提交
1284 1285 1286
        return self.desc.has_attr(name)

    def attr_type(self, name):
1287
        """
1288
        Get the type of attribute by attribute's name.
1289

1290 1291
        Args:
            name(str): the attribute name.
1292

1293 1294
        Returns:
            core.AttrType: the attribute type.
1295
        """
F
fengjiayi 已提交
1296 1297
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1298
    def _set_attr(self, name, val):
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1309 1310
        self._update_desc_attr(name, val)

1311 1312 1313
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1325 1326
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1327 1328
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1329
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1330 1331 1332 1333
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1334
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1335

F
fengjiayi 已提交
1336 1337 1338 1339 1340
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1341
        """
1342 1343
        Get the attribute by name.

1344
        Args:
1345
            name(str): the attribute name.
1346

1347 1348
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1349 1350
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1351
        return self.desc.attr(name)
Y
Yu Yang 已提交
1352

W
Wu Yi 已提交
1353
    def _block_attr_id(self, name):
1354
        """
G
gongweibao 已提交
1355
        Get the block attribute's id by name.
1356

1357 1358
        Args:
            name(str): the attribute name.
1359

1360 1361
        Returns:
            int: the block index.
1362
        """
W
Wu Yi 已提交
1363
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1364

W
Wu Yi 已提交
1365
    def _block_attr(self, name):
G
gongweibao 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1376
        id = self._block_attr_id(name)
G
gongweibao 已提交
1377 1378 1379
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1380
    def _blocks_attr(self, name):
G
gongweibao 已提交
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1391
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1392 1393 1394 1395 1396
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1397
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1408
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1409

J
JiayiFeng 已提交
1410
    def all_attrs(self):
F
fengjiayi 已提交
1411
        """
1412 1413 1414
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1415
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1416 1417 1418 1419
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1420 1421
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1422
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1423 1424 1425
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1426
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1427 1428 1429 1430
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1431 1432
        return attr_map

Y
Yu Yang 已提交
1433

Y
Yu Yang 已提交
1434
class Block(object):
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1449
        use `Program._create_block()` to create a block.
1450 1451 1452 1453

    Examples:
        .. code-block:: python

1454 1455 1456
            import paddle.fluid as fluid

            cur_program = fluid.Program()
1457 1458 1459 1460 1461 1462 1463 1464 1465
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1466
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1467
        self.desc = program.desc.block(idx)
1468
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1469
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1470
        self.program = program
1471
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1472

1473
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1474 1475
        return self.to_string(True)

F
fengjiayi 已提交
1476 1477
    def to_string(self, throw_on_error, with_details=False):
        """
1478 1479
        Get debug string.

F
fengjiayi 已提交
1480 1481
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1482
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1483
            with_details(bool): more details about variables and parameters
1484 1485
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1486

1487 1488
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1489 1490 1491 1492
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1493
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1494 1495
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1496
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1497
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1498
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1499
            for op in self.ops:
F
fengjiayi 已提交
1500 1501
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1502 1503 1504
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1505 1506
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1507 1508
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1509 1510 1511

    __repr__ = __str__

Y
Yu Yang 已提交
1512 1513
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1514
        return self.desc.parent
Y
Yu Yang 已提交
1515

Y
Yu Yang 已提交
1516 1517 1518 1519
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1520
    def _set_forward_block_idx(self, idx):
1521 1522 1523 1524 1525 1526 1527 1528 1529
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1530
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1531

Y
Yu Yang 已提交
1532 1533
    @property
    def idx(self):
Y
Yu Yang 已提交
1534
        return self.desc.id
Y
Yu Yang 已提交
1535

Q
Qiao Longfei 已提交
1536
    def var(self, name):
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1550
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1551 1552 1553
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1554 1555
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1556
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1557
        return v
Q
Qiao Longfei 已提交
1558

X
Xin Pan 已提交
1559
    def _find_var_recursive(self, name):
1560 1561 1562 1563 1564 1565 1566
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1567
            Variable: the Variable with the giving name. Or None if not found.
1568
        """
Y
Yu Yang 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1593
        return None
Y
Yu Yang 已提交
1594

