framework.py 124.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
M
minqiyang 已提交
31
from .. import compat as cpt
32
from .proto import framework_pb2
P
peizhilin 已提交
33

34
from . import core
35
from . import unique_name
Y
Yu Yang 已提交
36

37
__all__ = [
38 39 40 41
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
42
    'name_scope',
S
sneaxiy 已提交
43 44 45
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
46
    'in_dygraph_mode',
47
]
Y
Yu Yang 已提交
48

Q
qiaolongfei 已提交
49 50 51 52
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
53 54
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
55 56
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
57 58


L
lujun 已提交
59
def in_dygraph_mode():
L
lujun 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72
    """
    Check program status(tracer), Whether it runs in dygraph mode or not

    Returns:
        out (boolean): True if the program is running in dynamic graph mode

    Examples:
        .. code-block:: python

            if fluid.in_dygraph_mode():
                pass

    """
L
lujun 已提交
73
    return _dygraph_tracer_ is not None
74 75


L
lujun 已提交
76 77
def _dygraph_tracer():
    return _dygraph_tracer_
78

W
Wu Yi 已提交
79

M
minqiyang 已提交
80
def _current_expected_place():
L
lujun 已提交
81
    return _dygraph_current_expected_place_
M
minqiyang 已提交
82 83


S
sneaxiy 已提交
84
def _cpu_num():
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    if "CPU_NUM" not in os.environ.keys():
        sys.stderr.write(
            'The CPU_NUM is not specified, you should set CPU_NUM in '
            'the environment variable list, i.e export CPU_NUM=1. CPU_NUM '
            'indicates that how many CPUPlace are used in the current task.\n'
            '!!! The default number of CPUPlaces is 1.\n\n')
        os.environ['CPU_NUM'] = str(1)
    cpu_num = os.environ.get('CPU_NUM')
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
103 104 105


def cuda_places(device_ids=None):
L
lujun 已提交
106
    """
S
add doc  
sneaxiy 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    Create a list of :code:`fluid.CUDAPlace` objects.

    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_gpus` would be checked first. If
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
    gpu places would be returned.  

    If :code:`device_ids` is not None, it should be the device
    ids of gpus. For example, if :code:`device_ids=[0,1,2]`, 
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
    Args: 
        device_ids (None|list(int)|tuple(int)): gpu device id list.

    Returns:
        out (list(fluid.CUDAPlace)): gpu place list.
L
lujun 已提交
126 127 128 129 130 131 132

    Examples:
        .. code-block:: python

            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
133 134 135
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
136
        device_ids = _cuda_ids()
S
sneaxiy 已提交
137 138 139 140 141 142
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
143
    """
S
add doc  
sneaxiy 已提交
144 145 146 147 148 149 150 151 152 153 154 155
    Create a list of :code:`fluid.CPUPlace` objects.
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CPUPlace)): cpu place list.
L
lujun 已提交
156 157 158 159 160 161 162

    Examples:
        .. code-block:: python

            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
163 164 165 166 167 168
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
169
    """
S
add doc  
sneaxiy 已提交
170 171 172 173 174 175 176 177 178 179 180 181
    Create a list of :code:`fluid.CUDAPinnedPlace` objects.

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CUDAPinnedPlace)): cuda pinned place list.
L
lujun 已提交
182 183 184 185 186 187 188 189 190

    Examples:
        .. code-block:: python

            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
191 192 193 194 195 196 197
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
224
@signature_safe_contextmanager
225 226 227 228 229 230 231 232 233 234 235 236
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
237

238 239 240 241 242 243 244 245 246 247 248
          with fluid.name_scope("s1"):
              a = fluid.layers.data(name='data', shape=[1], dtype='int32')
              b = a + 1
              with fluid.name_scope("s2"):
                  c = b * 1
              with fluid.name_scope("s3"):
                  d = c / 1
          with fluid.name_scope("s1"):
              f = fluid.layers.pow(d, 2.0)
          with fluid.name_scope("s4"):
              g = f - 1
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
268 269 270
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
271 272 273 274


def grad_var_name(var_name):
    """
275 276
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
277 278 279
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
280

281
def convert_np_dtype_to_dtype_(np_dtype):
282 283
    """
    Convert the data type in numpy to the data type in Paddle
284

285
    Args:
286
        np_dtype(np.dtype): the data type in numpy.
287

288 289
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
290 291

    """
292 293
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
294
        return core.VarDesc.VarType.FP32
295
    elif dtype == np.float64:
296
        return core.VarDesc.VarType.FP64
297
    elif dtype == np.float16:
298
        return core.VarDesc.VarType.FP16
299
    elif dtype == np.int32:
300
        return core.VarDesc.VarType.INT32
301
    elif dtype == np.int16:
302
        return core.VarDesc.VarType.INT16
303
    elif dtype == np.int64:
304
        return core.VarDesc.VarType.INT64
305
    elif dtype == np.bool:
306
        return core.VarDesc.VarType.BOOL
307 308
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
309 310
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
311 312
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
313
    else:
M
minqiyang 已提交
314
        raise ValueError("Not supported numpy dtype %s" % dtype)
315 316 317


def dtype_is_floating(dtype):
318 319 320
    """
    Check the data type is floating or not.
    Args:
321
        dtype(np.dtype|core.VarDesc.VarType): data type.
322 323 324 325 326
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
327
    if not isinstance(dtype, core.VarDesc.VarType):
328 329
        dtype = convert_np_dtype_to_dtype_(dtype)

330 331 332 333
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
334 335


Y
Yang Yang(Tony) 已提交
336
def _debug_string_(proto, throw_on_error=True):
337 338 339 340 341 342 343 344 345 346 347
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
348
    error_fields = list()
Y
Yang Yang(Tony) 已提交
349
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
350 351
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
352 353 354
    return proto.__str__()


X
Xin Pan 已提交
355
class Variable(object):
356
    """
357 358 359
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
360
    two variables in different blocks could have the same name.
361

362 363
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
364

365
    Most of a Variable's member variables can be setted to be None. It mean
366
    it is not available or will be specified later.
367 368

    Args:
369
        block(Block): The block that the variable belongs to.
370 371
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
372 373
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
374
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
375
            Some kinds of variable do not contain shape, just set it to None.
376 377 378
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
379
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
380
            series data.
381
            Default: None
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
404 405
    """

