nn.py 226.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
Y
ying 已提交
32 33 34
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
35
    'dynamic_lstmp',
G
guosheng 已提交
36
    'dynamic_gru',
Y
ying 已提交
37 38 39 40 41 42 43 44 45
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
Y
yuyang18 已提交
46
    'conv3d',
Y
ying 已提交
47
    'sequence_pool',
48 49
    'sequence_softmax',
    'softmax',
Y
ying 已提交
50
    'pool2d',
Y
yuyang18 已提交
51
    'pool3d',
Y
ying 已提交
52 53 54
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
Y
yuyang18 已提交
55
    'conv3d_transpose',
Y
ying 已提交
56
    'sequence_expand',
C
chengduo 已提交
57
    'sequence_expand_as',
F
fengjiayi 已提交
58
    'sequence_pad',
Y
ying 已提交
59 60 61 62 63
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
64
    'reduce_prod',
Y
ying 已提交
65 66 67 68
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
69 70
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
71 72
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
73
    'topk',
Y
ying 已提交
74 75
    'warpctc',
    'sequence_reshape',
76
    'transpose',
77
    'im2sequence',
78
    'nce',
W
weixing02 已提交
79
    'hsigmoid',
Q
Qiao Longfei 已提交
80
    'beam_search',
81
    'row_conv',
82
    'multiplex',
G
guosheng 已提交
83
    'layer_norm',
84 85
    'softmax_with_cross_entropy',
    'smooth_l1',
86
    'one_hot',
Y
Yu Yang 已提交
87
    'autoincreased_step_counter',
C
caoying03 已提交
88
    'reshape',
Y
Yibing Liu 已提交
89 90
    'squeeze',
    'unsqueeze',
Y
yangyaming 已提交
91
    'lod_reset',
D
dragonwarrior 已提交
92
    'lrn',
G
guosheng 已提交
93
    'pad',
C
chengduo 已提交
94
    'pad_constant_like',
95
    'label_smooth',
96
    'roi_pool',
W
whs 已提交
97
    'dice_loss',
F
fengjiayi 已提交
98 99
    'image_resize',
    'image_resize_short',
B
baiyf 已提交
100
    'resize_bilinear',
W
whs 已提交
101
    'gather',
102
    'scatter',
Q
Qingsheng Li 已提交
103
    'sequence_scatter',
104
    'random_crop',
Y
yuyang18 已提交
105 106 107
    'mean_iou',
    'relu',
    'log',
108
    'crop',
109
    'rank_loss',
J
jerrywgz 已提交
110
    'prelu',
111
    'flatten',
Q
qingqing01 已提交
112
    'sequence_mask',
S
sneaxiy 已提交
113
    'stack',
W
whs 已提交
114
    'pad2d',
D
dzhwinter 已提交
115
    'unstack',
116
    'sequence_enumerate',
W
whs 已提交
117
    'expand',
C
add api  
chengduoZH 已提交
118
    'sequence_concat',
S
sneaxiy 已提交
119 120 121 122 123 124 125 126
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Y
Yu Yang 已提交
127 128 129 130 131 132 133 134
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
135
       use_mkldnn=False,
Y
Yu Yang 已提交
136
       act=None,
J
Jacek Czaja 已提交
137
       is_test=False,
138
       name=None):
Y
Yu Yang 已提交
139
    """
140
    **Fully Connected Layer**
Y
Yu Yang 已提交
141

142 143 144 145 146 147 148 149
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
150
    to the output as well.
C
caoying03 已提交
151

C
caoying03 已提交
152
    This process can be formulated as follows:
153 154 155

    .. math::

156
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
157 158 159

    In the above equation:

C
caoying03 已提交
160 161 162 163
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
164
    * :math:`Act`: The activation function.
C
caoying03 已提交
165
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
166 167

    Args:
R
ranqiu 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
183 184
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
185
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
186
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
187 188
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
189
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
190

191
    Returns:
F
fengjiayi 已提交
192
        Variable: The transformation result.
193 194

    Raises:
C
caoying03 已提交
195
        ValueError: If rank of the input tensor is less than 2.
196 197 198 199

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
200
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
201
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
202
    """
C
caoying03 已提交
203

C
caoying03 已提交
204
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
205 206 207 208

    dtype = helper.input_dtype()

    mul_results = []
209 210
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
211 212 213
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
214

Y
Yu Yang 已提交
215
        w = helper.create_parameter(
216 217
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
218
        helper.append_op(
219 220 221
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
222
            outputs={"Out": tmp},
M
mozga-intel 已提交
223 224
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
225 226 227 228
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
229
    else:
230 231
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
232 233 234 235
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
236 237 238 239
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
240 241


242 243 244
def embedding(input,
              size,
              is_sparse=False,
245
              is_distributed=False,
246 247 248
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
249
    """
250 251
    **Embedding Layer**

252
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
253 254
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
255 256 257

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
258 259

    Args:
260 261 262 263 264
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
265
        is_distributed(bool): Whether to run lookup table from remote parameter server.
266 267
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
268
            with zeros whenever lookup encounters it in :attr:`input`. If
269
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
270 271
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
272
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
273

274 275 276
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
277

278 279
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
280

C
chengduoZH 已提交
281
          dict_size = len(dataset.ids)
282
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
283
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
284 285 286 287 288 289
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
290 291
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
292 293 294 295 296
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
297 298 299 300 301
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
302 303 304
    return tmp


Y
yi.wu 已提交
305
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
306 307
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
308 309
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
310 311 312 313 314 315 316
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
317 318
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
319
    """
Y
yi.wu 已提交
320
    ${comment}
Y
Yibing Liu 已提交
321 322

    Args:
Y
yi.wu 已提交
323 324
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
325 326 327 328 329 330 331
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

332
        param_attr(ParamAttr|None): The parameter attribute for the learnable
333
                               hidden-hidden weights.
Y
Yibing Liu 已提交
334 335 336

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
337 338
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
339
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
340 341 342
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
343

344
                              1. `use_peepholes = False`
Y
yi.wu 已提交
345 346
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
347
                              2. `use_peepholes = True`
Y
yi.wu 已提交
348
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
349
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
350
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
351 352 353 354 355 356 357 358
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
359 360

    Returns:
Y
Yibing Liu 已提交
361 362
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
363

Y
Yibing Liu 已提交
364
    Examples:
Y
Yibing Liu 已提交
365 366
        .. code-block:: python

Y
Yibing Liu 已提交
367 368
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
369
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
370 371
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
372
    """
373

Y
Yu Yang 已提交
374
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
375
    size = size // 4
Y
Yu Yang 已提交
376 377 378 379 380 381 382 383 384 385 386 387
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
388 389 390 391 392 393 394 395 396 397
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
398 399 400

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
401
        inputs=inputs,
Y
Yu Yang 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
418 419 420 421 422 423 424 425 426 427 428
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
429 430
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
431 432 433
    """
    **Dynamic LSTMP Layer**

434 435 436 437 438 439
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
440 441 442 443 444

    The formula is as follows:

    .. math::

445
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
446

447
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
448

449
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
450

451
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
452

453
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
454

455
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
456

457
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
458

Y
Yibing Liu 已提交
459 460 461 462 463 464
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
465
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
466
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
467
          bias vector).
Y
Yibing Liu 已提交
468 469 470
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
471
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
472
    * :math:`h`: The hidden state.
473
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
474 475
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
476
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
477
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
478
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
479 480
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
481 482 483 484

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
485

Y
Yibing Liu 已提交
486 487 488 489 490 491 492 493 494 495 496 497
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
498
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
499 500
                               hidden-hidden weight and projection weight.