X
Xin Pan 已提交
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1614

Q
Qiao Longfei 已提交
1615
    def all_parameters(self):
1616
        return list(self.iter_parameters())
1617

1618
    def iter_parameters(self):
M
minqiyang 已提交
1619
        return (item[1] for item in six.iteritems(self.vars)
1620
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1621

Y
Yu Yang 已提交
1622
    def create_var(self, *args, **kwargs):
1623
        var = Variable(block=self, *args, **kwargs)
1624 1625
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1626
        return var
Y
Yu Yang 已提交
1627

Q
Qiao Longfei 已提交
1628 1629 1630
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1631
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1632 1633
        """
        Rename variable in vars and ops' inputs and outputs
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1646
        """
M
minqiyang 已提交
1647 1648
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1649

T
typhoonzero 已提交
1650
        if not self.has_var(name):
1651
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1652 1653
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1654
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1655 1656 1657 1658 1659 1660 1661
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1662
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1663 1664 1665 1666
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1667
        orig_var_type = v.type
M
minqiyang 已提交
1668
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1669
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1670
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1671
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1672 1673 1674 1675
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1676
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1677 1678 1679 1680 1681 1682 1683
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1684
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1685 1686
            var = Variable(
                self,
T
typhoonzero 已提交
1687
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1688 1689 1690 1691
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1692
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1693 1694 1695
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1696
        self._sync_with_cpp()
1697
        return var
T
typhoonzero 已提交
1698

W
Wu Yi 已提交
1699 1700
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1701
        self.desc._remove_var(cpt.to_bytes(name))
1702 1703
        del self.vars[name]

Y
Yu Yang 已提交
1704 1705
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1706
        param = Parameter(global_block, *args, **kwargs)
1707
        if 'initializer' in kwargs:
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1728
        return param
Y
Yu Yang 已提交
1729

Y
Yu Yang 已提交
1730
    def append_op(self, *args, **kwargs):
1731 1732 1733 1734 1735 1736
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
1737
        if in_dygraph_mode():
1738 1739 1740
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
1741 1742 1743 1744 1745
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
1746

1747 1748 1749 1750
            op = Operator(
                block=self,
                desc=None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1751 1752
                inputs=None,
                outputs=None,
1753
                attrs=attrs)
1754

M
minqiyang 已提交
1755 1756 1757
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
1758
            # currently, we only support stop_gradient in dygraph mode.
M
minqiyang 已提交
1759 1760 1761 1762
            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1763
        else:
1764 1765 1766 1767 1768 1769 1770 1771 1772
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
1773
            self.ops.append(op)
M
minqiyang 已提交
1774

1775 1776
        return op

W
Wu Yi 已提交
1777
    def _insert_op(self, index, *args, **kwargs):
1778 1779 1780 1781 1782 1783 1784 1785 1786
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1787 1788
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1789 1790 1791 1792
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1793
    def _remove_op(self, index):
1794 1795 1796 1797 1798 1799 1800 1801 1802
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1803 1804
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1805 1806
        del self.ops[index]

W
Wu Yi 已提交
1807
    def _slice_ops(self, start, end):
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1818
        return self.ops[start:end]
Y
Yancey1989 已提交
1819

W
Wu Yi 已提交
1820
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
1821
        if in_dygraph_mode():
1822 1823 1824 1825
            op = Operator(
                self,
                None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1826 1827 1828 1829 1830 1831 1832 1833
                inputs=None,
                outputs=None,
                attrs=kwargs.get("attrs", {}))

            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1834
        else:
1835 1836 1837 1838 1839 1840 1841 1842
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1843
            self.ops.insert(0, op)
1844

Y
Yu Yang 已提交
1845 1846
        return op

W
Wu Yi 已提交
1847
    def _sync_with_cpp(self):
1848
        """
1849 1850
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1851
        """
Q
Qiao Longfei 已提交
1852 1853 1854 1855 1856
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1857
        # sync variables removed from c++ end
1858
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1859
            if not self.desc.find_var(cpt.to_bytes(var)):
1860 1861
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1862
        # sync operators from cpp
1863 1864 1865 1866
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1883 1884 1885 1886 1887

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1888
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1889 1890 1891 1892 1893 1894 1895

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1909 1910 1911 1912
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1913
    def _copy_param_info_from(self, other):
1914
        """
1915 1916
        Copy the information of parameters from the other block.