Y
Yu Yang 已提交
406 407
    def __init__(self,
                 block,
Y
Yu Yang 已提交
408
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
409 410 411 412
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
413
                 capacity=None,
Q
QI JUN 已提交
414
                 persistable=None,
F
fengjiayi 已提交
415
                 error_clip=None,
Y
Yu Yang 已提交
416
                 stop_gradient=False,
F
fengjiayi 已提交
417
                 is_data=False,
Y
Yu Yang 已提交
418
                 **kwargs):
Y
Yu Yang 已提交
419 420
        self.block = block
        if name is None:
Y
Yu Yang 已提交
421
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
422

Y
Yu Yang 已提交
423
        if dtype is not None:
424
            if not isinstance(dtype, core.VarDesc.VarType):
425
                dtype = convert_np_dtype_to_dtype_(dtype)
426

L
lujun 已提交
427
        if in_dygraph_mode():
M
minqiyang 已提交
428
            # record vars in tracer rather than blocks
M
minqiyang 已提交
429 430
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
431 432 433
                self._ivar = core.VarBase(
                    name, dtype if dtype else core.VarDesc.VarType.FP32,
                    list(shape) if shape else [],
X
fix  
Xin Pan 已提交
434 435
                    _current_expected_place(), stop_gradient, True
                    if persistable else False)
M
minqiyang 已提交
436
            if persistable:
L
lujun 已提交
437
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
438
            self.op = None
M
minqiyang 已提交
439
        else:
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
512
            self.block.vars[name] = self
513
            self.op = None
514
            self._stop_gradient = stop_gradient
515
            self.is_data = is_data
Y
Yu Yang 已提交
516

517
    def numpy(self):
M
minqiyang 已提交
518
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
519
        return np.array(new_ivar.value().get_tensor())
520

521 522
    def backward(self, backward_strategy=None):
        from .dygraph import BackwardStrategy
523
        if backward_strategy is None:
524 525
            backward_strategy = BackwardStrategy()
            backward_strategy.sort_sum_gradient = False
526 527 528

        self._ivar._run_backward(backward_strategy)
        _dygraph_tracer()._clear_ops()
529

530
    def gradient(self):
531 532
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
533

534
    def clear_gradient(self):
X
Xin Pan 已提交
535
        self._ivar._clear_gradient()
X
Xin Pan 已提交
536

537
    def __str__(self):
Y
Yang Yang(Tony) 已提交
538 539
        return self.to_string(True)

F
update  
fengjiayi 已提交
540
    def to_string(self, throw_on_error, with_details=False):
541 542 543 544
        """
        Get debug string.

        Args:
545 546
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
547
            with_details(bool): more details about variables and parameters
548 549
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
550

551 552
        Returns:
            str: The debug string.
553
        """
L
lujun 已提交
554
        if in_dygraph_mode():
L
lujun 已提交
555
            # TODO(panyx0718): add more dygraph debug info.
556 557 558
            return 'name %s, dtype: %s shape: %s %s' % (
                self.name, self.dtype, self.shape,
                str(self._ivar.value().get_tensor()))
559

F
update  
fengjiayi 已提交
560 561
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
562
        protostr = self.desc.serialize_to_string()
563
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
564 565 566 567
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
568 569
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
570
        return res_str
571 572 573

    __repr__ = __str__

574
    def set_desc(self, input):
575 576 577 578 579 580 581 582 583
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
584 585
        self.desc = input

586
    @property
587
    def stop_gradient(self):
L
lujun 已提交
588
        if in_dygraph_mode():
M
minqiyang 已提交
589 590
            return self._ivar.stop_gradient
        else:
591
            return self._stop_gradient
592

593 594
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
595
        if in_dygraph_mode():
M
minqiyang 已提交
596
            self._ivar.stop_gradient = s
597
        else:
598
            self._stop_gradient = s
599

600 601
    @property
    def persistable(self):
L
lujun 已提交
602
        if in_dygraph_mode():
603 604 605
            return self._ivar.persistable
        else:
            return self.desc.persistable()
606

Y
Yu Yang 已提交
607 608
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
609
        if in_dygraph_mode():
610 611 612
            return self._ivar.persistable
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
613

Y
Yu Yang 已提交
614 615
    @property
    def name(self):
L
lujun 已提交
616
        if in_dygraph_mode():
617 618 619
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
620

T
typhoonzero 已提交
621 622
    @name.setter
    def name(self, new_name):
L
lujun 已提交
623
        if in_dygraph_mode():
624 625 626
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
627

Y
Yu Yang 已提交
628 629 630
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
631
        if in_dygraph_mode():
632 633 634
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
635 636

    @property
F
fengjiayi 已提交
637
    def dtype(self):
L
lujun 已提交
638
        if in_dygraph_mode():
639 640 641
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
642 643 644

    @property
    def lod_level(self):
L
lujun 已提交
645
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
646 647
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
648
        return self.desc.lod_level()
Y
Yu Yang 已提交
649

Y
Yu Yang 已提交
650 651
    @property
    def type(self):
L
lujun 已提交
652
        if in_dygraph_mode():
653 654 655
            return self._ivar.dtype
        else:
            return self.desc.type()
Y
Yu Yang 已提交
656

W
Wu Yi 已提交
657
    def _set_error_clip(self, error_clip):
658 659 660 661 662 663 664 665 666
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
667 668
        self.error_clip = error_clip

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
756
    def _cloneVar(self, copy=False):
757 758
        if not copy:
            return self.block.create_var(
759 760
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
761 762 763 764
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
765
        new_var = self._cloneVar()
766 767 768 769 770 771 772 773 774 775
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
776
        new_var = self._cloneVar()
777 778 779 780 781 782 783 784 785 786
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
787
                return self._cloneVar(True)
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
806
                return self._cloneVar(True)
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
            index = int(item)
            if (index > 0 and index >= self.shape[axis])\
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
        new_var = None
        if isinstance(item, tuple):
            if len(item) > len(self.shape):
                raise IndexError("Too many indexes")
W
wopeizl 已提交
829 830 831 832 833 834
            fixedSize = True
            for i in range(len(self.shape)):
                if self.shape[i] == -1:
                    fixedSize = False
                    break