501 502
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
503 504
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
505 506
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
507 508
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
509 510 511 512 513 514
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
515
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
516 517 518
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
519
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
520 521 522 523 524 525 526 527 528
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
529
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
530 531
                              default "tanh".
        proj_activation(str): The activation for projection output.
532
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
533 534
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
535 536
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
537 538

    Returns:
539 540 541 542
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
543 544

    Examples:
545

Y
Yibing Liu 已提交
546 547
        .. code-block:: python

548 549 550 551
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
552
            hidden_dim, proj_dim = 512, 256
553
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
554
                                     act=None, bias_attr=None)
555 556 557
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
558 559 560 561
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
562
    """
563

Y
Yibing Liu 已提交
564
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
565
    size = size // 4
Y
Yibing Liu 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
610 611 612 613 614 615 616 617 618
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
619
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
620

621
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
622
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
623

G
guosheng 已提交
624 625 626 627 628 629 630 631 632
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
633

G
guosheng 已提交
634
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
635

G
guosheng 已提交
636
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
637 638
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
639 640 641 642
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
643
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
644 645

    Args:
646 647
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
648
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
649
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
650 651
            is the hidden size.
        size(int): The dimension of the gru cell.
652
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
653 654
            hidden-hidden weight matrix. Note:

655
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
656
              :math:`D` is the hidden size.
657
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
658
              The first part are weights of the update gate and reset gate with
659
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
660
              candidate hidden state with shape :math:`(D \\times D)`.
661
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
662
            hidden-hidden bias.
663
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
664 665 666
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
667
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
668
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
669 670 671 672
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
673 674

    Returns:
G
guosheng 已提交
675
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
676
            and sequence length is the same with the input.
677

G
guosheng 已提交
678
    Examples:
679

G
guosheng 已提交
680 681
        .. code-block:: python

682 683 684 685
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
686
            hidden_dim = 512
687
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
688 689 690 691 692 693 694 695 696 697
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
698
    batch_size = input.shape[0]
G
guosheng 已提交
699 700 701
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
702 703 704
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
728 729 730
def gru_unit(input,
             hidden,
             size,
731 732
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
733
             activation='tanh',
734
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
735
    """
736
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
737

738 739
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
740

741
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
742

743
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
744

745
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
746 747

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
748 749 750
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
751 752
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

753 754
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
755 756 757
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
758 759 760 761 762

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
763 764
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
765 766 767 768
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
769

770 771 772 773 774 775
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
776

777
             # assuming we have x_t_data and prev_hidden of size=10
778
             x_t = fluid.layers.fc(input=x_t_data, size=30)
779 780
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
781 782 783 784 785 786 787 788 789 790 791 792

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
793
    size = size // 3
Y
Yu Yang 已提交
794 795

    # create weight
796 797
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
798

799 800 801 802
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
803
    # create bias
804
    if helper.bias_attr:
Y
Yu Yang 已提交
805 806 807
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
808
        inputs['Bias'] = bias
Y
Yu Yang 已提交
809 810 811

    helper.append_op(
        type='gru_unit',
812
        inputs=inputs,
Y
Yu Yang 已提交
813 814 815 816 817 818
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
819 820
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
821 822 823 824 825
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
826
@templatedoc()
827
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
828 829 830 831 832 833 834
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
835
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
836 837 838 839
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
840 841 842
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
843 844

    """
Y
Yu Yang 已提交
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
870
@templatedoc()
871
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
872 873 874 875 876
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
877

Y
yuyang18 已提交
878
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
879

Y
yuyang18 已提交
880 881 882
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
883
        Variable: ${viterbi_path_comment}
884

Y
yi.wu 已提交
885 886 887 888 889
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
890
    """
Y
Yu Yang 已提交
891 892 893 894 895 896 897 898 899 900 901 902 903
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
904
@templatedoc()
F
fengjiayi 已提交
905
def cos_sim(X, Y):
Y
Yu Yang 已提交
906
    """
Y
yi.wu 已提交
907 908 909
    ${comment}

    Args:
910 911
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
912

Y
yi.wu 已提交
913
    Returns:
914
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
915
    """
F
fengjiayi 已提交
916
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
917 918 919 920 921 922 923 924 925 926 927 928 929
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


930
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
931 932 933 934 935
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
936
    training. The dropout operator randomly sets (according to the given dropout
937 938 939 940
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
941 942
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
943 944 945 946 947 948 949
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
950 951

    Returns:
952
        Variable: A tensor variable is the shape with `x`.
953 954

    Examples:
955

956 957
        .. code-block:: python

958 959
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
960 961
    """

F
fengjiayi 已提交
962
    helper = LayerHelper('dropout', **locals())
963 964
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
965 966 967 968

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

969 970 971 972 973
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
974 975 976 977 978 979
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
980 981 982
    return out


983
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
984
    """
Y
Yibing Liu 已提交
985 986
    **Cross Entropy Layer**

987 988 989
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
990 991

    1) One-hot cross-entropy:
F
fengjiayi 已提交
992
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
993

Y
Yibing Liu 已提交
994
        .. math::
Y
yangyaming 已提交
995

Y
Yibing Liu 已提交
996 997 998
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
999 1000
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1001 1002 1003 1004 1005

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1006
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1007 1008 1009
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1010 1011
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1012
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1013

Y
Yibing Liu 已提交
1014
    Args:
Y
yangyaming 已提交
1015
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1016 1017 1018 1019
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1020
        label (Variable|list): the ground truth which is a 2-D tensor. When
1021 1022 1023 1024
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1025
        soft_label (bool): a flag indicating whether to
1026
                                           interpretate the given labels as soft
1027 1028 1029 1030
                                           labels. Default: `False`.
        ignore_index (int): Specifies a target value that is ignored and does 
                            not contribute to the input gradient. Only valid 
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1031 1032 1033 1034 1035

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1036 1037 1038 1039 1040
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1041 1042 1043 1044 1045 1046

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1047
    """
F
fengjiayi 已提交
1048
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1049 1050 1051 1052 1053 1054
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1055 1056
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1057 1058 1059
    return out


F
fengjiayi 已提交
1060
def square_error_cost(input, label):
Y
Yu Yang 已提交
1061
    """
1062 1063
    **Square error cost layer**

1064 1065
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1066

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1080 1081
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1082 1083

    Returns:
G
guosheng 已提交
1084
        Variable: The tensor variable storing the element-wise squared error \
1085
                  difference of input and label.
1086 1087 1088 1089 1090 1091 1092 1093

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1094
    """
F
fengjiayi 已提交
1095
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1105 1106
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1107 1108 1109
    return square_out


Y
yi.wu 已提交
1110
@templatedoc()
Y
Yu Yang 已提交
1111 1112 1113 1114
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1115
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1116
    """
Y
yi.wu 已提交
1117
    **Chunk Evaluator**
Y
yi.wu 已提交
1118

Y
yangyaming 已提交
1119
    This function computes and outputs the precision, recall and
1120
    F1-score of chunk detection.
Y
yi.wu 已提交
1121

Y
yi.wu 已提交
1122 1123 1124 1125 1126 1127 1128 1129
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1130

Y
yi.wu 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1156

Y
yi.wu 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1181
    Args:
1182 1183 1184 1185 1186
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1187

Y
yi.wu 已提交
1188
    Returns:
Y
update  
yi.wu 已提交
1189 1190 1191
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1192

Y
yi.wu 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1205
    """
F
fengjiayi 已提交
1206
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1207 1208 1209 1210 1211

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1212 1213 1214
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1215 1216 1217 1218 1219 1220 1221 1222

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1223 1224 1225 1226
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1227 1228 1229
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1230 1231
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1232
        })
1233 1234
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1235 1236


1237
@templatedoc()
Y
Yu Yang 已提交
1238 1239 1240 1241 1242 1243 1244
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1245
                  act=None):
Y
Yu Yang 已提交
1246 1247 1248 1249
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1260

1261 1262
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1281
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1282 1283 1284 1285 1286 1287
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1288
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=False):
1289 1290 1291
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1292
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
1311
        library is installed. Default: False
1312

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1335
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1336
    """
1337
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1338
    has the same shape as the input.
Q
qiaolongfei 已提交
1339