1917
        Args:
1918 1919 1920 1921 1922
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1923 1924 1925 1926 1927

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1928 1929
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1930
        for p in other.iter_parameters():
1931 1932 1933
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1934
                raise ValueError("_copy_param_info_from should be invoked with "
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1947
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1948
                error_clip=p.error_clip,
1949 1950 1951
                name=v.name)
            self.vars[new_p.name] = new_p

1952
    def _clone_variable(self, var, force_persistable=True):
1953 1954
        """
        Clone a variable into current block.
1955

1956 1957
        Args:
            var: the variable to be cloned.
1958 1959 1960
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
1961 1962

        Returns:
1963
            Variable: the new  variable cloned from 'var' in current block.
1964 1965
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1966 1967 1968 1969 1970
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1971 1972
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1973
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1974 1975 1976 1977 1978 1979
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
1980
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1981
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1982 1983 1984 1985 1986 1987 1988
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
1989
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1990
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1991
        return ret_var
1992

Y
Yu Yang 已提交
1993

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2089
    def remove_input_by_id(self, node_id):
2090 2091 2092 2093 2094 2095
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2096
        self.node.remove_input(node_id)
2097

2098
    def remove_input(self, node):
2099 2100 2101 2102
        """
        Remove a node from inputs.

        Args:
2103
            node(IrNode): the node being removed.
2104
        """
2105
        self.node.remove_input(node.node)
2106

2107
    def append_input(self, node):
2108 2109 2110 2111
        """
        Append a node in inputs.

        Args:
2112
            node(IrNode): the node being appended.
2113
        """
2114
        self.node.append_input(node.node)
2115 2116 2117 2118 2119 2120 2121 2122

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2123
    def remove_output_by_id(self, node_id):
2124 2125 2126 2127 2128 2129
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2130
        self.node.remove_output(node_id)
2131

2132
    def remove_output(self, node):
2133 2134 2135 2136
        """
        Remove a node from outputs.

        Args:
2137
            node(IrNode): the node being removed.
2138
        """
2139
        self.node.remove_output(node.node)
2140

2141
    def append_output(self, node):
2142 2143 2144 2145
        """
        Append a node in outputs.

        Args:
2146
            node(IrNode): the node being appended.
2147
        """
2148
        self.node.append_output(node.node)
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
            all(isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
            isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


2403 2404
class IrGraph(object):
    """
2405
    Python IrGraph. Beneath it is a core.Graph, which is used for
2406
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
2407 2408
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
2409 2410 2411 2412
    """

    def __init__(self, graph, for_test=False):
        """
2413 2414
        Construct an IrGraph using core.Graph.

2415 2416 2417 2418 2419 2420 2421 2422 2423
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

2424 2425 2426 2427
    def clone(self):
        """
        Create a new and duplicated IrGraph.

2428 2429 2430
        Warns:
            The method only clones the graph structure, not its attributes.

2431 2432 2433
        Returns:
            IrGraph: A new and duplicated graph.
        """
2434
        g = self.graph.clone()
2435 2436
        return IrGraph(g, self._for_test)

2437
    def is_test(self):
2438 2439 2440
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2441 2442
        return self._for_test

W
WangZhen 已提交
2443
    def all_nodes(self):
2444 2445 2446
        """
        Return all nodes included in the graph as a set.
        """
2447
        return {IrNode(node) for node in self.graph.nodes()}
2448

2449
    def all_var_nodes(self):
2450 2451 2452
        """
        Return all variable nodes included in the graph as a set.
        """
2453
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2454

2455
    def all_persistable_nodes(self):
2456 2457 2458
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2459 2460 2461 2462 2463
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
2464
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
2465

2466
    def all_op_nodes(self):
2467 2468 2469
        """
        Return all operator nodes included in the graph as a set.
        """
2470
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
2471