835
            newitem = self._reconstructSliceinfo(item) or item
W
wopeizl 已提交
836 837
            if fixedSize:
                check, info = self._detectContinuesSlice(newitem)
838
                if check:
W
wopeizl 已提交
839 840 841 842 843 844 845 846
                    starts = info[0]
                    ends = info[1]
                    axes = [i for i in range(len(starts))]
                    return self._sliceVar(axes, starts, ends)
                else:
                    new_var = self
                    for index, o in enumerate(newitem):
                        new_var = new_var._sliceAndConcatVar(o, index)
847 848 849 850 851 852 853 854
            else:
                new_var = self
                for index, o in enumerate(newitem):
                    new_var = new_var._sliceAndConcatVar(o, index)
        else:
            new_var = self._sliceAndConcatVar(item, 0)
        return new_var

Y
Yu Yang 已提交
855

F
fengjiayi 已提交
856 857 858
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
859

860 861
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
862 863 864 865
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
866
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
867 868 869 870 871
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
872 873 874 875
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
876 877 878 879 880 881 882 883 884
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
885
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
886 887 888 889 890 891
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
892 893 894 895 896 897 898 899
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
900 901
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
902 903
        return self.op_proto_map[type]

904 905 906 907
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
908
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
909 910
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
911 912
        }

F
fengjiayi 已提交
913

X
Xin Pan 已提交
914
class Operator(object):
915
    """
916 917 918 919 920 921 922
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
923
        type(str): The type of operator. Default None.
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
944
        Block.append_op or Block._prepend_op instead.
945 946 947 948 949 950 951 952 953 954

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
955
    """
956
    OP_WITHOUT_KERNEL_SET = {
957 958 959
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
        'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id'
960
    }
961

Y
Yu Yang 已提交
962 963
    def __init__(self,
                 block,
Y
Yu Yang 已提交
964
                 desc,
Y
Yu Yang 已提交
965 966 967
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
968
                 attrs=None):
L
lujun 已提交
969
        if in_dygraph_mode():
970 971
            if type is None:
                raise ValueError(
972
                    "`type` to initialized an Operator can not be None.")
973
            self.iop = core.OpBase(type)
M
minqiyang 已提交
974
            self.previous_ops = []
M
minqiyang 已提交
975

M
minqiyang 已提交
976
            self.attrs = attrs if attrs else {}
977 978 979 980 981 982 983 984 985 986 987 988 989 990
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
991
                )] = self.block.program._op_role
992 993 994

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
995 996
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
997 998 999 1000 1001 1002 1003 1004

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1005
                    "`type` to initialized an Operator can not be None.")
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1037
                        for index, arg in enumerate(in_args):
1038 1039 1040 1041
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1042
                            elif isinstance(arg, Variable):
1043
                                in_arg_names.append(cpt.to_text(arg.name))
1044 1045 1046 1047
                            else:
                                raise ValueError(
                                    "not suprt args type , should be[ string_type, binary_type, Varibale]"
                                )
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1074
                        if not in_dygraph_mode():
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1094
    def _has_kernel(self, op_type):
1095 1096
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1097
    def to_string(self, throw_on_error):
1098
        """
1099 1100
        Get debug string.

1101
        Args:
1102 1103
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1104

1105 1106
        Returns:
            str: The debug string.
1107 1108

        """
1109
        protostr = self.desc.serialize_to_string()
1110
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1111 1112 1113 1114
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1115 1116 1117

    __repr__ = __str__

F
fengjiayi 已提交
1118 1119
    @property
    def type(self):
L
lujun 已提交
1120
        if in_dygraph_mode():
1121 1122 1123
            return self.iop.type
        else:
            return self.desc.type()
F
fengjiayi 已提交
1124 1125

    def input(self, name):
1126
        """
1127
        Get the input arguments according to the input parameter name.
1128

1129 1130
        Args:
            name(str): The input parameter name.
1131

1132 1133 1134
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1135
        """
F
fengjiayi 已提交
1136 1137
        return self.desc.input(name)

W
Wu Yi 已提交
1138
    def _rename_input(self, old_name, new_name):
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1149
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1150

W
Wu Yi 已提交
1151
    def _rename_output(self, old_name, new_name):
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1162
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1163

F
fengjiayi 已提交
1164 1165 1166 1167
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1168 1169 1170 1171 1172 1173 1174 1175
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1176
    def output(self, name):
1177
        """
1178
        Get output arguments by the output parameter name.
1179

1180 1181
        Args:
            name(str): The output parameter name.
1182

1183 1184 1185
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1186
        """
F
fengjiayi 已提交
1187 1188 1189 1190 1191 1192
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1193 1194 1195 1196 1197 1198 1199 1200
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1201
    def has_attr(self, name):
1202
        """
1203 1204
        Whether this Operator has the attribute with name or not.

1205
        Args:
1206
            name(str): the attribute name.
1207

1208 1209
        Returns:
            bool: True if has this attribute.
1210 1211

        """
F
fengjiayi 已提交
1212 1213 1214
        return self.desc.has_attr(name)

    def attr_type(self, name):
1215
        """
1216
        Get the type of attribute by attribute's name.
1217

1218 1219
        Args:
            name(str): the attribute name.
1220

1221 1222
        Returns:
            core.AttrType: the attribute type.
1223
        """
F
fengjiayi 已提交
1224 1225
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1226
    def _set_attr(self, name, val):
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1237 1238
        self._update_desc_attr(name, val)

1239 1240 1241
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1253 1254
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1255 1256
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1257
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1258 1259 1260 1261
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1262
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1263

F
fengjiayi 已提交
1264 1265 1266 1267 1268
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1269
        """
1270 1271
        Get the attribute by name.