1340 1341 1342 1343 1344 1345
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1346
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1347 1348 1349 1350 1351 1352 1353

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1354
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1389 1390 1391
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1392 1393
           stride=1,
           padding=0,
1394
           dilation=1,
Y
Yu Yang 已提交
1395 1396 1397
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1398
           use_cudnn=True,
1399
           use_mkldnn=False,
1400 1401
           act=None,
           name=None):
Y
Yu Yang 已提交
1402
    """
C
chengduoZH 已提交
1403
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1404 1405
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1406
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1407 1408 1409 1410 1411 1412 1413
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1414 1415 1416
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1417

1418
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1419

C
chengduoZH 已提交
1420 1421
    .. math::

C
refine  
chengduoZH 已提交
1422
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1423

T
tensor-tang 已提交
1424
    Where:
C
chengduoZH 已提交
1425

1426 1427 1428 1429 1430
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1431
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1432 1433 1434

    Example:

1435 1436
        - Input:

W
weixing02 已提交
1437
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1438

W
weixing02 已提交
1439
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1440

1441
        - Output:
T
tensor-tang 已提交
1442

W
weixing02 已提交
1443
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1444

C
chengduoZH 已提交
1445
        Where
1446 1447

        .. math::
C
chengduoZH 已提交
1448

W
weixing02 已提交
1449 1450
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1451 1452

    Args:
1453
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1454
        num_filters(int): The number of filter. It is as same as the output
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1477 1478
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1479 1480 1481
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1482 1483

    Returns:
G
guosheng 已提交
1484
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1485 1486
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1487
    Raises:
1488 1489
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1490

C
chengduoZH 已提交
1491 1492 1493
    Examples:
        .. code-block:: python

1494 1495
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1496 1497 1498
    """

    num_channels = input.shape[1]
1499 1500

    l_type = 'conv2d'
X
xzl 已提交
1501 1502
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1503
        l_type = 'depthwise_conv2d'
1504 1505 1506 1507

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1508 1509 1510 1511 1512
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1513
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1514

C
chengduoZH 已提交
1515 1516 1517
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1518
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1519

C
chengduoZH 已提交
1520 1521
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1522 1523

    input_shape = input.shape
M
minqiyang 已提交
1524
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1539
        type=l_type,
Y
Yu Yang 已提交
1540 1541 1542 1543 1544
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1545 1546 1547
        attrs={
            'strides': stride,
            'paddings': padding,
1548
            'dilations': dilation,
C
chengduoZH 已提交
1549
            'groups': groups,
1550 1551
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1552
        })
Y
Yu Yang 已提交
1553 1554 1555 1556 1557 1558

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1577 1578 1579 1580 1581 1582
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1592 1593
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1594 1595 1596
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1597
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1623
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1624 1625
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1626
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1627 1628
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1629
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1630 1631
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1632
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1659 1660
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1675
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1716
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1717 1718 1719 1720

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1721
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1722
    """
Y
yangyaming 已提交
1723 1724 1725
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1737
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1738 1739 1740 1741 1742
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1743
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1744 1745 1746 1747 1748 1749 1750

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1751 1752
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1753

L
Luo Tao 已提交
1754 1755
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1756
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1757 1758 1759 1760 1761 1762 1763 1764
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1765

Y
yangyaming 已提交
1766
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1767 1768 1769 1770 1771
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1772 1773
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1774
    """
F
fengjiayi 已提交
1775
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1787 1788 1789 1790 1791
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1792 1793 1794
    return pool_out


C
add doc  
chengduoZH 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1820
def sequence_first_step(input):
L
Luo Tao 已提交
1821
    """
L
Luo Tao 已提交
1822
    This function gets the first step of sequence.
L
Luo Tao 已提交
1823 1824 1825 1826

    .. code-block:: text

       x is a 1-level LoDTensor:
1827
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1828 1829 1830 1831 1832
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1833
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1834
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1835

L
Luo Tao 已提交
1836 1837 1838 1839 1840 1841 1842 1843 1844
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1845

Y
yangyaming 已提交
1846
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1847 1848 1849
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1850 1851 1852
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1853
def sequence_last_step(input):
L
Luo Tao 已提交
1854
    """
L
Luo Tao 已提交
1855
    This function gets the last step of sequence.
L
Luo Tao 已提交
1856 1857 1858 1859

    .. code-block:: text

       x is a 1-level LoDTensor:
1860
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1861 1862 1863 1864 1865
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1866
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1867
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1868

L
Luo Tao 已提交
1869 1870 1871 1872 1873 1874 1875 1876 1877
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1878

Y
yangyaming 已提交
1879
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1880 1881 1882
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1883 1884 1885
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1886
@templatedoc()
Y
Yu Yang 已提交
1887
def pool2d(input,
C
chengduoZH 已提交
1888 1889
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1890 1891
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1892
           global_pooling=False,
C
chengduoZH 已提交
1893
           use_cudnn=True,
1894
           ceil_mode=False,
1895
           use_mkldnn=False,
C
caoying03 已提交
1896
           name=None):
Y
Yu Yang 已提交
1897
    """
F
fengjiayi 已提交
1898
    ${comment}
1899 1900

    Args:
1901 1902 1903
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1904
                          feature, and W is the width of the feature.
1905
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1906
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1907
        pool_type: ${pooling_type_comment}
1908 1909
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1910 1911 1912 1913
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1914
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1915 1916
                        layer will be named automatically.

1917
    Returns:
F
fengjiayi 已提交
1918
        Variable: The pooling result.
F
fengjiayi 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1932 1933 1934 1935
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1936
                            global_pooling=False)
Y
Yu Yang 已提交
1937 1938 1939 1940 1941
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1942

C
chengduoZH 已提交
1943 1944 1945 1946 1947
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1948 1949 1950 1951
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1952 1953
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1954

C
Add doc  
chengduoZH 已提交
1955
    l_type = 'pool2d'
1956 1957

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1958 1959 1960 1961
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1991
    pooling configurations mentioned in input parameters.
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2005

2006
    Returns:
2007
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2008 2009 2010 2011 2012
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2013

C
chengduoZH 已提交
2014 2015 2016 2017 2018
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2019 2020 2021
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2022

C
chengduoZH 已提交
2023 2024
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2025

2026 2027
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2028 2029 2030 2031
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2032
        type=l_type,
Y
Yu Yang 已提交
2033 2034 2035 2036 2037 2038 2039
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2040
            "paddings": pool_padding,
2041
            "use_cudnn": use_cudnn,
2042 2043
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2056
               data_layout='NCHW',
Y
Yang Yang 已提交
2057
               in_place=False,
2058
               use_mkldnn=False,
2059 2060
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2061
               moving_variance_name=None,
2062 2063
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2064
    """
Q
qiaolongfei 已提交
2065 2066 2067 2068
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2069

Q
qiaolongfei 已提交
2070
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2071

Q
qiaolongfei 已提交
2072 2073
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2074 2075 2076
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2089 2090

    Args:
Q
qiaolongfei 已提交
2091
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2092 2093 2094 2095
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2096 2097 2098
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
2099
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2100 2101 2102 2103 2104
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2105
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2106
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2107 2108

    Returns:
Q
qiaolongfei 已提交
2109
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2110 2111 2112 2113 2114 2115 2116

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2140
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2141

2142 2143
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2144 2145 2146
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2147
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2148
        shape=param_shape,
2149 2150 2151 2152 2153 2154 2155
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2156
            trainable=False,
W
wanghaoshuang 已提交
2157
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2158
        shape=param_shape,
2159 2160
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2161 2162 2163 2164 2165 2166

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2167 2168
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2169

2170
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2188 2189 2190 2191
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2192 2193
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2194
        })
Y
Yu Yang 已提交
2195 2196 2197 2198

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2199
@templatedoc()
G
guosheng 已提交
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2210
    ${comment}
G
guosheng 已提交
2211 2212 2213

    The formula is as follows:

Y
yuyang18 已提交
2214
    ..  math::
G
guosheng 已提交
2215 2216 2217 2218 2219 2220 2221

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2222 2223 2224 2225 2226 2227 2228 2229
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2230

G
guosheng 已提交
2231 2232
    Args:
        input(Variable): The input tensor variable.
2233
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2234
            normalization.
2235
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2236
            normalization.
2237
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2238
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2239
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2240 2241 2242 2243 2244 2245
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2246
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2247 2248

    Returns:
Y
yuyang18 已提交
2249
        ${y_comment}
G
guosheng 已提交
2250 2251 2252

    Examples:

Y
yuyang18 已提交
2253 2254 2255
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2271
    if shift:
G
guosheng 已提交
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2296 2297 2298 2299
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2300 2301 2302
                     padding=0,
                     stride=1,
                     dilation=1,
2303
                     groups=None,
C
caoying03 已提交
2304
                     param_attr=None,
2305
                     bias_attr=None,
C
chengduoZH 已提交
2306
                     use_cudnn=True,
2307
                     act=None,
C
caoying03 已提交
2308
                     name=None):
Y
Yu Yang 已提交
2309
    """
2310 2311 2312 2313 2314 2315 2316 2317
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2318 2319
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2320 2321 2322
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2323 2324 2325 2326 2327

    For each input :math:`X`, the equation is:

    .. math::

2328
        Out = \sigma (W \\ast X + b)
2329

2330
    Where:
2331 2332 2333

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2334 2335 2336 2337
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2338

2339 2340 2341 2342
    Example:

        - Input:

2343
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2344

2345
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2346 2347 2348

        - Output:

2349
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2350 2351

        Where
Y
Yu Yang 已提交
2352

2353 2354
        .. math::

2355 2356 2357 2358
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2359 2360

    Args:
2361 2362 2363 2364
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2365 2366 2367 2368
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2396 2397

    Returns:
2398
        Variable: The tensor variable storing the convolution transpose result.
2399 2400

    Raises:
2401 2402
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2403 2404 2405 2406

    Examples:
       .. code-block:: python

2407 2408
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2409
    """
2410 2411 2412 2413 2414 2415 2416 2417 2418

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2419 2420 2421
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2422 2423 2424
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2425

C
chengduoZH 已提交
2426 2427
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2428

Y
Yu Yang 已提交
2429 2430 2431 2432 2433
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2434

Y
Yu Yang 已提交
2435 2436
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2437

C
chengduoZH 已提交
2438
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2439
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2440
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2441
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2442
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2443 2444 2445
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2446 2447 2448 2449 2450 2451 2452
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2453
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2454
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2455 2456 2457
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2458
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2459
    helper.append_op(
2460
        type=op_type,
Y
Yu Yang 已提交
2461 2462
        inputs={'Input': [input],
                'Filter': [img_filter]},
2463
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2464
        attrs={
2465
            'output_size': output_size,
2466 2467 2468 2469 2470
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2471 2472
        })

2473 2474 2475
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2476 2477


2478
def conv3d_transpose(input,
Y
Yu Yang 已提交
2479 2480 2481
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2482 2483 2484
                     padding=0,
                     stride=1,
                     dilation=1,
2485
                     groups=None,
C
caoying03 已提交
2486
                     param_attr=None,
2487
                     bias_attr=None,
C
chengduoZH 已提交
2488
                     use_cudnn=True,
2489
                     act=None,
C
caoying03 已提交
2490
                     name=None):
Y
Yu Yang 已提交
2491
    """
2492
    **Convlution3D transpose layer**
2493

2494
    The convolution3D transpose layer calculates the output based on the input,
2495
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2496 2497 2498 2499 2500 2501
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2502 2503 2504
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2505 2506 2507 2508 2509

    For each input :math:`X`, the equation is:

    .. math::

2510
        Out = \sigma (W \\ast X + b)
2511 2512 2513

    In the above equation:

2514 2515
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2516 2517 2518 2519
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2520

2521 2522 2523 2524
    Example:

        - Input:

2525
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2526

2527
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2528 2529 2530

        - Output:

2531
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2532 2533

        Where
Y
Yu Yang 已提交
2534

2535 2536
        .. math::

2537 2538 2539
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2540 2541

    Args:
2542
        input(Variable): The input image with [N, C, D, H, W] format.
2543 2544 2545
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2546
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2547 2548
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2549
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2550 2551 2552
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2553 2554
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2555
        stride(int|tuple): The stride size. If stride is a tuple, it must
2556 2557
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2558
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2559 2560 2561
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2562 2563 2564 2565 2566
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2567 2568 2569
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2570 2571 2572 2573 2574
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2575 2576

    Returns:
2577
        Variable: The tensor variable storing the convolution transpose result.
2578 2579

    Raises:
2580 2581
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2582 2583 2584 2585

    Examples:
       .. code-block:: python

2586 2587
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2588
    """
2589 2590
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2591
    if not isinstance(input, Variable):
2592
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2593 2594
    input_channel = input.shape[1]

2595 2596 2597
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2598

C
chengduoZH 已提交
2599 2600 2601
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2602 2603 2604 2605 2606 2607
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2608 2609 2610
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2611

2612
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2613
                         padding[0] - 1) // dilation[0] + 1
2614
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2615
                         padding[1] - 1) // dilation[1] + 1
2616
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2617
                         padding[2] - 1) // dilation[2] + 1
2618
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2619
    else:
2620 2621
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2622

2623
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2624
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2625 2626 2627
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2628
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2629
    helper.append_op(
2630
        type=l_type,
Y
Yu Yang 已提交
2631 2632
        inputs={'Input': [input],
                'Filter': [img_filter]},
2633
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2634 2635 2636 2637
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2638
            'groups': groups,
C
chengduoZH 已提交
2639 2640
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2641

2642 2643
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2644
    return out
Y
yangyaming 已提交
2645 2646


Y
yangyaming 已提交
2647
def sequence_expand(x, y, ref_level=-1, name=None):
2648
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2649 2650 2651 2652
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2653 2654 2655 2656 2657

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2658
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2659
                x.data = [[a], [b], [c], [d]]
2660 2661 2662
                x.dims = [4, 1]

            y is a LoDTensor:
2663 2664
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2665

Y
yangyaming 已提交
2666
            ref_level: 0
2667

Y
yangyaming 已提交
2668
            then output is a 1-level LoDTensor:
2669
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2670
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2671 2672 2673 2674
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2675
                x.data = [[a], [b], [c]]
2676 2677 2678
                x.dims = [3, 1]

            y is a LoDTensor:
2679
                y.lod = [[2, 0, 3]]
2680

Y
yangyaming 已提交
2681
            ref_level: -1
2682

Y
yangyaming 已提交
2683 2684 2685
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2686 2687 2688
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2689 2690
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2691
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2692
                        will be named automatically.
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2703
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2704
    """
Y
yangyaming 已提交
2705
    helper = LayerHelper('sequence_expand', input=x, **locals())
2706 2707 2708
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2709 2710 2711 2712 2713
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2714
    return tmp
2715 2716


C
chengduo 已提交
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
@templatedoc()
def sequence_pad(x, pad_value, maxlen=None):
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
        pad_value(Variable): The Variable that holds values that will be fill 
            into padded steps. It can be a scalar or a tensor whose shape 
            equals to time steps in sequences. If it's a scalar, it will be 
            automatically broadcasted to the shape of time step.
        maxlen(int, default None): The length of padded sequences. It can be 
            None or any positive int. When it is None, all sequences will be 
            padded up to the length of the longest one among them; when it a 
            certain positive value, it must be greater than the length of the 
            longest original sequence."
    