2472
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2484
            IrVarNode: the created persistable variable node.
2485
        """
2486 2487 2488 2489 2490
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2491
        return IrVarNode(self.graph.create_var_node(var_desc))
2492 2493

    def create_var_node(self, name, var_type, shape, var_dtype):
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2505
            IrVarNode: the created variable node.
2506 2507
        """

2508 2509 2510 2511
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2512
        return IrVarNode(self.graph.create_var_node(var_desc))
2513 2514

    def create_var_node_from_desc(self, var_desc):
2515 2516 2517 2518 2519 2520 2521 2522
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2523
            IrVarNode: the created variable node.
2524
        """
2525
        return IrVarNode(self.graph.create_var_node(var_desc))
2526 2527

    def create_op_node(self, op_type, attrs, inputs, outputs):
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2538
            IrOpNode: the created operator node.
2539
        """
2540 2541
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2542
        for attr, value in six.iteritems(attrs):
2543
            self._update_desc_attr(op_desc, attr, value)
2544
        for input_name, var_nodes in six.iteritems(inputs):
2545 2546 2547 2548
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2549
        for output_name, var_nodes in six.iteritems(outputs):
2550 2551 2552 2553
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2554
        return IrOpNode(self.graph.create_op_node(op_desc))
2555 2556

    def create_op_node_from_desc(self, op_desc):
2557 2558 2559 2560 2561 2562 2563
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2564
            IrOpNode: the created operator node.
2565
        """
2566
        return IrOpNode(self.graph.create_op_node(op_desc))
2567 2568

    def update_input_link(self, old_input_node, new_input_node, op_node):
2569 2570 2571 2572
        """
        Update the input's link of a operator node.

        Args:
2573 2574 2575
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2576
        """
2577 2578
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
W
WangZhen 已提交
2579
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2580 2581 2582 2583
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2584
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2585 2586

    def link_to(self, node_in, node_out):
2587 2588 2589 2590
        """
        Connect two nodes.

        Args:
2591 2592
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2593
        """
2594
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2595
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2596 2597
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2598 2599

    def safe_remove_nodes(self, remove_nodes):
2600 2601 2602 2603 2604 2605 2606
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2607
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2608 2609 2610 2611
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2612 2613
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2614

Z
Zhen Wang 已提交
2615 2616 2617 2618 2619 2620 2621 2622
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2623
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
2624 2625 2626 2627
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2628
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
2629 2630 2631
                        ]
                    else:
                        var_nodes[each_var_name].append(
2632 2633
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
2634 2635
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
2636
    def has_circle(self):
2637 2638 2639 2640 2641 2642
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
2643 2644 2645
        return core.has_circle(self.graph)

    def graph_num(self):
2646 2647 2648 2649 2650 2651
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
2652 2653 2654
        return core.graph_num(self.graph)

    def topology_sort(self):
2655 2656 2657 2658 2659 2660
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
2661
            list(IrNode): nodes in topology order.
2662
        """
2663
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
2664
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
2665 2666

    def build_adjacency_list(self):
2667 2668 2669 2670
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
2671
            dict{IrNode: set(IrNode)}: the adjacency list.
2672
        """
2673 2674 2675 2676 2677
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
2678

2679 2680 2681 2682 2683 2684 2685 2686
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
2687
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
2688 2689 2690 2691 2692
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

2693 2694 2695 2696 2697 2698 2699 2700 2701
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

2702
        remove_ctr_vars = set()
2703
        if remove_ctr_var:
2704
            for node in self.all_var_nodes():
2705 2706 2707
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
2708 2709
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

2710 2711
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
2712 2713 2714 2715 2716 2717
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
2729 2730 2731
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
2732
        WARN: When the graph includes backward operator nodes, the
2733 2734 2735 2736 2737 2738
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
2739
        convert_pass = core.get_pass('graph_to_program_pass')
2740 2741
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
2742 2743 2744 2745
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
2773
class Program(object):
D
dzhwinter 已提交
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
2785
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
2786 2787

    Returns:
Y
yuyang18 已提交
2788
        A empty program.
D
dzhwinter 已提交
2789 2790

    Examples:
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
2804 2805 2806

    """