1272
        Args:
1273
            name(str): the attribute name.
1274

1275 1276
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1277 1278
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1279
        return self.desc.attr(name)
Y
Yu Yang 已提交
1280

W
Wu Yi 已提交
1281
    def _block_attr_id(self, name):
1282
        """
G
gongweibao 已提交
1283
        Get the block attribute's id by name.
1284

1285 1286
        Args:
            name(str): the attribute name.
1287

1288 1289
        Returns:
            int: the block index.
1290
        """
W
Wu Yi 已提交
1291
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1292

W
Wu Yi 已提交
1293
    def _block_attr(self, name):
G
gongweibao 已提交
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1304
        id = self._block_attr_id(name)
G
gongweibao 已提交
1305 1306 1307
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1308
    def _blocks_attr(self, name):
G
gongweibao 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1319
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1320 1321 1322 1323 1324
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1325
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1336
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1337

J
JiayiFeng 已提交
1338
    def all_attrs(self):
F
fengjiayi 已提交
1339
        """
1340 1341 1342
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1343
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1344 1345 1346 1347
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1348 1349
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1350
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1351 1352 1353
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1354
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1355 1356 1357 1358
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1359 1360
        return attr_map

Y
Yu Yang 已提交
1361

Y
Yu Yang 已提交
1362
class Block(object):
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1377
        use `Program._create_block()` to create a block.
1378 1379 1380 1381

    Examples:
        .. code-block:: python

1382 1383 1384
            import paddle.fluid as fluid

            cur_program = fluid.Program()
1385 1386 1387 1388 1389 1390 1391 1392 1393
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1394
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1395
        self.desc = program.desc.block(idx)
1396
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1397
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1398
        self.program = program
1399
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1400

1401
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1402 1403
        return self.to_string(True)

F
fengjiayi 已提交
1404 1405
    def to_string(self, throw_on_error, with_details=False):
        """
1406 1407
        Get debug string.

F
fengjiayi 已提交
1408 1409
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1410
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1411
            with_details(bool): more details about variables and parameters
1412 1413
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1414

1415 1416
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1417 1418 1419 1420
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1421
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1422 1423
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1424
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1425
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1426
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1427
            for op in self.ops:
F
fengjiayi 已提交
1428 1429
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1430 1431 1432
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1433 1434
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1435 1436
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1437 1438 1439

    __repr__ = __str__

Y
Yu Yang 已提交
1440 1441
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1442
        return self.desc.parent
Y
Yu Yang 已提交
1443

Y
Yu Yang 已提交
1444 1445 1446 1447
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1448
    def _set_forward_block_idx(self, idx):
1449 1450 1451 1452 1453 1454 1455 1456 1457
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1458
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1459

Y
Yu Yang 已提交
1460 1461
    @property
    def idx(self):
Y
Yu Yang 已提交
1462
        return self.desc.id
Y
Yu Yang 已提交
1463

Q
Qiao Longfei 已提交
1464
    def var(self, name):
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1478
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1479 1480 1481
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1482 1483
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1484
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1485
        return v
Q
Qiao Longfei 已提交
1486

X
Xin Pan 已提交
1487
    def _find_var_recursive(self, name):
1488 1489 1490 1491 1492 1493 1494
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1495
            Variable: the Variable with the giving name. Or None if not found.
1496
        """
Y
Yu Yang 已提交
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1521
        return None
Y
Yu Yang 已提交
1522

X
Xin Pan 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1542

Q
Qiao Longfei 已提交
1543
    def all_parameters(self):
1544
        return list(self.iter_parameters())
1545

1546
    def iter_parameters(self):
M
minqiyang 已提交
1547
        return (item[1] for item in six.iteritems(self.vars)
1548
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1549

Y
Yu Yang 已提交
1550
    def create_var(self, *args, **kwargs):
1551
        var = Variable(block=self, *args, **kwargs)
1552 1553
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1554
        return var
Y
Yu Yang 已提交
1555

Q
Qiao Longfei 已提交
1556 1557 1558
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1559
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1560 1561
        """
        Rename variable in vars and ops' inputs and outputs
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1574
        """
M
minqiyang 已提交
1575 1576
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1577

T
typhoonzero 已提交
1578
        if not self.has_var(name):
1579
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1580 1581
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1582
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1583 1584 1585 1586 1587 1588 1589
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1590
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1591 1592 1593 1594
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1595
        orig_var_type = v.type
M
minqiyang 已提交
1596
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1597
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1598
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1599
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1600 1601 1602 1603
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1604
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1605 1606 1607 1608 1609 1610 1611
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1612
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1613 1614
            var = Variable(
                self,
T
typhoonzero 已提交
1615
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1616 1617 1618 1619
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1620
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1621 1622 1623
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1624
        self._sync_with_cpp()
1625
        return var
T
typhoonzero 已提交
1626

W
Wu Yi 已提交
1627 1628
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1629
        self.desc._remove_var(cpt.to_bytes(name))
1630 1631
        del self.vars[name]

Y
Yu Yang 已提交
1632 1633
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1634
        param = Parameter(global_block, *args, **kwargs)
1635
        if 'initializer' in kwargs:
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1656
        return param
Y
Yu Yang 已提交
1657

Y
Yu Yang 已提交
1658
    def append_op(self, *args, **kwargs):
1659 1660 1661 1662 1663 1664
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
1665
        if in_dygraph_mode():
1666 1667 1668
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
1669 1670 1671 1672 1673
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
1674

1675 1676 1677 1678
            op = Operator(
                block=self,
                desc=None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1679 1680
                inputs=None,
                outputs=None,
1681
                attrs=attrs)
1682

M
minqiyang 已提交
1683 1684 1685
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
1686
            # currently, we only support stop_gradient in dygraph mode.
M
minqiyang 已提交
1687 1688 1689 1690
            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1691
        else:
1692 1693 1694 1695 1696 1697 1698 1699 1700
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
1701
            self.ops.append(op)
M
minqiyang 已提交
1702

1703 1704
        return op

W
Wu Yi 已提交
1705
    def _insert_op(self, index, *args, **kwargs):
1706 1707 1708 1709 1710 1711 1712 1713 1714
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1715 1716
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1717 1718 1719 1720
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1721
    def _remove_op(self, index):
1722 1723 1724 1725 1726 1727 1728 1729 1730
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1731 1732
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1733 1734
        del self.ops[index]

W
Wu Yi 已提交
1735
    def _slice_ops(self, start, end):
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1746
        return self.ops[start:end]
Y
Yancey1989 已提交
1747

W
Wu Yi 已提交
1748
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
1749
        if in_dygraph_mode():
1750 1751 1752 1753
            op = Operator(
                self,
                None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1754 1755 1756 1757 1758 1759 1760 1761
                inputs=None,
                outputs=None,
                attrs=kwargs.get("attrs", {}))