    Returns:
2800 2801
        Variable: The padded sequence batch and the original lengths before 
                  padding. All sequences has the same length.
F
fengjiayi 已提交
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
    
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
2817 2818 2819 2820 2821
    length = helper.create_tmp_variable(dtype)

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
2822 2823 2824 2825 2826 2827
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
2828 2829
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
2830
        attrs={'padded_length': maxlen})
2831
    return out, length
F
fengjiayi 已提交
2832 2833


2834 2835 2836 2837 2838 2839 2840 2841 2842
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2843 2844
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2845 2846 2847

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2848 2849

    This layer does the search in beams for one time step. Specifically, it
2850 2851 2852 2853 2854 2855
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2856

2857 2858 2859 2860 2861 2862 2863 2864
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2865

2866
    Args:
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2892

2893
    Returns:
2894 2895
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2896 2897 2898 2899

    Examples:
        .. code-block:: python

2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2928
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2946 2947 2948 2949 2950 2951 2952
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2953

2954 2955 2956 2957 2958 2959 2960 2961 2962
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2963

2964 2965 2966 2967 2968 2969
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2970

2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
2996 2997 2998 2999
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3000
              param_attr=None,
C
caoying03 已提交
3001 3002
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3003 3004 3005 3006
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3007
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3008

3009
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3010

3011
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3012

3013
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3014 3015 3016

            h_t & = o_t tanh(c_t)

3017 3018 3019 3020 3021 3022
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3023 3024 3025

        .. math::

3026
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3027 3028 3029 3030 3031 3032 3033 3034

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3035
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3036 3037

    Args:
Y
yangyaming 已提交
3038 3039 3040 3041 3042 3043
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3044
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
3045 3046
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
3047 3048
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
3049 3050
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3051 3052

    Returns:
Y
yangyaming 已提交
3053
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3054 3055

    Raises:
3056 3057 3058 3059
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3060 3061 3062 3063 3064 3065

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3066
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3067
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3068
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3085
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3086 3087 3088 3089
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3090 3091
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3092 3093 3094
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3095
    size = cell_t_prev.shape[1]
3096
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3097 3098
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3099
                param_attr=param_attr,
3100
                bias_attr=bias_attr)
Y
yangyaming 已提交
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3113
    return h, c
G
guosheng 已提交
3114 3115


C
caoying03 已提交
3116
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3117
    """
Y
yangyaming 已提交
3118
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3119 3120 3121

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3122
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3123 3124
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3125 3126
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3127
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3128
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3129
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3130 3131
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3132 3133 3134

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3135

G
guosheng 已提交
3136 3137 3138 3139 3140 3141
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3142
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3143 3144 3145 3146
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3147 3148 3149 3150

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3151
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3152 3153 3154
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3155 3156 3157
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3158 3159
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3160 3161 3162 3163 3164
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3165
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3166 3167 3168 3169
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3170 3171


C
caoying03 已提交
3172
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3173
    """
Y
Yibing Liu 已提交
3174
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3175 3176 3177

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3178 3179 3180
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3181
            must be in the range :math:`[-rank(input), rank(input))`. If
3182
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3183
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3184 3185
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3186
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3187
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3188
                       will be named automatically.
G
guosheng 已提交
3189 3190

    Returns:
Y
Yibing Liu 已提交
3191
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3192

G
guosheng 已提交
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3203 3204
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3205 3206 3207 3208 3209 3210 3211

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3212 3213 3214
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3215 3216
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3217 3218 3219 3220 3221
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3222
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3223 3224 3225 3226
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3227 3228


C
caoying03 已提交
3229
def reduce_max(input, dim=None, keep_dim=False, name=None):
3230
    """
Y
yangyaming 已提交
3231
    Computes the maximum of tensor elements over the given dimension.
3232 3233 3234

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3235
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3236 3237 3238
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3239
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3240 3241
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3242
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3243 3244
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3245 3246 3247

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3248

3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3260 3261 3262 3263 3264 3265 3266

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3267 3268 3269
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3270 3271
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3272 3273 3274 3275 3276
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3277
            'dim': dim if dim != None else [0],
3278 3279 3280 3281 3282 3283
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3284
def reduce_min(input, dim=None, keep_dim=False, name=None):
3285
    """
Y
yangyaming 已提交
3286
    Computes the minimum of tensor elements over the given dimension.
3287 3288 3289

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3290
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3291 3292 3293
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3294
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3295 3296
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3297
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3298 3299
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3300 3301 3302

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3303

3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3315 3316 3317 3318 3319 3320 3321

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3322 3323 3324
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3325 3326
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3327 3328 3329 3330 3331
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3332
            'dim': dim if dim != None else [0],
3333 3334 3335 3336
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3337 3338


3339 3340 3341 3342 3343 3344
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3345
        dim (list|int|None): The dimensions along which the product is performed. If
3346 3347
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3348 3349
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3350 3351 3352
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3353
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3354
            layer will be named automatically.
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3369
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3370
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3371 3372 3373 3374 3375 3376 3377

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3378 3379 3380
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3381 3382
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3383 3384 3385 3386 3387
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3388
            'dim': dim if dim != None else [0],
3389 3390 3391 3392 3393 3394
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3395
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3396
    """
C
caoying03 已提交
3397
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3398 3399 3400

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3401 3402 3403 3404 3405
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3406
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3407
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3408
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3409 3410
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3411 3412

    Returns:
D
dzhwinter 已提交
3413
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3414 3415 3416 3417 3418 3419 3420 3421 3422

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3423 3424
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3454 3455 3456 3457 3458 3459 3460 3461 3462


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3463
    .. math::
3464 3465

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3466 3467 3468 3469 3470

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3471
        x(Variable|list): The input tensor to l2_normalize layer.
3472
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3473 3474
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3475
        epsilon(float): The epsilon value is used to avoid division by zero, \
3476
            the defalut value is 1e-10.
3477
        name(str|None): A name for this layer(optional). If set None, the layer \
3478
            will be named automatically.
C
caoying03 已提交
3479 3480

    Returns:
3481
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3482 3483

    Examples:
3484

C
caoying03 已提交
3485 3486
        .. code-block:: python

3487 3488 3489 3490
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3491 3492
    """

F
fengjiayi 已提交
3493 3494
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3495 3496
    helper = LayerHelper("l2_normalize", **locals())

3497 3498
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3499
    helper.append_op(
3500 3501 3502 3503
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3504
        attrs={
3505 3506
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3507 3508
        })
    return out
3509 3510


S
sneaxiy 已提交
3511
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3512
    """
Y
ying 已提交
3513 3514 3515 3516
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3517

C
chengduoZH 已提交
3518
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3519
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3520

3521 3522 3523 3524 3525
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3526
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3527

C
chengduoZH 已提交
3528
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3529
      performs in the following way.
G
guosheng 已提交
3530

3531
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3532
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3533
        last two dimensions and a batched matrix multiply supporting broadcast
3534
        applies on the two tensors.
G
guosheng 已提交
3535

Y
ying 已提交
3536 3537
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3538
    removed after matrix multiplication.
G
guosheng 已提交
3539 3540 3541

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3542 3543 3544
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3545
        alpha (float): The scale of output. Default 1.0.
3546
        name(str|None): A name for this layer(optional). If set None, the layer
3547
            will be named automatically.
G
guosheng 已提交
3548 3549

    Returns:
3550
        Variable: The product Tensor variable.
G
guosheng 已提交
3551

G
guosheng 已提交
3552 3553 3554
    Examples:
        .. code-block:: python

3555
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3556 3557
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3558

3559 3560
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3561

3562 3563
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3564

3565 3566
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3567 3568 3569 3570

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3571 3572
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3573

Y
ying 已提交
3574
            # x: [M], y: [N]
3575
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3576
    """
Y
ying 已提交
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3589
            y_shape = y_shape + [1]
Y
ying 已提交
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3606
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3607
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3608
    helper.append_op(
3609 3610 3611 3612
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3613 3614 3615
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3616
            'alpha': float(alpha),
S
sneaxiy 已提交
3617
        })
3618
    return out
3619 3620