2807 2808
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
2809 2810
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
2811
        self._seed = 0
Y
yuyang18 已提交
2812
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
2813
        self.__op_role_var = []
T
tangwei12 已提交
2814

2815 2816
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
2817
        self._is_distributed = False
2818
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
2819
        self._is_chief = False
2820 2821 2822
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
2823
        self._endpoints = []
2824 2825 2826
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
2827
        self._trainers_endpoints = []
2828
        # the distributed lookup table names
T
tangwei12 已提交
2829
        self._distributed_lookup_table = None
2830 2831 2832

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
2833 2834 2835 2836
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
        self._hierarchical_allreduce_exter_nranks = 0
2837

D
dzhwinter 已提交
2838
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
2839
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
2840
        self.__is_mem_optimized = False
D
dzhwinter 已提交
2841

2842 2843 2844
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
2845
        self._program_config = None
2846

2847 2848 2849
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

2850 2851 2852
        # appending gradients times
        self._appending_grad_times = 0

D
dzhwinter 已提交
2853
    @property
D
dzhwinter 已提交
2854
    def _is_mem_optimized(self):
D
dzhwinter 已提交
2855 2856
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
2857
        return self.__is_mem_optimized
D
dzhwinter 已提交
2858

D
dzhwinter 已提交
2859 2860 2861
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
2862 2863

    @property
2864
    def _op_role(self):
Y
yuyang18 已提交
2865 2866 2867 2868 2869 2870 2871 2872
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
2873
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
2874 2875 2876 2877
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
2878 2879
        return self._current_role

2880 2881
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
2882 2883 2884
        self._current_role = role

    @property
2885
    def _op_role_var(self):
Y
yuyang18 已提交
2886
        """
2887
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
2888

2889
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
2890 2891 2892

        Notes: This is a very low-level API. Users should not use it directly.
        """
2893
        return self.__op_role_var
Y
yuyang18 已提交
2894

2895 2896 2897 2898 2899 2900 2901 2902 2903
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
2904
    @signature_safe_contextmanager
W
Wu Yi 已提交
2905
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2906 2907 2908 2909 2910 2911 2912
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2913
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2914 2915 2916

        Examples:

2917
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
2918
            >>> p, g = backward(...)
W
Wu Yi 已提交
2919
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2920 2921
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2922
        tmp_role = self._current_role
2923
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
2924

Y
yuyang18 已提交
2925 2926
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2927
        self.__op_role_var = [
2928 2929 2930
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2931
        yield
2932
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
2933
        self._current_role = tmp_role
Y
Yu Yang 已提交
2934

S
rename  
sneaxiy 已提交
2935
    @signature_safe_contextmanager
X
Xin Pan 已提交
2936
    def _lr_schedule_guard(self, is_with_opt=False):
2937 2938 2939 2940 2941 2942 2943
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2944 2945 2946 2947
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2948 2949 2950

        Examples:

2951
            >>> import paddle.fluid as fluid
2952 2953 2954 2955
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2956 2957

        tmp_role = self._current_role
2958
        tmp_var = self.__op_role_var
2959

2960 2961
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2962 2963
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2964
        # TODO(typhoonzero): how to set target learning rate var
2965
        self.__op_role_var = []
2966
        yield
2967
        self.__op_role_var = tmp_var
2968
        self._current_role = tmp_role
2969

2970
    def __str__(self):
Y
yuyang18 已提交
2971 2972 2973 2974 2975 2976 2977 2978 2979
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2980 2981
        return self.to_string(True)

F
fengjiayi 已提交
2982 2983 2984
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2985

F
fengjiayi 已提交
2986
        Args:
Y
yuyang18 已提交
2987 2988
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2989

Y
yuyang18 已提交
2990 2991 2992 2993
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2994 2995
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2996 2997 2998 2999

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
3000

3001 3002 3003 3004 3005 3006 3007 3008 3009
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
                print(prog_string)

F
fengjiayi 已提交
3010 3011 3012 3013 3014 3015 3016 3017 3018
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
3019 3020
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3021 3022
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3023

W
Wu Yi 已提交
3024
    def _get_desc(self):
Y
yuyang18 已提交
3025 3026 3027 3028 3029 3030 3031
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3032 3033
        return self.desc

X
version  
Xin Pan 已提交
3034 3035 3036
    def _version(self):
        return self.desc._version()

3037
    def clone(self, for_test=False):
Y
yuyang18 已提交
3038 3039 3040
        """
        Create a new, duplicated program.