            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1762
        else:
1763 1764 1765 1766 1767 1768 1769 1770
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1771
            self.ops.insert(0, op)
1772

Y
Yu Yang 已提交
1773 1774
        return op

W
Wu Yi 已提交
1775
    def _sync_with_cpp(self):
1776
        """
1777 1778
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1779
        """
Q
Qiao Longfei 已提交
1780 1781 1782 1783 1784
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1785
        # sync variables removed from c++ end
1786
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1787
            if not self.desc.find_var(cpt.to_bytes(var)):
1788 1789
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1790
        # sync operators from cpp
1791 1792 1793 1794
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1811 1812 1813 1814 1815

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1816
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1817 1818 1819 1820 1821 1822 1823

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1837 1838 1839 1840
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1841
    def _copy_param_info_from(self, other):
1842
        """
1843 1844
        Copy the information of parameters from the other block.

1845
        Args:
1846 1847 1848 1849 1850
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1851 1852 1853 1854 1855

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1856 1857
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1858
        for p in other.iter_parameters():
1859 1860 1861
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1862
                raise ValueError("_copy_param_info_from should be invoked with "
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1875
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1876
                error_clip=p.error_clip,
1877 1878 1879
                name=v.name)
            self.vars[new_p.name] = new_p

1880
    def _clone_variable(self, var, force_persistable=True):
1881 1882
        """
        Clone a variable into current block.
1883

1884 1885
        Args:
            var: the variable to be cloned.
1886 1887 1888
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
1889 1890

        Returns:
1891
            Variable: the new  variable cloned from 'var' in current block.
1892 1893
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1894 1895 1896 1897 1898
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1899 1900
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1901
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1902 1903 1904 1905 1906 1907
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
1908
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1909
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1910 1911 1912 1913 1914 1915 1916
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
1917
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1918
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1919
        return ret_var
1920

Y
Yu Yang 已提交
1921

1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2017
    def remove_input_by_id(self, node_id):
2018 2019 2020 2021 2022 2023
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2024
        self.node.remove_input(node_id)
2025

2026
    def remove_input(self, node):
2027 2028 2029 2030
        """
        Remove a node from inputs.

        Args:
2031
            node(IrNode): the node being removed.
2032
        """
2033
        self.node.remove_input(node.node)
2034

2035
    def append_input(self, node):
2036 2037 2038 2039
        """
        Append a node in inputs.

        Args:
2040
            node(IrNode): the node being appended.
2041
        """
2042
        self.node.append_input(node.node)
2043 2044 2045 2046 2047 2048 2049 2050

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2051
    def remove_output_by_id(self, node_id):
2052 2053 2054 2055 2056 2057
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2058
        self.node.remove_output(node_id)
2059

2060
    def remove_output(self, node):
2061 2062 2063 2064
        """
        Remove a node from outputs.

        Args:
2065
            node(IrNode): the node being removed.
2066
        """
2067
        self.node.remove_output(node.node)
2068

2069
    def append_output(self, node):
2070 2071 2072 2073
        """
        Append a node in outputs.

        Args:
2074
            node(IrNode): the node being appended.
2075
        """
2076
        self.node.append_output(node.node)
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
            all(isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
            isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


2331 2332
class IrGraph(object):
    """
2333
    Python IrGraph. Beneath it is a core.Graph, which is used for
2334
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
2335 2336
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
2337 2338 2339 2340
    """

    def __init__(self, graph, for_test=False):
        """
2341 2342
        Construct an IrGraph using core.Graph.

2343 2344 2345 2346 2347 2348 2349 2350 2351
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

2352 2353 2354 2355
    def clone(self):
        """
        Create a new and duplicated IrGraph.

2356 2357 2358
        Warns:
            The method only clones the graph structure, not its attributes.

2359 2360 2361
        Returns:
            IrGraph: A new and duplicated graph.
        """
2362
        g = self.graph.clone()
2363 2364
        return IrGraph(g, self._for_test)

2365
    def is_test(self):
2366 2367 2368
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2369 2370
        return self._for_test

W
WangZhen 已提交
2371
    def all_nodes(self):
2372 2373 2374
        """
        Return all nodes included in the graph as a set.
        """
2375
        return {IrNode(node) for node in self.graph.nodes()}
2376

2377
    def all_var_nodes(self):
2378 2379 2380
        """
        Return all variable nodes included in the graph as a set.
        """
2381
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2382

2383
    def all_persistable_nodes(self):
2384 2385 2386
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2387 2388 2389 2390 2391
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
2392
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
2393

2394
    def all_op_nodes(self):
2395 2396 2397
        """
        Return all operator nodes included in the graph as a set.
        """
2398
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
2399

2400
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2412
            IrVarNode: the created persistable variable node.
2413
        """
2414 2415 2416 2417 2418
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2419
        return IrVarNode(self.graph.create_var_node(var_desc))
2420 2421

    def create_var_node(self, name, var_type, shape, var_dtype):
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2433
            IrVarNode: the created variable node.
2434 2435
        """

2436 2437 2438 2439
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2440
        return IrVarNode(self.graph.create_var_node(var_desc))
2441 2442

    def create_var_node_from_desc(self, var_desc):
2443 2444 2445 2446 2447 2448 2449 2450
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2451
            IrVarNode: the created variable node.
2452
        """
2453
        return IrVarNode(self.graph.create_var_node(var_desc))
2454 2455

    def create_op_node(self, op_type, attrs, inputs, outputs):
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2466
            IrOpNode: the created operator node.
2467
        """
2468 2469
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2470
        for attr, value in six.iteritems(attrs):
2471
            self._update_desc_attr(op_desc, attr, value)
2472
        for input_name, var_nodes in six.iteritems(inputs):
2473 2474 2475 2476
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2477
        for output_name, var_nodes in six.iteritems(outputs):
2478 2479 2480 2481
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2482
        return IrOpNode(self.graph.create_op_node(op_desc))
2483 2484

    def create_op_node_from_desc(self, op_desc):
2485 2486 2487 2488 2489 2490 2491
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2492
            IrOpNode: the created operator node.
2493
        """
2494
        return IrOpNode(self.graph.create_op_node(op_desc))
2495 2496

    def update_input_link(self, old_input_node, new_input_node, op_node):
2497 2498 2499 2500
        """
        Update the input's link of a operator node.