3621
def topk(input, k, name=None):
Q
qingqing01 已提交
3622 3623 3624 3625
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3626
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3627 3628 3629 3630 3631 3632
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3654 3655 3656
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3657
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3658
                 of input.
3659
        name(str|None): A name for this layer(optional). If set None, the layer
3660
                       will be named automatically.
F
fengjiayi 已提交
3661
                       Default: None
Q
qingqing01 已提交
3662 3663

    Returns:
3664 3665 3666
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3667
        within the last dimension of input.
Q
qingqing01 已提交
3668

F
fengjiayi 已提交
3669 3670
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3691
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3692
    """
Y
ying 已提交
3693 3694 3695 3696 3697 3698 3699 3700 3701
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3702

Y
ying 已提交
3703
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3704

3705
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3706 3707
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3708
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3709

3710
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3711 3712
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3713

3714 3715 3716
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3717
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3718
                          the length of reference string.
3719
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3720
                                     calculating edit distance.
3721
        name (str): The name of this layer. It is optional.
3722

W
wanghaoshuang 已提交
3723
    Returns:
W
wanghaoshuang 已提交
3724
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3725 3726 3727 3728 3729

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3730
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3731
            cost = fluid.layers.edit_distance(input=x,label=y)
3732
    """
3733
    helper = LayerHelper("edit_distance", **locals())
3734

3735
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3736
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3737 3738 3739 3740 3741 3742 3743
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3744
            attrs={"tokens": ignored_tokens})
3745 3746 3747 3748 3749
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3750
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3751
            attrs={"tokens": ignored_tokens})
3752 3753
        label = erased_label

3754 3755
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3756
    sequence_num = helper.create_tmp_variable(dtype="int64")
3757 3758 3759 3760
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3761 3762
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3763 3764
        attrs={"normalized": normalized})

3765
    return edit_distance_out, sequence_num
3766 3767 3768 3769 3770


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3771

Y
ying 已提交
3772 3773 3774 3775
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3793
        input.lod = [[4, 4]]
3794 3795 3796 3797 3798 3799 3800

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3801
        output.lod = [[2, 1]]
3802 3803 3804

    Args:

Y
ying 已提交
3805 3806 3807 3808 3809 3810 3811 3812 3813
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3814
        name (str): The name of this layer. It is optional.
3815 3816

    Returns:
3817
        Variable: CTC greedy decode result. If all the sequences in result were
3818
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3819 3820 3821 3822 3823

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3824

3825
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3826
    """
3827
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3828
    _, topk_indices = topk(input, k=1)
3829 3830 3831 3832 3833 3834

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3835
        outputs={"Output": [ctc_out]},
3836 3837
        attrs={"merge_repeated": True,
               "blank": blank})
3838
    return ctc_out
3839 3840


F
fengjiayi 已提交
3841
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3842
    """
3843 3844
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3845
    to compute Connectionist Temporal Classification (CTC) loss.
3846 3847
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3848 3849 3850
    input tensor.

    Args:
3851
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3852 3853 3854 3855
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3856
       label (Variable): The ground truth of variable-length sequence,
3857 3858 3859
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3860 3861
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3862 3863 3864
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3865
         follewed by a mean_op.
W
wanghaoshuang 已提交
3866 3867

    Returns:
3868 3869
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3870 3871

    Examples:
3872

W
wanghaoshuang 已提交
3873
        .. code-block:: python
3874

3875 3876 3877
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3878 3879

    """
F
fengjiayi 已提交
3880
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3907 3908 3909
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3910 3911 3912 3913 3914
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3915

3916
            out.lod  = [[0, 1, 3]]
3917 3918 3919 3920

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3921 3922 3923 3924 3925 3926 3927
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3928 3929 3930

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3931 3932

    Returns:
3933

3934 3935 3936 3937 3938
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3939
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3940
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3941 3942 3943 3944 3945 3946 3947 3948 3949
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3950 3951


3952 3953 3954 3955
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3956 3957 3958 3959 3960 3961 3962
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3963 3964 3965 3966 3967 3968 3969
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3970 3971
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3972
            sample is 1.0.
3973 3974 3975
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3976

3977
    Returns:
Y
Yibing Liu 已提交
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4005
    """
Y
Yang Yu 已提交
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
4025 4026 4027 4028 4029 4030 4031 4032 4033
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4050
    return cost / (num_neg_samples + 1)
4051 4052


G
guosheng 已提交
4053
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
4054 4055
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4056
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4057 4058 4059 4060 4061 4062 4063 4064 4065
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4066

W
weixing02 已提交
4067
    Args:
M
minqiyang 已提交
4068
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4069 4070 4071 4072 4073
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
4074 4075
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
4076
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
4077 4078
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
4079 4080 4081 4082 4083 4084 4085 4086

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4087 4088 4089
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4090 4091 4092 4093 4094 4095 4096 4097
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4098
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4099 4100 4101 4102 4103
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4104 4105 4106 4107 4108 4109 4110 4111
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4112 4113
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4114
        inputs=inputs,
W
weixing02 已提交
4115 4116 4117 4118 4119 4120
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4121
def transpose(x, perm, name=None):
Y
ying 已提交
4122 4123 4124 4125 4126 4127 4128
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4129 4130 4131
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4132 4133 4134 4135 4136 4137 4138 4139

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4140
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4141 4142
    """

Y
fix ci.  
ying 已提交
4143
    if len(perm) != len(x.shape):
Y
ying 已提交
4144 4145 4146
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4147 4148 4149 4150 4151 4152
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4153 4154

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4155
    out = helper.create_tmp_variable(x.dtype)
4156
    x_shape = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4157
    helper.append_op(
4158
        type='transpose2',
Y
fix ci.  
ying 已提交
4159
        inputs={'X': [x]},
4160 4161
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4162 4163
        attrs={'axis': perm})
    return out
4164 4165


4166 4167 4168 4169 4170 4171 4172
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4173
    """
4174 4175 4176 4177 4178 4179 4180
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4209 4210 4211 4212 4213 4214 4215 4216 4217
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4218 4219 4220
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4221 4222 4223 4224 4225
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4253 4254 4255
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4268
            output.dims = {8, 8}
4269

4270
            output.lod = [[4, 4]]
4271

D
dzhwinter 已提交
4272
     Examples:
4273 4274 4275

        .. code-block:: python

4276 4277
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4278 4279

    """
W
wanghaoshuang 已提交
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4290 4291 4292 4293 4294 4295 4296
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4297
    helper = LayerHelper('im2sequence', **locals())
4298 4299
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4300
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4301
    return out
4302 4303


Y
yuyang18 已提交
4304
@templatedoc()
4305
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4306 4307
    """
    ${comment}
4308 4309

    Args:
Y
yuyang18 已提交
4310
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4311 4312
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4313 4314 4315 4316 4317
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4318
        ${out_comment}.
4319 4320

    Examples:
Y
yuyang18 已提交
4321 4322 4323 4324
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4337
    return helper.append_activation(out)
4338 4339


Y
yuyang18 已提交
4340
@templatedoc()
4341 4342
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4343 4344 4345 4346 4347 4348 4349
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4350 4351

    Args:
Y
yuyang18 已提交
4352 4353
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4354 4355

    Returns:
Y
yuyang18 已提交
4356
        ${out_comment}.
4357 4358
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4359 4360 4361 4362 4363 4364

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4365 4366 4367 4368 4369 4370
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4371 4372


4373 4374 4375 4376
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4377 4378
    """
    **Softmax With Cross Entropy Operator.**
4379

4380 4381 4382 4383
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4384

4385 4386 4387
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4388

4389 4390 4391
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4392

4393
    The equation is as follows:
4394

4395
    1) Hard label (one-hot label, so every sample has exactly one class)
4396

4397 4398 4399 4400
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4401

4402 4403 4404
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4405

4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
4418 4419 4420 4421
        ignore_index (int): Specifies a target value that is ignored and does 
                            not contribute to the input gradient. Only valid 
                            if soft_label is set to False. Default: -100

4422 4423 4424 4425 4426 4427 4428 4429 4430
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4431 4432
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4443 4444
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4445 4446 4447 4448 4449
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4450 4451
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4452
    For each instance, it computes the smooth L1 loss element by element first
4453
    and then sums all the losses. So the shape of ouput Variable is
4454
    [batch_size, 1].
4455

4456 4457
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4458
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4459
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4460
            L1 loss op with same shape as :attr:`x`.
4461
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4462 4463
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4464
            by this tensor element by element.
4465
        outside_weight (Variable|None): A tensor with rank at least 2. This
4466 4467
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4468
            element by element.
4469
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4470 4471
           scalar with default value 1.0.