3041

Y
yuyang18 已提交
3042 3043 3044 3045
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3046

Y
yuyang18 已提交
3047
        * Set for_test to False when we want to clone the program for training.
3048 3049 3050 3051
        * Set for_test to True when we want to clone the program for testing.
          We will not do any prune on program here, So if you just want an
          forward program for testing, please use :code:`clone` before using
          :code:`Opimizer.minimize`
Y
yuyang18 已提交
3052

3053 3054 3055 3056
        Notes: 
        1. :code:`Program.clone()` method DOES NOT clone :code:`py_reader`.
        2. This API DOES NOT prune any operator. Use
        :code:`clone(for_test=True)` before backward and optimization please. E.g.
L
Luo Tao 已提交
3057

3058 3059 3060 3061 3062
        .. code-block:: python

            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize()
3063 3064

        Args:
Y
yuyang18 已提交
3065 3066
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
3067

D
dzhwinter 已提交
3068
        Returns:
Y
yuyang18 已提交
3069 3070 3071 3072
            Program: The new, duplicated Program object.

        Examples:

3073 3074 3075 3076 3077 3078
        Notes: The Program Descs' order maybe different after :code:`clone` and
        this will not affect your training or testing progress. In the following
        example we give you an simple method :code:`print_prog(program)` to
        print Program Descs inorder to make sure you have same print result
        after :code:`clone`:

3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3174 3175
        """
        if for_test:
X
Xin Pan 已提交
3176
            p = self._inference_optimize(prune_read_op=False)
3177
        else:
3178
            p = Program()
G
gongweibao 已提交
3179 3180
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3181
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3182 3183 3184
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3185 3186

            p._current_role = self._current_role
3187
            p.__op_role_var = self.__op_role_var
3188
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
3189

W
Wu Yi 已提交
3190
            p._sync_with_cpp()
3191

W
Wu Yi 已提交
3192
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3193
        p._copy_data_info_from(self)
3194
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3195
        return p
3196

W
Wu Yi 已提交
3197
    def _prune(self, targets):
Y
yuyang18 已提交
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
3213 3214 3215 3216 3217 3218
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
3219 3220
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
3221
                    # and we need to find the current op that generate this
3222 3223 3224 3225 3226 3227 3228 3229
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

3230
                    t = t.op
3231 3232 3233 3234
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
3235
                else:
3236 3237
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
3238 3239 3240 3241

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
3242 3243 3244
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3245
        res._sync_with_cpp()
3246 3247
        return res

X
Xin Pan 已提交
3248
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
3249
        """
F
fengjiayi 已提交
3250 3251 3252 3253 3254
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

3255
        3. change the :code:`is_test`
Y
yuyang18 已提交
3256 3257 3258
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

3259
        Args:
X
Xin Pan 已提交
3260 3261
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
3262

Y
yuyang18 已提交
3263 3264 3265 3266 3267 3268
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
3269
        res = Program()
3270
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
3271 3272 3273 3274

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
3275
        if prune_read_op:
3276 3277 3278 3279 3280 3281 3282 3283 3284
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
3285
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
3286 3287

        # change all `is_test` attributes to True
M
minqiyang 已提交
3288
        for i in six.moves.range(res.desc.num_blocks()):
3289
            block = res.desc.block(i)
M
minqiyang 已提交
3290
            for j in six.moves.range(block.op_size()):
3291 3292
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
3293
                    op._set_attr('is_test', True)
M
minqiyang 已提交
3294 3295 3296
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3297
        res._sync_with_cpp()
3298 3299
        return res

3300 3301
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
3302 3303 3304 3305 3306 3307 3308
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
3309
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
3310 3311 3312 3313