        Args:
2501 2502 2503
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2504
        """
2505 2506
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
W
WangZhen 已提交
2507
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2508 2509 2510 2511
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2512
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2513 2514

    def link_to(self, node_in, node_out):
2515 2516 2517 2518
        """
        Connect two nodes.

        Args:
2519 2520
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2521
        """
2522
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2523
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2524 2525
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2526 2527

    def safe_remove_nodes(self, remove_nodes):
2528 2529 2530 2531 2532 2533 2534
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2535
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2536 2537 2538 2539
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2540 2541
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2542

Z
Zhen Wang 已提交
2543 2544 2545 2546 2547 2548 2549 2550
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2551
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
2552 2553 2554 2555
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2556
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
2557 2558 2559
                        ]
                    else:
                        var_nodes[each_var_name].append(
2560 2561
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
2562 2563
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
2564
    def has_circle(self):
2565 2566 2567 2568 2569 2570
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
2571 2572 2573
        return core.has_circle(self.graph)

    def graph_num(self):
2574 2575 2576 2577 2578 2579
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
2580 2581 2582
        return core.graph_num(self.graph)

    def topology_sort(self):
2583 2584 2585 2586 2587 2588
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
2589
            list(IrNode): nodes in topology order.
2590
        """
2591
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
2592
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
2593 2594

    def build_adjacency_list(self):
2595 2596 2597 2598
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
2599
            dict{IrNode: set(IrNode)}: the adjacency list.
2600
        """
2601 2602 2603 2604 2605
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
2606

2607 2608 2609 2610 2611 2612 2613 2614
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
2615
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
2616 2617 2618 2619 2620
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

2621 2622 2623 2624 2625 2626 2627 2628 2629
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

2630
        remove_ctr_vars = set()
2631
        if remove_ctr_var:
2632
            for node in self.all_var_nodes():
2633 2634 2635
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
2636 2637
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

2638 2639
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
2640 2641 2642 2643 2644 2645
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
2657 2658 2659
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
2660
        WARN: When the graph includes backward operator nodes, the
2661 2662 2663 2664 2665 2666
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
2667
        convert_pass = core.get_pass('graph_to_program_pass')
2668 2669
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
2670 2671 2672 2673
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
2701
class Program(object):
D
dzhwinter 已提交
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
2713
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
2714 2715

    Returns:
Y
yuyang18 已提交
2716
        A empty program.
D
dzhwinter 已提交
2717 2718

    Examples:
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
2732 2733 2734

    """

2735 2736
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
2737 2738
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
2739
        self._seed = 0
Y
yuyang18 已提交
2740
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
2741
        self.__op_role_var = []
T
tangwei12 已提交
2742

2743 2744
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
2745
        self._is_distributed = False
2746
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
2747
        self._is_chief = False
2748 2749 2750
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
2751
        self._endpoints = []
2752 2753 2754
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
2755
        self._trainers_endpoints = []
2756
        # the distributed lookup table names
T
tangwei12 已提交
2757
        self._distributed_lookup_table = None
2758 2759 2760

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
2761 2762 2763 2764
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
        self._hierarchical_allreduce_exter_nranks = 0
2765

D
dzhwinter 已提交
2766
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
2767
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
2768
        self.__is_mem_optimized = False
D
dzhwinter 已提交
2769

2770 2771 2772
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
2773
        self._program_config = None
2774

2775 2776 2777
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

2778 2779 2780
        # appending gradients times
        self._appending_grad_times = 0

D
dzhwinter 已提交
2781
    @property
D
dzhwinter 已提交
2782
    def _is_mem_optimized(self):
D
dzhwinter 已提交
2783 2784
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
2785
        return self.__is_mem_optimized
D
dzhwinter 已提交
2786

D
dzhwinter 已提交
2787 2788 2789
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
2790 2791

    @property
2792
    def _op_role(self):
Y
yuyang18 已提交
2793 2794 2795 2796 2797 2798 2799 2800
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
2801
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
2802 2803 2804 2805
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
2806 2807
        return self._current_role

2808 2809
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
2810 2811 2812
        self._current_role = role

    @property
2813
    def _op_role_var(self):
Y
yuyang18 已提交
2814
        """
2815
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
2816

2817
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
2818 2819 2820

        Notes: This is a very low-level API. Users should not use it directly.
        """
2821
        return self.__op_role_var
Y
yuyang18 已提交
2822

2823 2824 2825 2826 2827 2828 2829 2830 2831
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
2832
    @signature_safe_contextmanager
W
Wu Yi 已提交
2833
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2834 2835 2836 2837 2838 2839 2840
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2841
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2842 2843 2844 2845

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
2846
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2847 2848
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2849
        tmp_role = self._current_role
2850
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
2851

Y
yuyang18 已提交
2852 2853
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2854
        self.__op_role_var = [
2855 2856 2857
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2858
        yield
2859
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
2860
        self._current_role = tmp_role
Y
Yu Yang 已提交
2861

S
rename  
sneaxiy 已提交
2862
    @signature_safe_contextmanager
X
Xin Pan 已提交
2863
    def _lr_schedule_guard(self, is_with_opt=False):
2864 2865 2866 2867 2868 2869 2870
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2871 2872 2873 2874
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2875 2876 2877 2878 2879 2880 2881

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2882 2883

        tmp_role = self._current_role
2884
        tmp_var = self.__op_role_var
2885

2886 2887
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2888 2889
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2890
        # TODO(typhoonzero): how to set target learning rate var
2891
        self.__op_role_var = []
2892
        yield
2893
        self.__op_role_var = tmp_var
2894
        self._current_role = tmp_role
2895

2896
    def __str__(self):
Y
yuyang18 已提交
2897 2898 2899 2900 2901 2902 2903 2904 2905
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2906 2907
        return self.to_string(True)

F
fengjiayi 已提交
2908 2909 2910
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2911

F
fengjiayi 已提交
2912
        Args:
Y
yuyang18 已提交
2913 2914
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2915

Y
yuyang18 已提交
2916 2917 2918 2919
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2920 2921
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2922 2923 2924 2925

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2926

2927 2928 2929 2930 2931 2932 2933 2934 2935
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
                print(prog_string)

F
fengjiayi 已提交
2936 2937 2938 2939 2940 2941 2942 2943 2944
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2945 2946
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2947 2948
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2949

W
Wu Yi 已提交
2950
    def _get_desc(self):
Y
yuyang18 已提交
2951 2952 2953 2954 2955 2956 2957
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
2958 2959
        return self.desc

X
version  
Xin Pan 已提交
2960 2961 2962
    def _version(self):
        return self.desc._version()

2963
    def clone(self, for_test=False):
Y
yuyang18 已提交
2964 2965 2966
        """
        Create a new, duplicated program.