4472
    Returns:
4473
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4474 4475 4476 4477 4478

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4479 4480
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4481
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4482
            out = fluid.layers.smooth_l1(x=fc, y=label)
4483
    """
4484

4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4500 4501 4502 4503


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4504
    This layer creates the one-hot representations for input indices.
4505 4506

    Args:
Y
Yibing Liu 已提交
4507 4508
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4509 4510

    Returns:
Y
Yibing Liu 已提交
4511
        Variable: The one-hot representations of input.
4512 4513

    Examples:
C
caoying03 已提交
4514
        .. code-block:: python
4515

Y
Yibing Liu 已提交
4516 4517
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4518 4519 4520 4521 4522 4523 4524 4525 4526
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4527 4528


Y
Yu Yang 已提交
4529
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4530
    """
Y
yi.wu 已提交
4531 4532 4533
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4534 4535 4536 4537 4538 4539

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4540 4541
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4542 4543 4544 4545 4546 4547

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4548 4549
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4550 4551
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4552 4553 4554 4555 4556
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4557
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4558
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4559 4560
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4561 4562
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4563 4564 4565
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4566 4567


4568
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4569
    """
C
caoying03 已提交
4570 4571
    Gives a new shape to the input Tensor without changing its data.

4572 4573 4574 4575 4576
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4577

4578
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4579

4580 4581 4582 4583
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4584
    2. 0 means the actual dimension value is going to be copied from the
4585 4586 4587 4588
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4589 4590

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4591
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4592
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4593

4594
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4595 4596
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4597 4598
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4599
    dimensions.
C
caoying03 已提交
4600

4601
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4602 4603 4604 4605
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4606 4607

    Args:
4608
        x(variable): The input tensor.
C
caoying03 已提交
4609 4610
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4611 4612 4613 4614 4615
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4616
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4617 4618 4619 4620
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4621
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4622

4623 4624
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4625

X
Xin Pan 已提交
4626 4627 4628
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4629 4630
    Examples:
        .. code-block:: python
G
guosheng 已提交
4631

4632
            data = fluid.layers.data(
4633
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4634
            reshaped = fluid.layers.reshape(
4635
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4636 4637 4638
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4639
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4640 4641 4642 4643 4644
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4645

4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4661
    helper = LayerHelper("reshape2", **locals())
D
dzhwinter 已提交
4662
    out = helper.create_tmp_variable(dtype=x.dtype)
4663
    x_shape = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4664
    helper.append_op(
4665
        type="reshape2",
X
Xin Pan 已提交
4666
        inputs=inputs,
D
dzhwinter 已提交
4667
        attrs={"shape": shape},
4668 4669
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4670

D
dzhwinter 已提交
4671
    return helper.append_activation(out)
4672

4673

4674
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
    """
    Remove single-dimensional entries from the shape of a tensor. Takes a 
    parameter axes with a list of axes to squeeze. If axes is not provided, all 
    the single dimensions will be removed from the shape. If an axis is 
    selected with shape entry not equal to one, an error is raised.
        
    Examples:
    Case 1:
      Given 
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
        and 
          axes = []
        we get:
          Out.shape = (3, 5)
    
    Args:
4698
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4699
        axes (list): List of integers, indicating the dimensions to be squeezed.
4700
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4701 4702 4703 4704 4705 4706 4707 4708

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4709
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4710 4711
    """
    helper = LayerHelper("squeeze", **locals())
4712
    out = helper.create_tmp_variable(dtype=input.dtype)
4713
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4714
    helper.append_op(
4715
        type="squeeze2",
4716
        inputs={"X": input},
Y
Yibing Liu 已提交
4717
        attrs={"axes": axes},
4718 4719
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4720

4721 4722 4723
    return out


4724
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4725 4726 4727 4728 4729 4730 4731 4732 4733 4734
    """
    Insert single-dimensional entries to the shape of a tensor. Takes one 
    required argument axes, a list of dimensions that will be inserted. 
    Dimension indices in axes are as seen in the output tensor. 

    For example: 
      Given a tensor such that tensor with shape [3, 4, 5], 
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
    
    Args:
4735
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
4736
        axes (list): List of integers, indicating the dimensions to be inserted.
4737
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4738 4739 4740 4741 4742 4743 4744 4745

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
4746
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4747 4748
    """
    helper = LayerHelper("unsqueeze", **locals())
4749
    out = helper.create_tmp_variable(dtype=input.dtype)
4750
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4751
    helper.append_op(
4752
        type="unsqueeze2",
4753
        inputs={"X": input},
Y
Yibing Liu 已提交
4754
        attrs={"axes": axes},
4755 4756
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4757

4758 4759
    return out

4760

Y
yangyaming 已提交
4761
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4762
    """
Y
Yibing Liu 已提交
4763
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4764 4765 4766 4767
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4768
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4769 4770 4771 4772 4773 4774

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4775
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4776 4777 4778
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4779
            target_lod: [4, 2]
Y
yangyaming 已提交
4780 4781

            then we get a 1-level LoDTensor:
4782
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4783 4784 4785 4786 4787 4788
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4789
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4790 4791 4792 4793
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4794
                y.data = [[2, 4]]
Y
yangyaming 已提交
4795 4796 4797
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4798
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4799 4800 4801 4802 4803 4804
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4805
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4806 4807 4808 4809
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4810
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4811 4812 4813 4814
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4815
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4816 4817 4818 4819 4820
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4821
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4822
                           from :attr:`y`.
Y
yangyaming 已提交
4823
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4824
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4825 4826

    Returns:
Y
Yibing Liu 已提交
4827
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4828 4829

    Raises:
Y
Yibing Liu 已提交
4830
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4866
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4895 4896
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4924 4925 4926 4927


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4928
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4929
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4930

G
guosheng 已提交
4931 4932 4933 4934
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4957
                         The length of :attr:paddings must be
G
guosheng 已提交
4958 4959 4960 4961 4962 4963 4964 4965 4966 4967
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4968

G
guosheng 已提交
4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4983 4984


C
chengduo 已提交
4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5065 5066 5067 5068 5069 5070 5071
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5072 5073
    called label-smoothing regularization (LSR).

5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5097
                              be :math:`(1, class\_num)`.
5098 5099
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5100
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5128 5129


Y
yi.wu 已提交
5130
@templatedoc()
5131 5132
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5133
    ${comment}
5134 5135

    Args:
Y
yi.wu 已提交
5136 5137
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5138 5139 5140
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5141 5142

    Returns:
Y
update  
yi.wu 已提交
5143
        Variable: ${out_comment}.
5144 5145

    Examples:
5146 5147
        .. code-block:: python

5148
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5194 5195
        .. code-block:: python

W
whs 已提交
5196 5197 5198 5199
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5200
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5201 5202 5203 5204 5205 5206
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5207 5208


5209 5210 5211 5212 5213
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5214
    """
Q
qiaolongfei 已提交
5215
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5216

5217
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5218 5219 5220
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5221

5222
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5223

5224
    Args:
5225
        input (Variable): The input tensor of image resize layer,
5226 5227
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5228
        out_shape(list|tuple|Variable|None): Output shape of image resize
5229 5230
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5231
        scale(float|None): The multiplier for the input height or width.
5232 5233 5234
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5235 5236
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5237 5238
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5239 5240

    Returns:
Q
update  
qiaolongfei 已提交
5241 5242
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5243