        Returns:
            Program: A deserialized program desc.
        """
3314 3315
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
3316
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
3317
        p._sync_with_cpp()
3318
        return p
Y
Yu Yang 已提交
3319

3320
    @staticmethod
3321
    def _construct_from_desc(desc):
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
3337 3338
    @property
    def random_seed(self):
Y
yuyang18 已提交
3339 3340 3341 3342 3343
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
                print(random_seed)
                prog.random_seed = 1
                print(prog.random_seed)
Y
yuyang18 已提交
3355
        """
D
dzhwinter 已提交
3356 3357
        return self._seed

Q
qiaolongfei 已提交
3358 3359
    @property
    def num_blocks(self):
Y
yuyang18 已提交
3360 3361
        """
        The number of blocks in this program.
3362 3363 3364 3365 3366 3367 3368 3369 3370

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
Y
yuyang18 已提交
3371
        """
Q
qiaolongfei 已提交
3372 3373
        return self.desc.num_blocks()

D
dzhwinter 已提交
3374 3375 3376 3377 3378 3379
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
3380
    def __repr__(self):
3381
        return self.__str__()
3382

Y
Yu Yang 已提交
3383
    def global_block(self):
Y
yuyang18 已提交
3384 3385
        """
        Get the first block of this program.
3386 3387 3388 3389 3390 3391 3392 3393 3394

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
Y
yuyang18 已提交
3395
        """
Y
Yu Yang 已提交
3396 3397
        return self.blocks[0]

Q
Qiao Longfei 已提交
3398
    def block(self, index):
Y
yuyang18 已提交
3399 3400 3401 3402 3403 3404 3405
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
3406 3407 3408 3409 3410 3411 3412 3413 3414

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
3415
        """
Q
Qiao Longfei 已提交
3416 3417
        return self.blocks[index]

Y
Yu Yang 已提交
3418
    def current_block(self):
Y
yuyang18 已提交
3419 3420 3421
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
3422 3423 3424 3425 3426 3427 3428 3429 3430

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
3431
        """
Y
Yu Yang 已提交
3432 3433
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
3434
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
3445
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
3446 3447 3448
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
3449 3450 3451 3452
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
3453
    def _rollback(self):
Y
yuyang18 已提交
3454 3455 3456 3457 3458
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
3459 3460
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
3461
    def _sync_with_cpp(self):
Y
yuyang18 已提交
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
3472 3473 3474
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
3475
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
3476

W
Wu Yi 已提交
3477
    def _copy_param_info_from(self, other):
3478
        """
3479
        Copy the information of parameters from other program.
D
dzhwinter 已提交
3480

Y
yuyang18 已提交
3481 3482 3483
        Notes: This is a very low level API. Users should not invoke it
        directly.

3484 3485 3486 3487 3488 3489 3490
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3491
            raise TypeError("_copy_param_info_from should be invoked with "
3492 3493 3494
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3495
            raise ValueError("_copy_param_info_from should be invoked with two "
3496
                             "program, with represent the same topology")
W
Wu Yi 已提交
3497
        self.global_block()._copy_param_info_from(other.global_block())
3498

3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
3514
        self._parameters_on_pservers = other._parameters_on_pservers
3515
        self._endpoints = other._endpoints
3516
        self._ps_endpoint = other._ps_endpoint
3517 3518
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
3519
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
3520 3521
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
3522

Y
yuyang18 已提交
3523 3524 3525
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
3526 3527 3528 3529 3530 3531 3532
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3533
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
3534 3535 3536
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3537
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
3538
                             "program, with represent the same topology")
3539
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
3540 3541 3542
            if var.is_data:
                self.global_block().var(var.name).is_data = True

3543
    def list_vars(self):
Y
yuyang18 已提交
3544 3545 3546 3547 3548
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
3560
        """
3561
        for each_block in self.blocks:
3562
            for each_var in list(each_block.vars.values()):
3563 3564
                yield each_var

Y
Yu Yang 已提交
3565

Y
Yu Yang 已提交
3566
class Parameter(Variable):
3567
    """
3568
    Parameter is derived from Variable. A parameter is a persistable
3569
    Variable, and will be updated by optimizers after each iteration.
3570
    The training of a neural network is essentially the updating of
3571 3572
    its parameters.