2967

Y
yuyang18 已提交
2968 2969 2970 2971
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
2972

Y
yuyang18 已提交
2973
        * Set for_test to False when we want to clone the program for training.
2974 2975 2976 2977
        * Set for_test to True when we want to clone the program for testing.
          We will not do any prune on program here, So if you just want an
          forward program for testing, please use :code:`clone` before using
          :code:`Opimizer.minimize`
Y
yuyang18 已提交
2978

2979 2980 2981 2982
        Notes: 
        1. :code:`Program.clone()` method DOES NOT clone :code:`py_reader`.
        2. This API DOES NOT prune any operator. Use
        :code:`clone(for_test=True)` before backward and optimization please. E.g.
L
Luo Tao 已提交
2983

2984 2985 2986 2987 2988
        .. code-block:: python

            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize()
2989 2990

        Args:
Y
yuyang18 已提交
2991 2992
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
2993

D
dzhwinter 已提交
2994
        Returns:
Y
yuyang18 已提交
2995 2996 2997 2998
            Program: The new, duplicated Program object.

        Examples:

2999 3000 3001 3002 3003 3004
        Notes: The Program Descs' order maybe different after :code:`clone` and
        this will not affect your training or testing progress. In the following
        example we give you an simple method :code:`print_prog(program)` to
        print Program Descs inorder to make sure you have same print result
        after :code:`clone`:

3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3100 3101
        """
        if for_test:
X
Xin Pan 已提交
3102
            p = self._inference_optimize(prune_read_op=False)
3103
        else:
3104
            p = Program()
G
gongweibao 已提交
3105 3106
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3107
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3108 3109 3110
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3111 3112

            p._current_role = self._current_role
3113
            p.__op_role_var = self.__op_role_var
3114
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
3115

W
Wu Yi 已提交
3116
            p._sync_with_cpp()
3117

W
Wu Yi 已提交
3118
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3119
        p._copy_data_info_from(self)
3120
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3121
        return p
3122

W
Wu Yi 已提交
3123
    def _prune(self, targets):
Y
yuyang18 已提交
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
3139 3140 3141 3142 3143 3144
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
3145 3146
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
3147
                    # and we need to find the current op that generate this
3148 3149 3150 3151 3152 3153 3154 3155
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

3156
                    t = t.op
3157 3158 3159 3160
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
3161
                else:
3162 3163
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
3164 3165 3166 3167

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
3168 3169 3170
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3171
        res._sync_with_cpp()
3172 3173
        return res

X
Xin Pan 已提交
3174
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
3175
        """
F
fengjiayi 已提交
3176 3177 3178 3179 3180
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

3181
        3. change the :code:`is_test`
Y
yuyang18 已提交
3182 3183 3184
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

3185
        Args:
X
Xin Pan 已提交
3186 3187
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
3188

Y
yuyang18 已提交
3189 3190 3191 3192 3193 3194
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
3195
        res = Program()
3196
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
3197 3198 3199 3200

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
3201
        if prune_read_op:
3202 3203 3204 3205 3206 3207 3208 3209 3210
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
3211
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
3212 3213

        # change all `is_test` attributes to True
M
minqiyang 已提交
3214
        for i in six.moves.range(res.desc.num_blocks()):
3215
            block = res.desc.block(i)
M
minqiyang 已提交
3216
            for j in six.moves.range(block.op_size()):
3217 3218
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
3219
                    op._set_attr('is_test', True)
M
minqiyang 已提交
3220 3221 3222
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3223
        res._sync_with_cpp()
3224 3225
        return res

3226 3227
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
3228 3229 3230 3231 3232 3233 3234
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
3235
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
3236 3237 3238 3239

        Returns:
            Program: A deserialized program desc.
        """
3240 3241
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
3242
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
3243
        p._sync_with_cpp()
3244
        return p
Y
Yu Yang 已提交
3245

3246
    @staticmethod
3247
    def _construct_from_desc(desc):
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
3263 3264
    @property
    def random_seed(self):
Y
yuyang18 已提交
3265 3266 3267 3268 3269
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
                print(random_seed)
                prog.random_seed = 1
                print(prog.random_seed)
Y
yuyang18 已提交
3281
        """
D
dzhwinter 已提交
3282 3283
        return self._seed

Q
qiaolongfei 已提交
3284 3285
    @property
    def num_blocks(self):
Y
yuyang18 已提交
3286 3287
        """
        The number of blocks in this program.
3288 3289 3290 3291 3292 3293 3294 3295 3296

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
Y
yuyang18 已提交
3297
        """
Q
qiaolongfei 已提交
3298 3299
        return self.desc.num_blocks()

D
dzhwinter 已提交
3300 3301 3302 3303 3304 3305
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
3306
    def __repr__(self):
3307
        return self.__str__()
3308

Y
Yu Yang 已提交
3309
    def global_block(self):
Y
yuyang18 已提交
3310 3311
        """
        Get the first block of this program.
3312 3313 3314 3315 3316 3317 3318 3319 3320

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
Y
yuyang18 已提交
3321
        """
Y
Yu Yang 已提交
3322 3323
        return self.blocks[0]

Q
Qiao Longfei 已提交
3324
    def block(self, index):
Y
yuyang18 已提交
3325 3326 3327 3328 3329 3330 3331
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
3332 3333 3334 3335 3336 3337 3338 3339 3340

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
3341
        """
Q
Qiao Longfei 已提交
3342 3343
        return self.blocks[index]

Y
Yu Yang 已提交
3344
    def current_block(self):
Y
yuyang18 已提交
3345 3346 3347
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
3348 3349 3350 3351 3352 3353 3354 3355 3356

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
3357
        """
Y
Yu Yang 已提交
3358 3359
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
3360
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
3371
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
3372 3373 3374
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
3375 3376 3377 3378
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
3379
    def _rollback(self):
Y
yuyang18 已提交
3380 3381 3382 3383 3384
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
3385 3386
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
3387
    def _sync_with_cpp(self):
Y
yuyang18 已提交
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
3398 3399 3400
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
3401
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
3402

W
Wu Yi 已提交
3403
    def _copy_param_info_from(self, other):
3404
        """
3405
        Copy the information of parameters from other program.
D
dzhwinter 已提交
3406

Y
yuyang18 已提交
3407 3408 3409
        Notes: This is a very low level API. Users should not invoke it
        directly.