5244 5245 5246
    Examples:
        .. code-block:: python

5247
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5248
    """
5249 5250 5251 5252
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5253 5254
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5255 5256
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5257 5258 5259 5260

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5261 5262 5263
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5264
    if out_shape is not None:
B
baiyf 已提交
5265 5266 5267
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5268 5269 5270 5271 5272 5273
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5274 5275 5276 5277
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5278 5279
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5280
        type=resample_methods[resample],
5281
        inputs=inputs,
5282 5283 5284 5285
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5286 5287


Y
yuyang18 已提交
5288
@templatedoc(op_type="bilinear_interp")
5289 5290
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5291 5292 5293 5294 5295 5296
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5297

Y
yuyang18 已提交
5298 5299 5300 5301 5302 5303 5304 5305
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5306 5307 5308 5309 5310 5311 5312
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5313 5314 5315
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5316 5317 5318 5319 5320 5321 5322
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5323
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5324

5325
    Returns:
Q
update  
qiaolongfei 已提交
5326
        Variable: The output is a 4-D tensor of the shape
5327
        (num_batches, channls, out_h, out_w).
5328 5329 5330 5331 5332 5333 5334 5335 5336 5337
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5338 5339 5340
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5341 5342 5343
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5344 5345
def gather(input, index):
    """
Q
qiaolongfei 已提交
5346 5347
    **Gather Layer**

5348
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5349 5350 5351 5352
    of X indexed by `index` and concatenate them together.

    .. math::

5353
        Out = X[Index]
W
whs 已提交
5354 5355 5356 5357 5358 5359 5360


    .. code-block:: text


                Given:

5361 5362
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5363 5364 5365 5366 5367 5368 5369 5370 5371 5372
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5373
        input (Variable): The source input with rank>=1.
W
whs 已提交
5374 5375 5376 5377 5378 5379
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5380

W
whs 已提交
5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5510

5511 5512 5513
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5514
    """
F
stash  
fengjiayi 已提交
5515
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5516
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5517
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5518
    if seed is None:
5519
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5520
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5521
    if isinstance(seed, int):
F
fengjiayi 已提交
5522 5523 5524 5525 5526
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5527 5528 5529 5530
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5531
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5532 5533
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5534 5535
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5536
    return out
W
whs 已提交
5537 5538


5539
def log(x, name=None):
W
wanghaoshuang 已提交
5540 5541 5542 5543 5544
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5545
        Out = \\ln(x)
W
wanghaoshuang 已提交
5546 5547

    Args:
5548
        x (Variable): Input tensor.
5549 5550
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5551 5552 5553 5554 5555 5556 5557 5558

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5559
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5560 5561
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5562
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5563
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5564
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5565 5566 5567
    return out


5568
def relu(x, name=None):
W
wanghaoshuang 已提交
5569 5570
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5571
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5572 5573 5574 5575
    the tensor elementwise.

    .. math::

5576
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5577 5578

    Args:
5579
        x (Variable): The input tensor.
5580 5581
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5582 5583 5584 5585 5586 5587 5588 5589

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5590
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5591 5592
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5593
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5594
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5595
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5596
    return out
5597 5598


W
whs 已提交
5599 5600 5601
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5602 5603 5604 5605
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5606
    .. math::
5607 5608

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5609

5610
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5611 5612 5613 5614 5615
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5616
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5617
                           Its shape should be the same as input.
5618
        num_classes (int): The possible number of labels.
W
whs 已提交
5619 5620 5621 5622

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5623
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5624 5625 5626 5627

    Examples:

        .. code-block:: python
5628

W
whs 已提交
5629 5630 5631 5632 5633 5634 5635 5636 5637
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5638 5639
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5640
        outputs={
W
whs 已提交
5641 5642 5643
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5644 5645 5646
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
5721
                    isinstance(shape, Variable)):
5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5745 5746 5747 5748 5749 5750 5751 5752 5753 5754


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5755

5756 5757
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5758

5759 5760 5761 5762
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5763

5764 5765 5766 5767 5768
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5769 5770 5771

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5816 5817


W
whs 已提交
5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
      
      X = [[1, 2, 3],
           [4, 5, 6]]
      
      Case 0:
      
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
        
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
      
      Case 1:
      
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
        
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
        
      Case 2:
      
        paddings = [0, 1, 2, 1],
        mode = 'edge'
        
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
    
  
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


J
jerrywgz 已提交
5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
5920 5921
	name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically. 
J
jerrywgz 已提交
5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
5972

5973 5974 5975 5976 5977 5978 5979 5980 5981 5982
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
5983 5984
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6000
        ValueError: If axis is not in range [0, rank(x)].
6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
6018
    x_shape = helper.create_tmp_variable(x.dtype)
6019
    helper.append_op(
6020
        type='flatten2',
6021
        inputs={"X": x},
6022 6023
        outputs={'Out': out,
                 'XShape': x_shape},
6024 6025
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6026 6027


C
chenweihang 已提交
6028
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6029
    """
C
chenweihang 已提交
6030
    Generate a new sequence for the input index sequence, which enumerates all the
C
chenweihang 已提交
6031 6032 6033
    sub-sequences with length `win_size` of the input. 
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
C
chenweihang 已提交
6034 6035 6036 6037 6038
    
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6039
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6040 6041 6042 6043 6044 6045
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6046
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6047 6048 6049
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6050 6051 6052
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
C
chenweihang 已提交
6064
    out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6065 6066 6067 6068 6069 6070
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
6071

6072

S
sneaxiy 已提交
6073 6074 6075 6076 6077 6078 6079 6080 6081
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6082

S
sneaxiy 已提交
6083
    .. math::
6084

S
sneaxiy 已提交
6085 6086 6087
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6088
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6089 6090 6091 6092
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6093 6094 6095
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6096 6097
    Returns:
        Variable: The output sequence mask.
6098

S
sneaxiy 已提交
6099 6100
    """

Q
qingqing01 已提交
6101
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6102 6103 6104 6105 6106
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
6107 6108 6109
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6110 6111
        outputs={'Y': out},
        attrs={
6112
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6113 6114 6115
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6116 6117


X
Xin Pan 已提交
6118
def stack(x, axis=0):
S
sneaxiy 已提交
6119 6120 6121 6122
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6123 6124 6125 6126 6127 6128 6129

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6130
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6131
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6132 6133

    Args:
6134
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6135
        axis (int|None): The axis along which all inputs are stacked.
6136

S
sneaxiy 已提交
6137 6138
    Returns:
        Variable: The stacked variable.
6139

S
sneaxiy 已提交
6140 6141
    """

X
Xin Pan 已提交
6142 6143 6144 6145 6146 6147 6148 6149
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

    out = helper.create_tmp_variable(x[0].dtype)
    helper.append_op(
S
sneaxiy 已提交
6150 6151
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6152

X
Xin Pan 已提交
6153
    return out
D
dzhwinter 已提交
6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
   
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised. 

    Args:
        x (Variable): Input variable. 
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
    
    Returns:
        list(Variable): The unstacked variables.
    
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
        outs.append(helper.create_tmp_variable(x.dtype))

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
        
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
        
        Attr(expand_times):  [1, 2, 2]
        
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
        
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
        
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339


def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
        name(basestring|None): Name of the output. 

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
    return out


def elementwise_add(x, y, axis=-1, use_mkldnn=False, act=None):
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


def elementwise_div(x, y, axis=-1, use_mkldnn=False, act=None):
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


def elementwise_sub(x, y, axis=-1, use_mkldnn=False, act=None):
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


def elementwise_mul(x, y, axis=-1, use_mkldnn=False, act=None):
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


def elementwise_max(x, y, axis=-1, use_mkldnn=False, act=None):
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


def elementwise_min(x, y, axis=-1, use_mkldnn=False, act=None):
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


def elementwise_pow(x, y, axis=-1, use_mkldnn=False, act=None):
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
            "act(basestring|None): Activation to be applied to the output."
        ])