3573
    Relative to a general Variable, a Parameter has several its own
3574 3575
    member variables:

3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
3588 3589
    """

Y
Yu Yang 已提交
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
3600 3601 3602

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
3603 3604 3605 3606
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

3607 3608
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
3609
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
3610

W
wanghaoshuang 已提交
3611
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
3612

F
fengjiayi 已提交
3613 3614 3615
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
3616 3617 3618
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
3619

F
update  
fengjiayi 已提交
3620 3621 3622 3623 3624 3625 3626 3627
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

3628 3629 3630 3631 3632 3633 3634 3635 3636
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
3637 3638 3639 3640 3641 3642
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
3643
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
3644
            for attr_name in additional_attr:
3645 3646
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
3647 3648
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
3649 3650 3651 3652
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
3653

Y
Yu Yang 已提交
3654
# program is a global instance.
Y
Yu Yang 已提交
3655 3656
_main_program_ = Program()
_startup_program_ = Program()
3657

3658

3659
def default_startup_program():
Y
Yu Yang 已提交
3660
    """
Y
yuyang18 已提交
3661 3662 3663 3664 3665 3666 3667 3668 3669
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
3670

Y
Yu Yang 已提交
3671 3672
    Returns:
        Program: startup program
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
3688
    """
Y
Yu Yang 已提交
3689
    return _startup_program_
3690

3691

3692
def default_main_program():
Y
Yu Yang 已提交
3693
    """
Y
yuyang18 已提交
3694 3695 3696 3697 3698 3699 3700 3701 3702
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
3703

Y
Yu Yang 已提交
3704 3705
    Returns:
        Program: main program
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
            
            # Sample Network:
            data = fluid.layers.data(name='image', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
            print(fluid.default_main_program())
Y
Yu Yang 已提交
3735
    """
Y
Yu Yang 已提交
3736
    return _main_program_
Y
Yu Yang 已提交
3737 3738 3739 3740 3741


def switch_main_program(program):
    """
    Switch the main program to a new program.
3742

Y
Yu Yang 已提交
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
3757
    Switch the startup program to a new program
Y
Yu Yang 已提交
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
3770
@signature_safe_contextmanager
Y
Yu Yang 已提交
3771 3772
def program_guard(main_program, startup_program=None):
    """
3773 3774
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
3775
    variables to the new main programs.
3776

Y
Yu Yang 已提交
3777
    Examples:
3778 3779 3780
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
3781

3782 3783 3784 3785 3786
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
3787 3788 3789

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
3790

Y
Yu Yang 已提交
3791
    Examples:
3792
       .. code-block:: python
Y
yuyang18 已提交
3793

3794 3795 3796 3797 3798 3799
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
3800

Y
Yu Yang 已提交
3801
    Args:
3802 3803 3804
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program): New startup program inside `"with"` statement.
            None means not changing startup program.
Y
Yu Yang 已提交
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
3817 3818


W
Wu Yi 已提交
3819
def _get_var(name, program=None):
X
xuwei06 已提交
3820
    """
Y
yuyang18 已提交
3821
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
3822

X
xuwei06 已提交
3823 3824 3825
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
3826
        If None, default_global_program() will be used.
X
xuwei06 已提交
3827 3828 3829 3830 3831 3832 3833

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
3834
    assert isinstance(program, Program)
X
xuwei06 已提交
3835 3836

    return program.global_block().var(name)
3837 3838


S
rename  
sneaxiy 已提交
3839
@signature_safe_contextmanager
L
lujun 已提交
3840 3841 3842 3843
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
M
minqiyang 已提交
3844

3845
    yield
P
Paddle CI 已提交
3846

L
lujun 已提交
3847
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
3848 3849


S
rename  
sneaxiy 已提交
3850
@signature_safe_contextmanager
L
lujun 已提交
3851 3852 3853 3854
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
3855

3856
    yield
M
minqiyang 已提交
3857

L
lujun 已提交
3858
    _dygraph_current_expected_place_ = tmp_place