3410 3411 3412 3413 3414 3415 3416
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3417
            raise TypeError("_copy_param_info_from should be invoked with "
3418 3419 3420
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3421
            raise ValueError("_copy_param_info_from should be invoked with two "
3422
                             "program, with represent the same topology")
W
Wu Yi 已提交
3423
        self.global_block()._copy_param_info_from(other.global_block())
3424

3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
3440
        self._parameters_on_pservers = other._parameters_on_pservers
3441
        self._endpoints = other._endpoints
3442
        self._ps_endpoint = other._ps_endpoint
3443 3444
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
3445
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
3446 3447
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
3448

Y
yuyang18 已提交
3449 3450 3451
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
3452 3453 3454 3455 3456 3457 3458
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3459
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
3460 3461 3462
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3463
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
3464
                             "program, with represent the same topology")
3465
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
3466 3467 3468
            if var.is_data:
                self.global_block().var(var.name).is_data = True

3469
    def list_vars(self):
Y
yuyang18 已提交
3470 3471 3472 3473 3474
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
3486
        """
3487
        for each_block in self.blocks:
3488
            for each_var in list(each_block.vars.values()):
3489 3490
                yield each_var

Y
Yu Yang 已提交
3491

Y
Yu Yang 已提交
3492
class Parameter(Variable):
3493
    """
3494
    Parameter is derived from Variable. A parameter is a persistable
3495
    Variable, and will be updated by optimizers after each iteration.
3496
    The training of a neural network is essentially the updating of
3497 3498
    its parameters.

3499
    Relative to a general Variable, a Parameter has several its own
3500 3501
    member variables:

3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
3514 3515
    """

Y
Yu Yang 已提交
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
3526 3527 3528

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
3529 3530 3531 3532
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

3533 3534
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
3535
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
3536

W
wanghaoshuang 已提交
3537
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
3538

F
fengjiayi 已提交
3539 3540 3541
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
3542 3543 3544
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
3545

F
update  
fengjiayi 已提交
3546 3547 3548 3549 3550 3551 3552 3553
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

3554 3555 3556 3557 3558 3559 3560 3561 3562
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
3563 3564 3565 3566 3567 3568
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
3569
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
3570
            for attr_name in additional_attr:
3571 3572
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
3573 3574
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
3575 3576 3577 3578
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
3579

Y
Yu Yang 已提交
3580
# program is a global instance.
Y
Yu Yang 已提交
3581 3582
_main_program_ = Program()
_startup_program_ = Program()
3583

3584

3585
def default_startup_program():
Y
Yu Yang 已提交
3586
    """
Y
yuyang18 已提交
3587 3588 3589 3590 3591 3592 3593 3594 3595
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
3596

Y
Yu Yang 已提交
3597 3598
    Returns:
        Program: startup program
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
3614
    """
Y
Yu Yang 已提交
3615
    return _startup_program_
3616

3617

3618
def default_main_program():
Y
Yu Yang 已提交
3619
    """
Y
yuyang18 已提交
3620 3621 3622 3623 3624 3625 3626 3627 3628
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
3629

Y
Yu Yang 已提交
3630 3631
    Returns:
        Program: main program
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
            
            # Sample Network:
            data = fluid.layers.data(name='image', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
            print(fluid.default_main_program())
Y
Yu Yang 已提交
3661
    """
Y
Yu Yang 已提交
3662
    return _main_program_
Y
Yu Yang 已提交
3663 3664 3665 3666 3667


def switch_main_program(program):
    """
    Switch the main program to a new program.
3668

Y
Yu Yang 已提交
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
3683
    Switch the startup program to a new program
Y
Yu Yang 已提交
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
3696
@signature_safe_contextmanager
Y
Yu Yang 已提交
3697 3698
def program_guard(main_program, startup_program=None):
    """
3699 3700
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
3701
    variables to the new main programs.
3702

Y
Yu Yang 已提交
3703
    Examples:
3704 3705 3706
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
3707

3708 3709 3710 3711 3712
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
3713 3714 3715

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
3716

Y
Yu Yang 已提交
3717
    Examples:
3718
       .. code-block:: python
Y
yuyang18 已提交
3719

3720 3721 3722 3723 3724 3725
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
3726

Y
Yu Yang 已提交
3727
    Args:
3728 3729 3730
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program): New startup program inside `"with"` statement.
            None means not changing startup program.
Y
Yu Yang 已提交
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
3743 3744


W
Wu Yi 已提交
3745
def _get_var(name, program=None):
X
xuwei06 已提交
3746
    """
Y
yuyang18 已提交
3747
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
3748

X
xuwei06 已提交
3749 3750 3751
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
3752
        If None, default_global_program() will be used.
X
xuwei06 已提交
3753 3754 3755 3756 3757 3758 3759

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
3760
    assert isinstance(program, Program)
X
xuwei06 已提交
3761 3762

    return program.global_block().var(name)
3763 3764


S
rename  
sneaxiy 已提交
3765
@signature_safe_contextmanager
L
lujun 已提交
3766 3767 3768 3769
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
M
minqiyang 已提交
3770

3771
    yield
P
Paddle CI 已提交
3772

L
lujun 已提交
3773
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
3774 3775


S
rename  
sneaxiy 已提交
3776
@signature_safe_contextmanager
L
lujun 已提交
3777 3778 3779 3780
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
3781

3782
    yield
M
minqiyang 已提交
3783

L
lujun 已提交
3784
    _dygraph_current_expected_place_ = tmp_place